M odeling with Service Dependency Diagrams

Lawrence Cabac, Ragna Dirkner and Daniel Moldt

University of Hamburg, Department of Informatics
Vogt-Kolln-Str. 30, D-22527 Hamburg, Germany

Abstract. This paper describes the usage of component diagram like models
for the analysis and design of dependencies in multi-agent systems. As in other
software paradigms also in multi-agent-based applications there exist dependen-
cies between offered and required services, respectively the agents that offer or
require those services. In simple settings it seems superfluous to model or ana-
lyze those dependencies explicitly because they are obvious. In complex settings,
however, these dependencies can grow rather confusingly big and can cause mis-
understandings among the developers of the system. Here it is useful to achieve a
visualization of those dependencies by analyzing the given multi-agent applica-
tion and displaying these in a diagram. The diagram gives a clear illustration of
the overall structure of the system and therefore forms a basis for the discussion
of the architecture. In addition, the diagram may be used for the documentation
of the system. A dependency diagram technique together with a tool integration
is presented in this paper.

1 Introduction

One key factor for the successful operation of multi-agent systems is the smooth com-
munication between the agents. Usually, interactions are modeled in detail using inter-
action diagrams and agent protocols [1,9,12]. Static aspects of the system are often not
modeled explicitly, although they are important for the understanding of the structural
architecture of the multi-agent system. One example of such static aspects is the depen-
dency relation that exists between agents. In order to attain a goal, most agents have
to communicate with other agents. Thus there exists a dependencies between agents in
almost every multi-agent system, which are related to the interaction structure of the
system.

During the development of several multi-agent applications in our teaching projects
we recognized that the absence of a modelillustrating the overall structure of the system
turns out to be a big problem. For example often there are diverse opinions among the
developers which agent has to initiate a particular interaction. This is our motivation to
model the dependencies with a UML component diagram, which are modified to some
extend by adjusting the syntax to fulfill our needs. Surely this calls for tool integration
and for that reason we have developed a plugin flen&w [11].

In MuLAN [13], offered and required services are explicitly defined in the agent’s
configuration file (the agents initial knowledge base). Our plugin manages to use this
source to generate a dependency diagram. Another benefit of the tool is that it offers
synchronization between the dependency diagram and the agent’s configuration file.

Cabac L., Dirkner R. and Moldt D. (2008).

Modeling with Service Dependency Diagrams.

In Proceedings of the 6th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
109-118

DOI: 10.5220/0001742401090118

Copyright © SciTePress

110

We start this paper by pointing out that during the desigrgefd services the right
level of abstraction and its variation is of great impor&ie the results in system de-
sign. More than one type of dependency may exist among agedtservices. Thus,
we distinguish between soft and hard dependencies in $etve propose the depen-
dency diagram for the modeling of hard service dependensigish is a variation of
the UML component diagram. Section 3 presents the depegdiagram that shows
clearly the dependency hierarchy of agents. Finally, weemethe tool for the genera-
tion of the dependency diagram fromuvdaN knowledge base files. With thisEREwW
plugin it is also possible to create new dependency diagmaradit existing diagrams
(Section 4).

2 Service Dependencies

In the context of multi-agent systems we understand sesasecollections of agent
actions that serve a common purpose. A service is realizethéyr more agent proto-
cols. In general a service may be requested by other agdnissiniplies an interaction
of (at least) one agent with (at least) one other agent. Asxaezmpience, to be able to
access a service, its interface has to be published.

During the design phase of the system the developers hawzigedon the level of
abstraction of the services and their published interface.

Let us consider for example an agent that plays board-gaiesan describe the
services of the agent on a very abstract level and say thiesésplaying board-games
On a very low level of abstraction we can describe the sesw¢he agent through the
actions he performs, so we say the agent offers servicethli@es dice move pegand
so on.

