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Abstract. In pattern recognition and related areas an emerging trend of repre-
senting objects by graphs can be observed. As a matter of fact, graph based rep-
resentation offers a powerful and flexible alternative to the widely used feature
vectors. However, the space of graphs contains almost no mathematical structure,
and consequently, there is a lack of suitable algorithms for graph classification,
clustering, and analysis. Recently, a general approach to transforming graphs into
n-dimensional real vectors has been proposed. In the present paper we use this
method, which can also be regarded as a novel graph kernel, and investigate the
application of kernel principal component analysis (kPCA) on the resulting vec-
tor space embedded graphs. To this end we consider the common task of object
classification, and show that kPCA in conjunction with the novel graph kernel
outperforms different reference systems on several graph data sets of diverse na-
ture.

1 Introduction

The first step in any system in pattern recognition, machine learning, data mining, and
related fields consists of the representation of objects by adequate data structures. In
statistical approaches the data structure is givem4gymensional vectors € R",

where each of thes dimensions represents the value of a specific feature. In recent
years a huge amount of algorithms for classification, clustering, and analysis of objects
given in terms of feature vectors have been developed [1-3].

Yet, the use of feature vectors implicates two limitations. First, as vectors describe a
predefined set of features, all vectors of a set have to preserve the same length regardless
of the size or complexity of the corresponding objects. Furthermore, there is no direct
possibility to describe binary relationships among different parts of an object. It is well
known that both constraints can be overcome by graph based representation [4]. That
is, graphs allow us to adapt their size to the complexity of the underlying object and
they offer a convenient possibility to describe relationships among different parts of an
object.

The major drawback of graphs, however, is that they offer little mathematical struc-
ture, i.e. most of the basic mathematical operations are not available or not defined in
a standardized way for graphs. Nevertheless, since the concept of kernel machines has
been extended from vectors to symbolic data structure, and in particular to graphs [5],
this drawback can be overcome. The key idea of such kernel machines is that rather than
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defining handcrafted mathematical operations in the calggnaph domain, the graphs
are mapped into a vector space where all those operatiomeadidy available. Obvi-
ously, by means of graph kernels one can benefit from bothitfferkpresentational
power and flexibility of graphs and the wide range of pattecognition algorithms for
feature vectors.

In the present paper we use the dissimilarity space embgdgdaph kernel [6]. In
order to map individual graphs into a vector space, thistykapnel employs graph edit
distance. Consequently, it can be applied to any kind offigdg@irected or undirected,
labeled or unlabeled). If we allow labels on the nodes or sdtieese labels can be
symbolic, numerical or whole attribute vectors. The bad&ai of this approach is to
transform a given grapfinto an’-dimensiondl vectorx = (z1, ..., z,’ ), where each
component; (1 < i < n’) is equal to the graph edit distancegfo thei-th graph of
a predefined set of prototype graphs

In a first attempt to define an appropriate Betprototype selection methods have
been applied to a training set [6]. Next, a more general aggravithout heuristic pro-
totype selection methods has been proposed [7]. In thisapjrthe whole training set
7 is used as prototype s&, i.e.P = 7. Two classical approaches of linear transfor-
mations, i.e. Principal Component Analysis (PCA) and MuétiDiscriminant Analysis
(MDA) [1], have been applied to vector space embedded grsyisequently.

In the present paper we build upon this idea, but in the exerdshion of non-
linear transformation by means of Kernel PCA. That is, wagfarm graphs into vec-
tors by edit distance computation utilizing a whole tragset7 and eventually apply
kernel PCA to the resulting vectorial descriptions of thepdrs. With several experi-
mental results we show that this approach outperforms bogfesence system applied
in the original graph domain and a reference system in theeddda vector space in
conjunction with linear PCA.

2 Dissimilarity Space Embedding of Graphs

Similarly to the graph kernels described in [8] the embeddirocedure proposed in
this paper makes use of graph edit distance. The key ideaaphgrdit distance is to
define the dissimilarity, or distance, of graphs by the mimimamount of distortion that
is needed to transform one graph into another. A standaxaf séftortion operations is
given byinsertions deletions andsubstitution®f nodes and edges.

