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Abstract. This paper discusses a novel RFID-based approach to determine 
probabilities of items in a supply chain as being counterfeits based on their 
proximity to already identified counterfeits. The central idea is that items 
moving close to fakes are more likely to be fakes than items traveling with 
genuine items. The required proximity information can be deduced from events 
in EPCIS repositories for RFID-tagged items. The paper discusses two 
mathematical algorithms for calculating the probabilities and presents the 
results of a comparative simulation study. The results are discussed in terms of 
conclusions for a future implementation with RFID-tracked supply chains. 

1 Introduction 

The International Anti-Counterfeiting Coalition1 estimates that sales of counterfeits 
are a $600 billion a year problem that causes losses in revenues, brand damages, and 
that can even be hazardous to health and well-being in the case of faked drugs or 
faked parts in the airline or car industries [1]. 

Until the emergence of RFID-based track & trace standards such as EPCglobal2, 
anti-counterfeiters had to rely on direct authentication measures almost exclusively. 
The question of how to authenticate a product was addressed with security features 
like holograms, copy detection patterns (CDP), or even cryptographic RFID tags [2, 
3]. While these features are generally appropriate for authenticating products and 
identifying fakes, the critical issue of how to locate and where to search for potential 
counterfeits in the first place can be addressed with transparent supply chains utilizing 
EPC Information Services [4] or similar RFID-based tracking mechanisms.  

The basic observation and premise is that counterfeits in the domain of fast 
moving consumer goods (FMCG) usually enter the supply chains together with 
similar counterfeits, for instance in the same container or palette, and that these 
counterfeits consequently move together through parts of the supply chain.  

Whenever a counterfeit is located by any direct authentication measure, we can 
identify other potential counterfeits that were close to the already confirmed 
counterfeits at some point in the supply chain. 

                                                           
1 www.iacc.org 
2 www.epcglobalinc.org 
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 With this proximity information about potential counterfeits calculated on data 
gathered from RFID-based tracking services, the allocation of anti-counterfeiting 
resources to potentially suspicious items is facilitated. This way, resources-
constrained bodies such as customs could direct their resources more efficiently 
towards identifying which items to check. 

The solution discussed in this article is based on the unique identification of 
individual items in the supply chain and the tracking and tracing of these items 
including parent-child (aggregation) relations. Information about these relations are 
provided as events in EPC Information Services (EPCIS) for RFID tagged items, but 
could potentially be gathered through other emerging standards as well. The solution 
works by assigning probabilities based on proximity to items known to be counterfeit 
or authentic. 

2 Supply Chain Proximity 

As pointed out in the introduction, the central constituent of the approach discussed in 
this paper is that – as long as no specific other knowledge is available – the 
probability of an item in a supply chain being counterfeit increases with its proximity 
to already identified counterfeits. This assumption is based on the fact that inserting 
counterfeits in a licit supply chain is neither always possible at any given time or 
position, nor is it cost-efficient for the counterfeiter to equally balance the inclusion of 
counterfeits. Hence, an inclusion attack on a licit supply chain will usually involve 
multiple items at once, so that the spatial (or temporal) proximity to a counterfeit item 
positively affects the probability of an item to be counterfeit as well.  

In the domain of RFID-based tracking and tracing of items, we commonly deal 
with aggregating and disaggregating events to model the hierarchical realities of 
logistics with items moving in cases, pallets, containers, shipments, etc. 
Consequently, we also create corresponding data structures that define proximity in 
terms of hierarchical relationships as is discussed in section 0. 

To determine the likelihood that an item is counterfeit, we assign a fakeness 
probability to each item depending on its spatial and temporal proximity to already 
verified items. We explain in section 0 two alternative algorithms through which we 
calculate the fakeness probabilities, but first we introduce in section 0 the concept of 
proximity in a supply chain and the supporting structures. 

Item Hierarchy Structures. The fakeness probability algorithms we will introduce 
make use of hierarchical structures that denote the temporal and spatial proximity 
between items in the supply chain. The structures are generic as they support different 
concepts of proximity. For example, proximity between two items can imply their 
ownership by the same supply chain partner at a certain point in time, or their 
physical proximity in a shipment (e.g. same case or pallet), or a combination of such 
concepts.  

A hierarchy of related items comprises aggregations of items at equal proximity 
levels as shown in Fig. 1. If two items share the same direct parent aggregation, such 
as items i and j in Fig. 1, then the two items are highly correlated. For example if item 
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i was found to be fake, then the fakeness probability of item j increases more than that 
of item k, which in turn increases more than that of item m. 