The challenge for the developers is to find tiight level of abstraction, that is
abstract enough to get an idea of the offered services as ke w&hd detailed enough
to recognize if two agents perform similar tasks. ThrougrtHexibility in regard to
the choice of the level of abstraction the services arelsigifmr modeling the overall
structure of big as well as small systems without gettingdomplex or too trivial
representations in the modeled diagrams. Most agents ngeeseof other agents to
accomplish their goals or even to provide their own servibgglelegation). Thus, if an
agent requires a service from another agent, we recogniependency between agent
and offered service.

We distinguish between hard/static dependencies andigoétimic dependencies.
Hard dependencies are explicitly specified by the develdpdi ULAN/CAPA applica-
tions they are defined in the initial knowledge base file. Tarelldependencies describe
a minimum set of services that are required by an agent tomdeting useful. Another
type of dependencies between agents are soft dependenbiek,give a description
of the communication structure between agents. If an agentires an answer from
another agent within a conversation, there exists a sottm#gncy between those two
agents. The schemas of the conversations are typicallyedeéis interaction proto-
cols [9]. We apprehend protocols as implementations of aptexragent actions that
are assigned to one or more services. Thus soft dependernaniatso be regarded as de-

111

FIPA Request Protocol Dependency between
the two agents in the

Requester FIPA Request Protocol

: <<agent>>
request : Requester

A

| <<requiredBy>>

agree

1
<<service>>

refuse

participate
inform-done | <<offers>>
failure I
<<agent>>
L Participant
L inform-result

Fig. 1. FIPA Request protocol and a representation of dependencies

pendencies between agents and services. In this paper pesgra modeling technique
for hard dependencies. We do not deal with soft dependencies

We recognize a dependency between an agent and a servide dffgred by an-
other agent, if the first agent starts an interaction withsbeond agent. To illustrate
this we use the well known FIPA Request protocol [10] preseim Figure 1. The Par-
ticipant in the Request protocol offers a service to perfaroertain task — lets say the
serviceparticipate The Requester wishes a tgsirticipateto be performed by the Par-
ticipant. This implies that the Requester sends a messate tarticipant and waits
for an answer. The service offered by the Participant is detag with an answer to
the initial request. Thus a hard dependency exists, whiofoideled in the right part of
the figure as a fragment of a dependency diagram. Servicdsecaaquired by several
agent and they can also be offered by multiple agents. Thasjépendency does not
exist directly between the two agents, instead — as poiniedhove — the dependency
exist between an agent and an offered service.

In general, we seek for a hierarchical structure in a deperdgiagram. This allows
for code reuse in the system, composability and easy recoafign. Interdependen-
cies (cyclic dependencies) between agents are undesistdydicause they can cause
deadlocks in the systems configuration and second becagsedmplicate the substi-
tution of agents. We believe that the explicit modelling fsuth problematic aspects in
a system design and help the developer to eliminate them.

3 Modedling Service Dependencies

We model hard dependencies with adapted UML componentatiagrUsually, com-
ponent diagrams are used to model the constitution of replale software constructs
and their relationships. Other parts of the component diagare classes, objects and

112

interfaces [15, p. 139-171]. In the following section we aése how the elements of
the agent’s context (i.e. agents, services and the depeydelations) can be modeled
with elements of the component diagram. In doing so we algbligiht the differences

between the elements and suggest special notations wisernits useful.

A service is an abstraction of a set of (complex) agent astibat serve a common
purpose. Several services may be provided by one agent aaerhkagents may offer
the same services. This definition is very similar to the dim of interface in the
UML superstructure [15, p. 82]: "An interface is a kind of s$#ier that represents a
declaration of a set of coherent public features and olitigat An interface specifies a
contract; any instance of a classifier that realizes thefade must fulfill that contract.”
So we model services as an interface but add the stereotgpéacs”. We make this
distinction for two reasons. First an agent has in contasirnt object the ability to
break contracts, so services are indeed also an obligatifuifil a specified tasks but
there is no definitive certainty that this will be done. Aratineason is that we would
like to use the agent and service figures together with thelaeglass and interface
notation and the introduction of a new stereotype gives esatility to do so without
getting confused about the terms.