Given two graphs, the source gragphand the target grapf, the idea of graph edit
distance is to delete some nodes and edges fromelabel (substitute) some of the re-
maining nodes and edges, and insert some nodes and edgesuch thay; is finally
transformed intgy;. A sequence of edit operations, . . ., e, that transforny; into g,
is called aredit pathbetweeng; andg.. Obviously, for every pair of graphgq{; g=),
there exist a number of different edit paths transfornginmto g». Let?"(g1, g2) denote
the set of all such edit paths. To find the most suitable edit pat of ’(¢1, g2), one
introduces a cost for each edit operation, measuring teagti of the corresponding
operation. The idea of such cost functions is to define whetheot an edit operation

1 We usern’ instead ofn for the sake of consistency with the remainder of this paper.



represents a strong modification of the graph. Hence, betiweesimilar graphs, there
should exist an inexpensive edit path, representing low @psrations, while for dif-
ferent graphs an edit path with high costs is needed. CoesélgLtheedit distanceof
two graphs is defined by the minimum cost edit path betweergtaphs.

Definition 1 (Graph Edit Distance) Let g1 = (V4, E1, u1,v1) be the source graph
andgs = (Va, E9, us, v2) be the target graph. The graph edit distance betwgeand
go is defined by

d(g1, = min cle;),
el =, ek>er<g1,g2>; =
whereY (g1, g2) denotes the set of edit paths transformiagnto g, andc denotes the
edit cost function measuring the strengtl;) of edit operatiore;.

The edit distance of graphs can be computed, for exampletrbg gaearch algorithm
[9] or by faster, suboptimal methods which have been praposeently [10].

2.1 Basic Embedding Approach

Different approaches to graph embedding have been projrosieel literature [11-13].
In [11], for instance, an embedding based on algebraic giagdry and spectral matrix
decomposition is proposed. Applying an error-tolerarnhgtmatching algorithm to the
eigensystem of graphs to infer distances of graphs is peshing12]. These distances
are then used to embed the graphs into a vector space by imaltigional scaling. In
[13] features derived from the eigendecompostion of graphsstudied. In fact, such
feature extraction defines an embedding of graphs into veptces, too.

Recently, it has been proposed to embed graphs in vectoesgac means of
edit distance and prototypes [6]. The idea underlying théshod was first developed
for the embedding of real vectors in a dissimilarity spacé].[In this method, after
having selected a s&® = {p1,...,pn'} Of n’ < n prototypes from a training set
7 ={q,--.,9n}, the dissimilarity of a graph to each prototype € P is computed.
This leads ton’ dissimilarities,d; = d(g,p1),-..,d, = d(g,p. ), which can be in-
terpreted as an’-dimensional vectofd, . . ., d,). In this way we can transform any
graph from the training set, as well as any other graph froralidation or testing set,
into a vector of real numbers.

Definition 2 (Graph Embedding) Given are a graph spacé and a training set of
graphs7T = {g1,...,9n} C G. If P = {p1,...,pnv} C T is a set of prototypes, the
mappingt”, : G — R™ is defined as a function

tﬁ/(g) — (d(g7p1)7 RN d(gvpn/))

whered(g, p;) is the graph edit distance between the grapk G and thei-th proto-
type. 0

One crucial question in this approach is how to find a sufsef prototypes that
lead to a good performance of the classifier in the featureespiss a matter of fact,



both the individual prototypes selected fra@mand their number have a critical impact
on the classifier's performance. In [6, 14] different prgfm selection algorithms are
discussed. It turns out that none of them is globally bestthe quality of a prototype
selector depends on the underlying data set.

In a recent paper it is proposed to use all available elenfemts the training set
of prototypes, i.e? = 7 and subsequently apply dimensionality reduction methods.
This process is much more principled than the previous ambres and completely
avoids the difficult problem of heuristic prototype seleati For dimensionality reduc-
tion Principal Component Analysis (PCA) and Fisher’s LinBécriminant Analysis
(LDA) [1,15] are used. In the present paper we use the sanzelidewith an exten-
sion of PCA to non-linear distributions. That is, insteadlo&ctly applying a PCA to
the vectors resulting from mappin@ with »’ = n, the vectors are implicitly mapped
into a higher-dimensional feature space by means of a k&unetion. In this higher-
dimensional feature space PCA is then applied to the vecéqsimThis procedure is
commonly referred to as kernel PCA [16].

3 PCA and Kernel PCA

In this section we first review linear transformations by meaf PCA and then describe
a non-linear extension by means of kernel PCA.