 
Fig. 1. An illustrative item hierarchy. 

We name the levels of the hierarchy as shown in Fig. 1: 
• l1: The deepest level of the hierarchy where objects in an aggregation are uniquely 

identifiable, e.g. Items being together in the same case.  
• l2: The next level of the hierarchy, e.g. cases being together on the same palette.  
• l3: The next level of the hierarchy, e.g. palettes being together in the same container.  
• ln: The last level of the hierarchy.  
 

As we indicated earlier, the hierarchy structures support different concepts of 
proximity such as the mentioned case-pallet-container proximity, but also proximity 
due to supply chain partner ownership or the combination of these two. In the 
simulation study of section 3, we will consider proximity due to partner ownership, 
but this does not change anything in the structures or algorithms discussed in this 
section. 

We introduce the notation l(a,b), which denotes the deepest level of the hierarchy 
containing items a & b. Thus we have from Fig. 1 that l(i,j) = l1; l(i,k) = l2; l(i,m) = l3. 
Ax denotes an aggregation at level x, so the aggregation containing items i and j but 
not k is an A1 aggregation where as the aggregation containing all three items but not 
m and n is an A2 aggregation. 

Probability Calculation Algorithms. In this section, the two algorithms for fakeness 
probability calculation are discussed. The following outlined definitions are needed: 
• H is a hierarchy of items at hand as shown in Fig. 1 with cardinal |H| (the number 

of items in the hierarchy) 
• )(, ipHi∈∀  is the fakeness probability of i, [ ]1,0)( ∈ip   
• Items in H are grouped in conceptual aggregations A shown as boxes in Fig. 1 
• UA is the set of  unverified items of aggregation A with cardinal |UA|, AU A ⊂  
• VA is the set of already verified items of aggregation A with cardinal |VA|, 

AVA ⊂  
• |VA| + |UA| = |A| 
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• FA is the subset of VA where checked items were found to be fake, cardinal |FA|, 

AFiip ∈∀= ,1)(  
• G is the subset of CA where checked items were found to be genuine, cardinal |GA|, 

AGiip ∈∀= ,0)(  
• |FA| + |GA| = |VA| 
 

The first algorithm calculates a fakeness coefficient for yet-unchecked items in the 
hierarchy based on their proximity to already-found genuine and fake items. An item 
which is closer to fakes and further away from genuine items will have a high 
fakeness coefficient. Adjustable parameters are used to specify the relative 
importance of the different proximity levels. Finally, the fakeness coefficients are 
used as weights to determine a fakeness probability for each unchecked item. 

In the second algorithm, we maintain two values for each aggregation in the 
hierarchy: a value P denoting the percentage of already verified items which are fake, 
and a value C which is a confidence value denoting the percentage of items in the 
aggregation which were already checked. The fakeness probability of each item is 
then determined by considering the P and C values of all its parent aggregations, 
weighted by adjustable parameters as in the first algorithm. 

The algorithms are detailed below. 

First Algorithm. This approach consists of two parts: 
1. Determining the average fakeness probability of a yet untested item in an item 

hierarchy, based on the results of the tests already made on the items in the 
hierarchy 

2. Using this average result to calculate the fakeness probability of each (yet untested) 
item in the hierarchy based on it proximity from discovered authentic and fake 
items 

Determining the Average Fakeness Probability Pav.. k is a coefficient that shows the 
relative importance of previous tests, i.e. the correlation they have on subsequent 
tests. It is a heuristic measure which reflects the acceleration with which Pav increases 
and approaches 100% each time a new counterfeit is detected , k ≥ 1. Pav is 
consequently obtained as shown in equation 1. 

||||
||

HH

H

UVk
FkPav
+

=  (1) 

Proximity Coefficients.We use heuristic coefficients to formalize the concept of 
spatial proximity, namely the relationship between finding a fake/authentic item and 
the chances of finding other fake/authentic items at different levels of the hierarchy. 
Using the example of Fig. 1, the proximity coefficients specify the increase in p(j) 
relative to that of p(k) and p(m) upon finding that item i is counterfeit. We use the 
following notation to formalize the proximity coefficients: 
• PCf(lx)= PCf(x) is the proximity coefficient for having a fake at a level lx 
• PCa(lx)= PCa(x) is the proximity coefficient for having a genuine item at a level lx 
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We will use the following shorthand: 

PCf(l(a,b))= PCf(a,b) (2) 

The higher the coefficients, the more significant the proximity is at the respective 
level of the hierarchy, so: 

)(...)2()1( nPCPCPC fff ≥≥≥ and 

)(...)2()1( nPCPCPC aaa ≥≥≥  

Algorithm to Calculate per Item Coefficients and Probabilities. 
Uuuu n ∈}...,,{ ,21 are the yet-unchecked items whose fakeness probability we 

want to calculate. The fakeness coefficients of these items are determined as follows: 

∑∑
∈∈
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, we calculate x and subsequently for each unchecked item, 

ixKip =)( . 