Agents are modeled as special components. For the sameaseastescribed above
we use the stereotypeagent » for the agent components. Note that the agent figures
in the diagram describe the static configuration of the agewt the agent instances at
runtime.

The relation between interfaces and components is modeladJML component
diagram by an arc. Offered interfaces are connected to tmponent via a dashed arc
with a closed triangle top, which points to the interfaceisTiotation is also practical
for representing the relation between agents and theireaffeervices. To model re-
quired interfaces the component diagram uses a dashedtartheistereotypeuse»
and an open triangle top that also points to the interfacgettion 2 we pointed out the
benefits of hierarchical dependencies. To get a dependéagsadh with a hierarchical
layout we use an arc that points in the opposite directiorottnect agents with their
required services. As for the service elements we introthestereotypesof f er s»
and«r equi r edBy» to emphasize the affiliation of the relation elements to tpena
context.

Figure 2 shows a dependency diagram as described above tt€o thstinguish
between agents and services the agent figures are highlighte colored background.

The figure shows a snapshot of a workflow management systemvielapment,
giving an overview of the agents in the system. In additiateeeloper can easily iden-
tify potentially problematic areas. In this example we fimd foroblems: First, between
the agenté&\dmi ni strati onandC i ent | nt eracti on exists a two-way depen-
dency. A two-way dependency may indicate that the agentil dmiimplemented as
one agent or, as in this case, the developers of one agenahaisgconception of the
tasks of the agent. Second, the agéfrénact is not connected to the other agents. An
isolated agent means that this agent does not interact Witdr agents of the system.
Here, this situation is not intended. Both situations aszdfore undesired and should
be changed in the further development process. The devetoag be supported in

113

<<service>>

user <<service>>
A wfenact
|
<<off?rs>> |
<<agent>> <<off|ers>>
User
7 AN S <<agent>>
/ N Wfenact
| ~
4) N
s <<requiredBy>> ~
<<requiredBy>> | <<requiredBy>>
/ AN
1
<<service>> <<service>> <<service>>
wfms administration interaction
AN JANI A
| N <<requiredBy>> |
<<requiredBy>>
| | Ssrequirecey>>, |
<<offers>> <<offers>> X
I I PEEEN ﬁ‘
<<offers>>
I I 4 N I
s AN
| |y N |
<<agent>> <<agent>> <<agent>>
Wfms Administration ClientInteraction

Fig. 2. Dependencies of the distributed workflow management systetavelopment.

finding such structural anomalies automatically by the nlindeool that is described
in the next section.

4 Tool Description

The dependency diagram tool is a plugin foENREW [11]. The plugin has two main
functionalities. First, it generates the dependency disgfrom existing MJLAN
knowledge base files. Second, it offers tools for creatingj editing dependency di-
agrams.

Figure 3 shows a screen shot of the development of the workflanagement sys-
tem with the dependency diagram tool. In the upper left coim¢he RENEW menu
bar with the standard palettes and the dependency diagrattep&8eneath, the depen-
dency diagram is shown. In the diagram the agent fidisrer is selected. The right
hand side of the figure shows the knowledge base editor (KBH) thve knowledge
base of the agertiser .

For generating a diagram the tool searches (recursivetyjrfowledge base files
in a user-defined directory. For each knowledge base fouratjant figure is created.
A knowledge base contains a list of offered services andt aflithe agent’s required
services. For each service in the lists the correspondingcsefigure and the agent
figure are connected. A new service figure is created, if thecgeis not already present

114

30|00 ¢ AN 5| w|Le|Wm| AlA

@@O|N |~ i[nfd] EIFEN

Selection Tool

Knowledgebase Info

v H 2

e 0

& [2xm 2HASH

User.wis

i

Outiine

- User
el

==Sevice==
user
Pl
==offerge>

3 £l
==agent=»
User

o

==requiredBy==

User_distribute! ={inform :content
L CurrentworkltemsOr (sequence) dVorkNowAgent))" L[]
Janguage "FIPA-SLO" i

=<gervices=
administration

'
<<nffarg=»
!

|
==senicers
wims

==offarg=»
!

|| Problems | Entry |

==agent=>
Wims

==agent=>
Administration

The Key protecel User_distributeWorkitems allready exists in||
=T]] [v|

4] II | [¥

Fig. 3. Screen shot of the development with the dependency diagraim t

in the drawing. For the user’s convenience the tool provalsisnple automatic layout
mechanism.