3.1 PCA

Principal Component Analysis (PCA) [3] is a linear trangfiation which basically
seeks the projection that best represents the data. PCAdindw space whose basis
vectors correspond to the maximum variance directionsarotiginal space. PCA falls

in the category of unsupervised transformation methodsACA does not take any
class label information into consideration. Let us assumagst. objects are given in
terms ofn-dimensional column vectoss € R™. We first normalize the data by shifting
the sample mean = % >, x; to the origin of the coordinate system, i.e. we center
the data. Next we compute the covariance maitif the centered data which is defined

as
1 m
C= E Zl XiX/i
=

The covariance matrixC is symmetric and, therefore, an orthogonal basis can be
defined by finding the eigenvalugsand the corresponding eigenvecter®f mC. To
this end the following eigenstructure decomposition hasasolvedmmCe; = \;e;.
The eigenvector®V = (eq,...,e,) are also callegprincipal componentand they
build an orthogonal basis. Consequently, the ma@&ixepresents a linear transforma-
tion that maps the original data points= R™ to new data pointg € R™ where

y = W'x

That is, the data is projected into the space spanned bydkewsctors. The eigenval-
ues)\; represent the variance of the data points in the directiah@fcorresponding



eigenvectoe;. Hence, the eigenvectoss can be ordered according to decreasing mag-
nitude of their corresponding eigenvalues. Consequehtfirst principal component
points in the direction of the highest variance and, theefmcludes the most infor-
mation about the data. The second principal component jgepéicular to the first
principal component and points in the direction of the sedoighest variance and so
on. In order to project the-dimensional data € R™ into a subspace of lower dimen-
sionality, we retain only the’ < n eigenvector®,,, = (ey, ..., e, ) with the highest

n' eigenvalues. Formally, the mappingsof R" toy € R™ is defined by

’

y=W_x

n’

Note that the larger the resulting dimensionatitys defined, the greater is the fraction
of the captured variance.

3.2 Kernel PCA

Kernel machines constitutes a very powerful class of allgors in the field of pattern
recognition. The idea of kernel machines is to map a vectonbsns of a kernel func-
tion into a higher-dimensional vector space. This procedfiers a very elegant way
to construct non-linear extensions of linear algorithmgaitern recognition.

Definition 3 (Kernel Function) Letx,y € R™ be feature vectors ang : R” — F
a (possibly nonlinear) function where € N and F is a (possibly infinite dimen-
sional) feature space. A kernel function is a mapping R™” x R® — R such that

(X, y) = (Y(x), ¥(y))- U

According to the definition above, the result of a kernel tiorck(x, y), applied to
two feature vectors andy, is equal to the result that one obtains by mapping those vec-
tors to a possibly infinite dimensional feature sp&tand computing their dot product
subsequently. The fundamental observation that makegk#r@ory so interesting in
the field of pattern recognition is that many of the clustgramd classification algo-
rithms can bekernelizedi.e. they can be formulated entirely in terms of dot product
Consequently, instead of mapping patterns from the origiatiern domain to a feature
space and computing the dot product there, one can simplyateahe value of the
kernel functions in the original pattern space. This procedure is commorigrred to
as thekernel trick[17, 18] because of its property of determining the dot pobdiu a
higher-dimensional feature space immediately withoufquaring the transformation
explicitly.

As a matter of fact, PCA can be reformulated in terms of dotipots only, i.e. PCA
is kernelizable [16]. In order to see this, let us first asstima¢ we apply the mapping
¥ : R" — F explicitly to our data. For further processing we assumé tina data
is centered in the kernel feature spadé/e compute the covariance matiix in the
feature spac&

C= 23 px)bix)

m <
=1

2 We will come back to this point later in this section.



Similarly to PCA the principal components of this featuraspare extracted by means
of the eigenstructure decomposition

Aw = mCw Q)
Since .
mCw = ZW(Xi)/WW(Xi)
i=1
all solutionsw must lie in the span of(x1), ..., %¥(x,,). This observation is crucial

since it allows us to rewritev as a linear combination of the vectapéx;) with coeffi-
cientsa; (i =1,...,m)

w= Y anx) @
Furthermore Equation 1 can be rewrilt?eln as
4D Sole) = 32 eun) 60, )
im 0=
Obviously this is equivalent te: equationsk = 1, .. .,m)
A z; ai(t(xi) P(xx)) = ‘zm:l i (1(x;)"9 (xk)) ((x5) (x:)) (3)
i inj—

The tremendous benefit of Equation 3 is that it is entirelyrfigiated in terms of dot
products. Hence, we can define a kernel maiky K, ; = ¥ (x;)'1(x;) and replace
the dot products in Equation 3 by the kernel function. FolmnalKa = K2« where

a = (ai,...,an,) . Kis by definition symmetric and has a set of eigenvectors that
span the whole space. Consequently, all solutiert®n be obtained by the eigende-
composition ofK: A\a = Ka..