Second Algorithm. In this algorithm, we maintain for each aggregation A two values: 
P(A) and C(A): 
 
• P(A) shows the static probability (derived from the already checked items) that an 

item in A is fake: 

A

A

V
F

AP =)(  (4) 

 
• C(A) shows the confidence in the value of P(A), and it depends on the number of 

checks already done as a ratio of the total number of items in A: 

AA

A

UV
V

AC
+

=)(  (5) 

 
For each authenticity check that is done on an item i, an update is made to the values 
of P(A) and C(A) AiA ∈∀  (the update propagates up the tree from i to the root 
of H). After the updates to P(A) and C(A), the probability of each unverified item in 
the hierarchy is calculated as the weighted mean of the probabilities of its containing 
aggregations. The weights are the products of the confidence factors and proximity 
coefficients. 

105



1,,
)(

)()(
)(,

1

1 =∈=∈∀

∑

∑

=

=
nln

l
ll

n

l
lll

kAu
ACk

ACAPk
upUu  (6) 

 
kl is a proximity coefficient similar to those in the first algorithm but always relative 
to the nth level of the hierarchy.  

3 Simulation 

In order to evaluate the characteristics and appropriateness of both algorithms for 
finding counterfeits in a supply chain, a simulation study was conducted that modeled 
sample supply chains. Shipments between supply chain partners had normally 
distributed lead times. Collections of counterfeits were inserted at random locations in 
the supply chain and eventually detected by simulated routine checks that occurred 
with a certain ratio (x % of all incoming items were checked for authenticity at any 
read point).  

In order to reduce the complexity of the simulation, checks were always successful 
in differentiating between authentic and fake items, but the application of a check was 
associated with a constant cost factor. Accordingly, the number of checks to be 
performed in order to reach a certain level of confidence in a supply chain’s integrity 
is an optimization goal for any product authentication strategy, so that the main target 
measure of the simulation were the resources necessary to detect a similar amount of 
counterfeits for the different authentication algorithms. 

After the first counterfeit was detected, the number of checks in the supply chain 
increased by a certain response factor in order to reflect the countermeasures that 
would occur in reality after the detection of counterfeited products. This response 
factor is a key characteristic of the response biases in different industries, as e.g. the 
potential damage of the brand value for fake luxury goods such as high end watches 
would definitely lead to a higher increase of the response factor than the detection of 
non-branded low profile goods as e.g. the recently discovered flood of fake storage 
media [5]. We distributed the remaining checks (after the first counterfeit was 
detected) over all locations, so that the overall costs remain equal, but the number of 
checks per location may differ according to the items probabilities. 

We tested three scenarios in each simulation run, namely the two competing 
algorithms and a baseline case. No knowledge about supply chain proximity was 
utilized in the baseline case, so the items checked after the first incident were selected 
randomly. For the two scenarios relying on supply chain proximity algorithms, the 
items after the first incident were constantly ranked by their respective fakeness 
probabilities and checked in that order. This reflected the central approach of both 
algorithms, i.e. that items in close proximity to known fakes have a higher probability 
of also being fake. 
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Fig. 2. The sample supply chain used for the reference simulation. 

3.1 Base Case Simulation 

We first conducted a base case simulation that was taken as a reference for the 
respective sensitivity analysis. The base case consisted of 3000 runs of a simulation of 
2000 items shipped in a supply chain with four levels of partners, organized as in a 
binary tree as shown in Fig. 2. The lead time for any shipment between two partners 
was normally distributed with a mean of two days and a standard deviation of half a 
day. The probability that fakes were injected at any partner in the supply chain is 5%, 
except at the manufacturer where it is 0%. In any run where fakes were injected, they 
constituted 10% of the shipment of the owning partner. In the absence of counterfeits, 
each partner randomly checked 5 items and shipped his container to the next two 
partners. The total number of checks was doubled in the case of a detected counterfeit 
and checks were coordinated between all locations. The coefficient k of the first 
algorithm had a value of 2. The proximity coefficients PCf(1), PCf(2), and PCf(3) had 
the values 10, 2, and 0.5 respectively, which were used for both algorithms. The 
proximity coefficients PCa(1), PCa(2), and PCa(3), needed only for the first algorithm, 
had the values 0.1, 0.05, and 0.01 respectively. All the base case parameters are 
summarized in Table 1. 