In addition to the possibility to use all standard drawingl$cof RENEW the plugin
offers some new editing functions. These are offered a® tta@ls for editing depen-
dency diagrams: an agent figure tool, a service figure toobatebendency connection
tool (see the last three items in the lowezNEW tool bar in Figure 3). The dependency
connection tool is used for drawing the arcs between agehsarvice figures. The ar-
row type and the inscription depend on the direction of tlre-asee Section 3. Arrows
are adapted automatically while they are drawn so that theatw types can be drawn
with the same tool.

A special function of the dependency diagram is the KBE handhich is part of
the agent figure. With a click on the handle (a blue arc in thitobmright corner of
the figure that is visible when the figure is selected), theAtedge base of the agent
is opened in the KBE for further inspection or editing. Théseispecially useful for
debugging purposes.

By first generating a dependency diagram and then editiogé faces an inconsis-
tency between the diagram and the code it is generated frmmifdimize such conflicts
between diagrams and knowledge bases a round-trip engigessistem was realized.
It preserves the consistency of knowledge bases and depgndiegram by automati-
cally transferring every change in the dependency diageatimet knowledge bases. For
example, when the serviegni ni strati on is connected to the agebser via a
dependency arc, a new service-description is inserteceifighof the required services
in the knowledge base. This also works in the other directitowever, changes in the
knowledge base are not transferred immediately to the dkgrery diagram, but as soon
as the knowledge base is saved.

A detailed description of the dependency diagram tool aedalind-trip engineer-
ing system can be found in [6].

115

<<plugin>>
Renew Util
T
<<plugin>>
Renew Ant <<service>>
de.renew.util
I = -~
| - i
- <<plugin>>
! ad Renew Simulator
\/ <<plugin>>

<<service>> Renew JHotDraw
de.renew.ant

VA <<plugin>> <<plugin>>
<<service>> Renew Misc Renew Formalism
ch.ifa.draw ! !
N |
AN
<<service>> <<service>>
de.renew.misc de.renew.formalism
A\
<<plugin>>
Renew Gui
[
\/
<<service>>
de.renew.gui
_ - -~
— v =~ o -
<<plugin>> <<plugin>> <<plugin>> -
plug plugt plug <<plugin>>
Renew Prompt Renew Gui Prompt Renew NetComponents

: Renew Formalism Gui
T
4 \v4
<<service>> <<service>>
de.renew.nc de.renew.formalism.gui
V
<<plugin>>
Renew MulanComponents
T
<<service>>
de.renew.mulancomponents

\ /

\ s
<l
<<service>>
de.renew.prompt

Fig. 4. Cutout of the renew plugin structure.

Usage in Other Domains

The dependency diagram tool is not bound to agent deperedeinigi can also be used
for modeling other component based, hierarchical stredtgystems. Another exam-
ple of such a hierarchical system in our context is the plstfiacture of RNEW. As

the agents in the MLAN-system every plugin contains a configuration file where the
required plugins are declared. Therefore the dependeagyath tool can be used for
generating a dependency diagram of the plugin structuteowitmuch additional ef-
fort. Unlike in the agent system also the dependencies ottipgired plugins have to be
declared recursively. A function to remove this transitires in the diagram is there-

fore very useful. The example in Figure 4 shows a cutout oRbBREW plugin structure
without transitive arcs.

116

Similar to the agents’ knowledge bases in theIMN-system every plugin in B
NEW contains a configuration file, in which required servicesdeelared. Therefore,
the dependency diagram tool manages to generate deperdiagcyms of the plugin
dependency structure. However, in contrast to the multhigystem also the depen-
dencies of the required plugins have to be recursively dedla functionality to re-
move this transitive arcs in the diagram is therefore in tloistext very useful and in
development. The example in Figure 4 shows a fragment of tneR plugin structure
without the manually removed transitive arcs.