Let); < \p <... < )\, denote the eigenvalues and, . . . o™ the corresponding
eigenvectors oK. The principal components, i.e. eigenvectersn the feature space
F, need to be normalized to have unit length. This can be aetiiby means of the
kernel matrixK.

llwl]* = (Z aﬂﬂ(&')) Zajw(xj) =od'Ka =\ a
i=1 =1

Hence, we normalize the coefficiertsby 1 = Aa’a. In order to compute a projection
of ¢/(x) € F onto a subspace spanned by the firseigenvectordV,,, the following
equationis used

yk = W/n/i/J(X)

= (Z afw(x»'w(x)) = <Z afﬁ(XuX))

=1



Thatis, the mapping can be computed by means of the kernekraatl the normalized
coefficientsa® only.

So far we assumed that the data is centered. Usually, thit &iffilled, of course.
In an explicit fashion one would center the data by

900 = () — = Y 0(x)

However, it turns out that the centering of the data has nb¢tdone explicitly. That is,
the kernel matri¥K can be replaced bIK which is defined by

Kz‘.j = @(X)/ (¥)
1

4 Experimental Results

The experimentsin the present paper consider the tasketiotipssification on six dif-
ferent graph datasets. We use three reference systems fmmwur algorithm with.
First, a nearest neighbor classifier is applied directhhandomain of graphs. Note that
as of today — up to a few exceptions, e.g. in [19] — this is thly alassifier directly
applicable to general graphs. The second reference systarsuipport vector machine
(SVM) applied to the untransformed embedding vectors. Tird teference system is
an SVM with RBF-Kernel applied to PCA reduced vectors. Thé-R&rnel SVM used

in this paper has paramet&rsand~y. C corresponds to the weighting factor for misclas-
sification penalty ang > 0is used in our kernel function(u, v) = exp(—|ju—v||?).
Note that both the number of dimensianisretained by PCA and the SVM parameters
(C,~) are optimized on an independent validation set.

Our new approach also makes use of the vector space embedqghds gHowever,
we apply an RBF-kernel PCA to the resulting vectors instdadinear transformation.
Then an SVM with linear kernel(u, v) = ||u—v|| is applied to the non-linearly trans-
formed and reduced data for the purpose of classificationcelédesides the number of
dimensions:’ retained by kernel PCA only the SVM parametéhas to be optimized.

4.1 Datasets

For our experimental evaluation, six data sets with quiffedint characteristics are
used. The datasets vary with respect to graph size, edgéyléyse of labels for the
nodes and edges, and meaning of the underlying objectsirigsgace we give a short
description of the data only. For a more thorough descriptie refer to [6] where
the same datasets are used. Note that all of the datasetwidexldnto three disjoint
subsets, i.e. a training set, a validation set, and a test set



The first dataset used in the experiments consists of grapnesenting distorted
letter drawings out of 15 classesELTER DATABASE). The next dataset consists of
graphs representing distorted symbols from architectlegtronics, and other techni-
cal fields out of 32 different classes [20] (GREQABASE). Next we apply the pro-
posed method to the problem of image classification, i.e.seeguaphs representing im-
ages out of the four different classaty, countrysidesnowy andpeople(IMAGE). The
fourth dataset is given by graphs representing fingerpriagies of the NIST-4 database
[21] out of the four classearch, left, right, andwhorl (FINGERPRINT DATABASE). The
fifth graph set is constructed from the AIDS Antiviral Scrdzatabase of Active Com-
pounds [22]. Graphs from this database belong to two cldasése, inactivg, and rep-
resent molecules with activity against HIV or not (AIDS\ABASE). The last dataset
consists of graphs representing webpages [23] that onigin 20 different categories
(BusinessHealth, Politics, . ..) (WEB DATABASE).