Manufacturer Wholesalers
Logistics 
providers

RetailersManufacturer Wholesalers
Logistics 
providers

Retailers
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Table 1. Base case parameters. 

 
The results of the base case simulation showed a 5.8 and 5.6-fold increase in the 
number of fakes detected using the first and second algorithm respectively as opposed 
to the baseline case where no algorithm was used. A ratio which is a particularly 
important measure for each algorithm is that of the fakes detected over the total 
number of checks performed when fakes where actually injected. The baseline case 
had a fakes/checks ratio of 2.8%, where as the cases using the first and second 
algorithms had ratios of 16.5% and 15.9% respectively. The results are summarized in 
Table 2. 

Table 2. Results of the base case simulation. 

 

3.2 Sensitivity Analysis 

We present in this section a sensitivity analysis of the simulation where we varied one 
parameter in Table 1 at a time while keeping the others constant. We doubled and 
halved each considered parameter to study its influence on the results of the base case. 

Total Number of Items. The first parameter we varied was the size of the shipments 
flowing in our supply chain which was 2000 items in the base case. The first 
algorithm didn’t show a significant difference in results when we varied this 

parameter, where as the second algorithm performed worse than the first with 1000 
items and slightly better with 4000 items Table 3 summarizes the results.

Parameter Value
Total number of items 2000
Mean lead time (days) 2
Standard deviation lead time (Days) 0.5
Fake injection probability at manufacturer 0%
Fake injection probability at wholesalers 5%
Fake injection probability at logistics providers 5%
Fake injection probability at retailers 5%
Percentage of genuines replaced when fakes are injected 10%
Number of checks per partner before first fake detected 5
Factor increase in total checks when first fake detected 2
k 2
PCf(1), PCf(2), PCf(3) 10, 2, 0.5
PCa(1), PCa(2), PCa(3) 0.1, 0.05, 0.01

Case Increase in fakes detected Fakes/Checks
Without probabilities 1 2.8%
First algorithm 5.8 16.5%
Second algorithm 5.6 15.9%
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Table 3. Results from varying the total number of items. 

 

Standard Deviation of Lead Times. The next parameter that we vary is the standard 
deviation of the normally distributed shipment time, which was 0.5 days in the base 
case. We halved this value and then doubled it to examine the effect on the simulation 
results. Both algorithms performed slightly worse than the base case when the 
standard deviation decreased. This is an expected outcome since when different 
downstream partners receive shipments without a significant delay, there will be less 
chance for performed checks at one partner to influence those at the other. The results 
are shown in Table 4. 

Table 4. Results from varying the standard deviation of the lead times. 

 

Fake Injection Probability at Different Locations. To study the effect of the supply 
chain location where fakes were injected, we varied the probability that fakes are 
injected at wholesalers, logistics providers, and retailers. For each we doubled the 
initial probability of 5% to 10% keeping all other variables constant and compared the 
results. The simulation demonstrates, according to the numbers in Table 5, that the 
earlier in the supply chain the injection of fakes occurs, the better the results of all 
cases. This is expected since the earlier the fakes are injected, the higher is the chance 
to detect them at a subsequent partner. For example, if most fakes are injected at the 
retailer stage, there will not be enough checks of counterfeit items to provide the 
required proximity information. This explains why, when compared with the base 
case, the numbers show worse performance of the algorithms when more fakes are 
injected at the retailers, similar results when more fakes are injected at the logistics 
providers, and better performance when the injections occur at the wholesalers. 

Case Increase in fakes detected Fakes/Checks
1000 items

Without probabilities 1 2.8%
First algorithm 5.3 16.1%
Second algorithm 3.8 10.9%

4000 items
Without probabilities 1 2.8%
First algorithm 5.6 16.0%
Second algorithm 5.7 16.2%

Case Increase in fakes detected Fakes/Checks
0.25 days

Without probabilities 1 2.9%
First algorithm 5.6 16.1%
Second algorithm 5.4 15.5%

1 day
Without probabilities 1 2.7%
First algorithm 5.8 15.5%
Second algorithm 5.5 14.9%
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Table 5. Results from varying the fake injection probability at different partners. 