5 Reated Work

Our definition of hard dependencies is comparable with thi@itien of service depen-
dencies in [2]. A definition of soft dependencies can be founthe PASSI method.
There a soft dependency exists if a service is not requinaid;Helpful or desirable”
[5, p. 6]. This notion conflicts with ours where soft depertles subsume the hard
dependencies.

Most software developing methodologies contain a techeign modeling some
kind of dependencies between their components. In thewollp paragraph we
will consider two examples from the agent oriented cont®ROPOS and AGR
(Agent/Group/Role) and have a look how the dependency @iagan be used in other
component based domains.

The TROPOS methodology distinguishes four kinds of depecids between
agents, from hard dependencies (resource) to soft onasg@at). [14] shows how
TROPOS dependency relations can be expressed in UML fotineakystems.

A hard dependency in our definition could be a resource depwyla goal depen-
dency or a task dependency in TROPOS, depending on the kisdreice. We want
to abstract as much as possible from the agent internalstta gkear image of the
system structure, so the distinction between differerd kihservices in matters of the
underlying action is not useful for our needs.

Another agent oriented modeling technique, that desciepgendencies between
agents is AGR, which stands for Agent/Group/Role. In [8] &lwthors show how the
organizational structure of an agent based system can beletbdsing the AGR tech-
nigue. One of the proposed diagrams, the organizationaitsire diagram, shows roles,
interactions and the relations between roles and intem&tiThis diagram is compara-
ble to the dependency diagram. In both diagrams an arc froagant or respectively
the role the agent plays, means that the agent starts aadtiter. Differences between
the diagrams come off additional elements in the orgamimatistructure diagram. First
also the groups to which the roles belongs are modeled. Settensituation that every
agent in a specific role must be member in another role is radded a direct relation
between the two roles. In MLAN/CAPA-Systems there are (for now) no elements like
groups or roles, so the advanced modeling possibilitiesadrganizational structure
diagram is not suitable in this context.

As well as in the agent context, also in other component bagstems it is impor-
tant to model the dependencies between components. Ongkxafa well known
component system is the Eclipse Framework with its numepbugins. The visualisa-

117

tion of the dependencies between different plugins is cermphd no sufficient com-
mercial tools exist that can visualize the structure of thele system appropriately.

6 Conclusionsand Outlook

We presented a technique and a tool for explicit modelingegfethdencies between
agents and services. The benefit from this technique is aitivat diagram consisting
of only four elements. The use of the proposed diagram helpsftavare developer
to get an overview on the overall structure of the system anidieéntify desired or
undesired dependencies hidden in the source code. Fudherthe diagram may be
used for design, presentation and documentation purposes.

With the dependency diagram tool and the round-trip engingeystem develop-
ers can generate and use the dependency diagram withotibadbeffort. The depen-
dency diagram always shows an up-to-date documentatidrecdytstem.

The dependency diagram can not be used only for showing depeies between
agents but also for other components. The current versitimeabol, for example, can
generate diagrams that show theN&w plugin dependencies. Because theNRw
plugins and the plugin system were conceptually based omt égehnology, this addi-
tional functionality was achieved with very little effotdmpare with [4]).

The dependency diagram tool can be extended in many dinsctibis possible to
show additional informations of the knowledge bases sudoasnents to the required
or offered services. The comments can be shown as UML notefdat are connected
to the corresponding agent figures.

Another interesting point is to analyze the connection leetwagent interaction
diagrams and dependency diagrams.

The work on dependency modeling presented in this paperdshaitding block
of a broader approach on agent-oriented software engimgebéased on Petri nets and
other graphical modeling formalisms. It includes reseancthe context of MULAN,
CapA and also application development (see [3,7,13]).