4.2 Results and Discussion

In Table 1 the classification accuracies on the test set$ thfrak reference systems-(
nearest neighbor classifier in the graph domain, SVM apptiethreduced data, SVM
based on the PCA reduced data) and our novel approach (SVéd leeskernel PCA
reduced data) are given.

First of all we observe that the SVM based on the unreduceaddibg data, SVM
(all), outperforms the first reference system in five out af gises. PCA-SVM and
kPCA-SVM outperform the first reference system even on alskts. All performance
improvements are statistically significant. Obviousls thissimilarity space embedding
graph kernel in conjunction with SVM is a powerful and robungtthodology for graph
classification.

Comparing the SVM applied on unreduced data with the SVM dbasePCA re-
duced data, we observe that the latter outperforms the fosméve out of six datasets
(twice with statistical significance). That is, the redantdf the data by means of PCA
leads to a further increase in classification accuracy. Tl $1 conjunction with
the kPCA reduced data also improves five out of six resultspawed to the second
reference system (twice with statistical significance)teéNihat the percentage of the
dimensions retained by kernel PCA is indicated in brackets.

Comparing the classification results achieved with SVM o\R@d kernel PCA
reduced data, we observe that in four out of six cases theancis improved and only
once it deteriorates by the non-linear transformation.ddethere is a clear tendency
that the new approach with kernel PCA is favorable.

From some higher level of abstraction the last observagfiaats the fact that both
systems (PCA-SVM and kPCA-SVM) are quite similar. In Fig.dtlbapproaches are
shown schematically. The first system (solid arrows) trams$ the graph domaig
into a vector spac®™. Next linear transformation (PCA) for mapping the data into
ann’-dimensional vector space is used. Finally, an RBF-kenngbsrt vector machine
is applied which implicitly maps the graphs into a (possiilffinite) feature spacé
and labels the objects according to a label sp@c&he second system (dashed ar-
rows), however, uses non-linear transformation of the ¢eRCA via F; to R™) in
conjunction with linear support vector machine. So botheys consist of a linear and



Table 1. Classification accuracy in the original graph domain andhim ¢émbedded
vector space.

Reference Systems Proposed System

Database k-NN (graph) SVM (all) PCA-SVM kPCA-SVM

LETTER 91.1 92.30 92.70 93.2 (6%) O

GREC 86.0 91.37 92,90 95.0 (25%) 000

IMAGE 59.5 75.20 75.30 76.0 (28%)0
FINGERPRINT 80.6 80.4 83.100 83.3(36%)100

AIDS 97.1 98.30) 98.200 98.2 (72%) 0
WEBGRAPHS 80.4 82.30 84.000 83.2 (15%)0

Z-test for testing statistical significance & 0.05):

0/0/0  statistically significant improvement over the first/setinird reference system.

Non-linear RBF SVM

o]

Linear PCA , Linear SVM
G __%: RN——m R"------ Q0
\ A
| Non-linear kPCA |
|
Lo —. '71 f——
1

Fig. 1. PCA and Kernel PCA based classification.

non-linear part, and the main difference is the order in Whitese components are
applied.

Apparently, one could use a combination of kernel PCA basmtsformation and
non-linear SVM classification. With this setting, howeveoor classification results
are achieved on all datasets. We ascribe this performaigradtgion to overfitting, i.e.
the complexity of the model becomes too high, such that thegdization property is
crucially compromised.

5 Conclusions

The present paper considers the task of classification wiragghs are used as rep-
resentation formalism for the underlying objects. Graptwige us with a versatile
alternative compared to feature vectors, but they suffanfthe lack of mathematical
operations in the domain of graphs. However, graph keraetdatively novel approach
in pattern recognition and related fields, offer an elegahit®n to overcome this ma-
jor drawback of graphs. In the work of this paper we make uskef€lissimilarity space
embedding graph kernel which maps the graphs explicittyam-dimensional vector
space where each dimension represents the graph editadistaa predefined proto-
type graph. In contrast with previous papers we use the wdedlef training patterns
as prototypes and apply kernelized principal componeriyaisg KkPCA) on the result-
ing vectorial description in order to reduce the dimendliona he main finding of the



experimental evaluation is that KPCA reduction leads tovggrovement of the classifi-
cation accuracy compared to all other systems in generphfiicular we observe that
the novel approach with kernelized PCA outperforms the @rapproach with linear
PCA in four out of six cases.
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