 

Percentage of Replaced Genuine Items. The next parameter we studied was the 
percentage of genuine items of the respective partner’s shipment which is replaced by 
counterfeits each time there was a successful injection of fakes. The base case value 
of 10% was halved and doubled and resulted in the numbers shown in Table 6. The 
three cases show a higher number of fakes detected which is a result of the higher 
number of injected fakes. Compared to the base case, both algorithms perform 
slightly worse when the percentage of replaced items is doubled or halved. 

Table 6. Results from varying the percentage of genuines replaced. 

 

Factor Increase in Total Checks when the First Fake is Detected. As mentioned 
earlier, when the first fake item is detected in the supply chain, the total number of 
checks to be performed in the supply chain increases by a constant factor. This factor 
was 2 in the base case and was halved and doubled in our sensitivity analysis to 
produce the results shown in Table 7. The numbers show that even without increasing 
the number of checks when a fake is found, the two algorithms detect around 4 times 
more fakes than if no algorithm is used 

Case Increase in fakes detected Fakes/Checks
10% at wholesalers

Without probabilities 1 3.3%
First algorithm 5.9 19.7%
Second algorithm 5.7 18.9%

10% at logistics providers
Without probabilities 1 2.8%
First algorithm 5.9 16.3%
Second algorithm 5.7 15.8%

10% at retailers
Without probabilities 1 2.6%
First algorithm 5.4 13.8%
Second algorithm 5.3 13.5%

Case Increase in fakes detected Fakes/Checks
5% replaced

Without probabilities 1 1.5%
First algorithm 5 7.4%
Second algorithm 4.9 7.3%

20% replaced
Without probabilities 1 5.7%
First algorithm 5.5 31.2%
Second algorithm 5.4 30.6%
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Table 7. Results from varying the factor increase in the performed checks. 

 

Coefficient k. The coefficient k is used only in the first algorithm as a heuristic 
measure to express the correlation between the results of different item checks. k’s 
base value of 2 was reset to 1 and 4 to see if any significant changes occur in the first 
algorithm’s performance. The results, shown in Table 8, suggest that there is no 
significant effect for the value of k on the performance of the simulation. 

Table 8. Varying the coefficient k of the first algorithm. 

 

Proximity Coefficients. The final parameter we studied was the set of proximity 
coefficients PCf which were used for both algorithms. We doubled and halved each of 
PCf(1), PCf(2), and PCf(3) at a time while keeping all others constant. The results in 
each of the 6 simulations didn’t significantly differ from the base case results, thus we 
omitted the respective tables.  

Supply Chain Depth. A factor whose effect has to be investigated more closely is the 
structure of the supply chain itself. All the simulations until now where conducted 
with the supply chain shown in Fig. 2, which resembles a binary tree of depth 3. Just 
for illustration, we cut one of the levels of the supply chain, reducing it’s depth to 2, 
and ran the simulation with the base case parameters. The results, documented in table 
9, show that different behaviors should be expected in different supply chains. In 
particular, when a supply chain is shorter, there will be less chances that enough 
checks are made to obtain accurate fakeness probability value for unchecked items.  

Case Increase in fakes detected Fakes/Checks
Factor increase = 1

Without probabilities 1 2.7%
First algorithm 4.1 11.3%
Second algorithm 4.1 11.2%

Factor increase = 4
Without probabilities 1 2.9%
First algorithm 6.1 17.6%
Second algorithm 5.7 16.4%

Case Increase in fakes detected Fakes/Checks
k = 1

Without probabilities 1 2.9%
First algorithm 5.6 16.2%
Second algorithm 5.4 15.9%

k = 4
Without probabilities 1 2.8%
First algorithm 5.8 16.1%
Second algorithm 5.6 15.7%
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Table 9. Results from a depth 2 supply chain. 

 

3.3 Discussion 

As the results from the simulation indicate, both algorithms perform significantly 
(more than five times) better than the baseline condition. Likewise, as the sensitivity 
analysis regarding the various parameters suggests, both algorithms are relatively 
robust against variations of key parameters and outperform the base condition in any 
case. Hence, it is definitely worthwhile to further explore the applicability and 
preconditions of both algorithms beyond the initial simple simulation study that we 
have presented in this paper. 