References

1. AUML. Agent UML. Webpage, 2004t t p: / / www. aumni . or g/ .

2. Lars Braubach, Alexander Pokahr, Dirk Bade, Karl-Heimer{pels, and Winfried Lamers-
dorf. Deployment of distributed multi-agent systems. lrarkro Zambonelli Marie-
Pierre Gleizes, Andrea Omicini, edit&th International Workshop on Engineering Societies
in the Agents Worldpages 261-276. Springer-Verlag, Berlin, 8 2005.

3. Lawrence Cabac, Michael Duvigneau, Michael Kéhler, &aighmann, Daniel Moldt, Sven
Offermann, Jan Ortmann, Christine Reese, Heiko Rolke, ankie¥ Tell. PAOSE Settler
demo. InFirst Workshop on High-Level Petri Nets and Distributedt8ys (PNDS) 2005
Vogt-KdlIin Str. 30, D-22527 Hamburg, March 2005. Univeysif Hamburg, Department for
Computer Science.

4. Lawrence Cabac, Michael Duvigneau, Daniel Moldt, andkbldRlke. Applying multi-
agent concepts to dynamic plug-in architectures. In Joarglldr and Franco Zambonelli,
editors,Agent-Oriented Software Engineering VI: 6th Internatibéorkshop, AOSE 2005,

118

11.

12.

13.

14.

15.

Utrecht, Netherlands, July 21, 2005. Revised SelectedrBag@ume 3950 of ecture Notes
in Computer Scien¢gpages 190-204. Springer-Verlag, June 2006.

. M. Cossentino and C. Potts. PASSI: a process for spegifym implementing multi-agent

systems using UMLht t p: / / ww«+ st ati c. cc. gat ech. edu/ cl asses/ AY2002/
cs6300_fal | /I CSE. pdf .

. Ragna Dirkner. Roundtrip-Engineering im PAOSE-Ansdbiploma-thesis, University of

Hamburg, Department Informatics, 2006.

. Michael Duvigneau, Daniel Moldt, and Heiko Rélke. Coment architecture for a multi-

agent platform. In Fausto Giunchiglia, James Odell, andh&er Weil3, editorsAgent-
Oriented Software Engineering Ill. Third International ¥Xshop, Agent-oriented Software
Engineering (AOSE) 2002, Bologna, Italy, July 2002. RelViBapers and Invited Contri-
butions volume 2585 oL ecture Notes in Computer Scien@&erlin Heidelberg New York,
2003. Springer-Verlag.

. Jacques Ferber, Olivier Gutknecht, and Fabien MichedmRagents to organizational view

of multi-agent systems. In Paolo Giorgini, J6rg Mller, ataimes Odell, editorg\gent-
Oriented Software Engineering Jyages 214-230, 7 2003.

. FIPA. Foundation for Intelligent Physical Agents, 2007t p: / / ww. f i pa. or g.
. Foundation for Intelligent Physical Agent&IPA Request Protocol Specificatioversion

2002/12/06 edition, 2002.

Olaf Kummer, Frank Wienberg, and Michael Duvigneau. é&Ren the Reference Net Work-
shop. Available atht t p: / / ww. r enew. de/ , May 2006. Release 2.1.

James Odell, H. Van Dyke Parunak, and Bernhard BaueznHixtg UML for agents. In Gerd
Wagner, Yves Lesperance, and Eric Yu, edité@mc. of the Agent-Oriented Information
Systems Workshop at the 17th National conference on Aatificielligence pages 3-17,
2000.

Heiko Rélke.Modellierung von Agenten und Multiagentensystemen — Gaged und An-
wendungenvolume 2 ofAgent Technology — Theory and Applicatiohegos Verlag, Berlin,
2004.

Carla T. L. L. Silva and Jaelson Castro. Modeling orgatinal architectural styles in
uml: The tropos case. In Oscar Pastor and Juan Sanchez DBitmrsgAnais do WERO2 -
Workshop em Engenharia de Requisjfosges 162—176, 11 2002.

Unified modeling language: Superstructuné.t p: / / www. ong. or g/ docs/ f or mal /
05- 07- 04. pdf , Juli 2005.