From the current insights gained from the simulation it appears that the second 
algorithm is more susceptible for variations in the overall item count, resulting in 
relatively weaker performance for smaller amounts of items. We will explore this 
observation in the future. For now, this is the only significant difference in 
performance we could find for both algorithms. Since the sensitivity analysis also 
revealed a negation of this effect for an increased item count (where the second 
algorithm even performed slightly better than the first), we might encounter different 
applicabilities of both algorithms for different magnitudes of items in a supply chain. 

The sensitivity analysis contributes also to a validation of the simulation itself, as 
the variation of certain parameters such as the number of performed checks or the 
lead time resulted in consistent measures exactly as one would predict from common 
knowledge.  

4 Related Work 

We draw our assumption that the approach of supply chain proximity will be feasible 
due to the supply chain partners being willing to share information from a study by 
[6]. The authors analyze the impact of various levels of supply chain information 
sharing including order, inventory, and demand information, which is based on 
transaction costs. The study further examines the effects on supply chain performance 
with a multi-agent simulation system. The findings indicate that the more detailed 
information shared between firms, the lower the total cost, the higher the order 
fulfillment rate, and the shorter the order cycle time. Since supply chains with high 
information sharing and collaboration have a positive effect on vital business goals, 
we believe that this sharing of information will also be synergistically used for the 
exchange of product authentication information. 

Since security and privacy issues are crucial for supply chain information exchange 
and therefore also for the approach discussed in this paper, it is important to ensure 
secure data access in order to realize implementations based on our proposed 

Case Increase in fakes detected Fakes/Checks
Without probabilities 1 3.6%
First algorithm 2.9 10.5%
Second algorithm 2.8 10.2%
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approach. Accordingly, [7] discuss current solutions to RFID security and privacy in 
supply chains. The authors propose a security concept which exploits randomized 
read access control and thus prevents hostile tracking and man-in-the-middle attacks 
that is also suitable for RFID systems with a large number of tags. For future pilot 
implementations of our approach we will consider similar security mechanisms.  

Our core assumption is that knowing the previous and possibly the current location 
of items in the supply chain can help determine their authenticity [8]. This is also 
exploited in [9] which explores location-based product authentication in a situation 
where only the past locations of products that flow in a supply chain are known. The 
solution presented there transforms location-based authentication into a pattern 
recognition problem and investigates different solutions based on machine-learning 
techniques. The proposed solutions are also studied with computer simulations that 
model the flow of genuine and counterfeit products in a generic pharmaceutical 
supply chain. The results suggest that machine-learning techniques could be used to 
automatically identify suspicious products from the incomplete location information. 
However, the level of security of the studied methods, in terms of probability to detect 
the clones, is relatively low, nevertheless we draw from the method of conducting a 
respective simulation study from their work. 

5 Outlook 

What we have presented so far is a new approach for detecting counterfeits in an 
RFID enabled supply chain using proximity information of items that can be gathered 
by EPCIS or similar services. We have presented appropriate data structures and two 
different algorithms that implement the concept of proximity based authentication. 
We have illustrated the concept with a simple supply chain simulation that 
demonstrated the potential benefits of our approach. 

At the current point in time, our work is preliminary, since we have made quite a 
few assumptions that we still have to prove. For instance, we let the number of checks 
in the supply chain increase by a certain response factor that should reflect 
countermeasures. We must now validate and check in how far this is really the case in 
real anti counterfeiting activities, and most importantly, we must access how such a 
response factor would typically differ in various industries. Correspondingly, many of 
the simulation parameters presented in Table 1 are not yet based on real industry 
experiences, mostly because of the apparent difficulties to obtain real world data. 

The most fundamental assumption we made, however, is that counterfeits really 
enter the supply chain in close proximity to each other. Although it makes sense to 
expect this to be the case, we cannot currently prove it. We do expect the emergence 
of RFID enabled supply chains to provide better transparency and tracing of goods in 
the mid term, so that potentially more data will become available on the inclusion 
patterns of counterfeits for different supply chains. 

In the short term, we will prototypically apply and refine our algorithms and other 
anti counterfeiting applications in the context of the EU funded research project SToP 
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(Stop Tampering of Products3) out of the cluster of European RFID research projects4 
in which we work together with different end users from relevant industries (aviation, 
pharma, aerospace) to gain insights to the specifics of the various industries and 
further explore the concept of proximity based authentication. Consequently, we will 
be able to expand our investigations to multiple supply chains from the respective 
industries and thus perform appropriate external validations to our approach. 
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