
PROGRAMMING IN PROTOCOLS
A Paradigm of Behavioral Programming

Ashley McNeile
Metamaxim Ltd., 48 Brunswick Gardens, London W8 4AN, U.K.

Ella Roubtsova
Open University of The Netherlands, Postbus 2960, 6401DL Heerlen, The Netherlands

Keywords: Object-orientation Programming Modeling Composition CSP Protocols.

Abstract: We present work in the creation of a programming paradigm based on the event protocols of objects. Our claim
is this results in a high level executable language that bridges the gap between behavioral models and code
for a large class of systems. The language is based on the idea of composing partial behavioral descriptions
using process algebraic techniques. We show that the concepts forming the basis of this language shed light on
questions relating to the description of behavior in object models, particularly in the areas of reuse, abstraction,
and behavioral conformance.

1 BACKGROUND

The earliest techniques for object modeling appeared
in the 1970s, before the mainstream appearance of ob-
ject oriented programming. Two leading approaches
were Jackson System Development (Jackson, 1983)
and Shlaer-Mellor (Shlaer and Mellor, 1992). Both
of these techniques had at their core the idea of ob-
ject life-cycle modeling, in other words describing, in
some form, the possible states of an object and how
events cause the object to move from one state to an-
other during its life.

When object orientated (OO) programming
started to become mainstream in the 1980s (with
Smalltalk), object modeling techniques and practice
tended to become aligned to the features and capa-
bilities of the emerging OO programming languages.
The emphasis in object modeling then moved to
classes, inheritance, attributes and relationships, fea-
tures closely aligned to the capabilities of OO lan-
guages, and away from life-cycle modeling, which is
not supported in any direct way by any OO language.

The Protocol Modeling paradigm described in
this paper has its origins in the JSD, but we have
both moved away from the particular notations used
in JSD towards a more abstract formulation, and
strengthened the semantic basis of the ideas, to the
point where direct execution can (and has) been sup-

ported. Along the way, the formalisms and ideas have
changed so much that any clue that JSD is its prove-
nance has all but disappeared, and the result is a high
level behavioral programming language.

2 PURPOSE AND
ORGANIZATION

This paper does not intend to provide a full descrip-
tion of the Protocol Modeling language, this has been
covered elsewhere (in particular in (McNeile and Si-
mons, 2006)). Rather, we want to discuss those as-
pects of the approach that are innovative, and repre-
sent a departure from conventional thinking or shed
light on existing ideas.

The paper is organized as follows:

Section 3 discusses the process algebraic basis of the
Protocol Modeling language.

Section 4 describes the semantics of the language.

Section 5 provides a small example based on a Bank.

Section 6 discusses some of the theoretical implica-
tions of the ideas.

Section 7 discusses the practical implications of the
ideas.

23
McNeile A. and Roubtsova E. (2008).
PROGRAMMING IN PROTOCOLS - A Paradigm of Behavioral Programming.
In Proceedings of the Third International Conference on Evaluation of Novel Approaches to Software Engineering, pages 23-30
DOI: 10.5220/0001759200230030
Copyright c© SciTePress

3 PROCESS ALGEBRAIC
COMPOSITION

The Process Algebras (CCS, CSP, etc.) all deal with
abstract processes (or machines) that offer their envi-
ronment the ability to accept some events and refuse
or ignore others, based on their ”state”. This ability is
the basis for composing processes in various ways. In
the abstractions used in process algebras, the possible
states of a process are simply enumerated, as they are
entailed in the algebraic description of the process.
For instance, in the following example (using Hoare’s
CSP notation):

P = (w→ P)|(x→ R), R = y→ STOP, Q = z→ P

there is an implicit definition of the state-space of Q
as {initial,P,R,stopped}. It also specifies the pro-
tocol of the process: which of the events {w,x,y,z}
used in the definition of Q it is prepared to engage
in (accept) in each state. For instance, when in state
P it will accept w or x, but refuse to engage in y or
z. These formalisms are geared to formal algebraic
behavioral analysis, but not to modeling systems that
store significantly complex data.

However, the ability to compose processes re-
quires only that they have a well specified protocol
behavior, meaning that they offer their environment
the ability to accept, refuse or ignore any presented
event. In particular, two machines that both have such
protocol behavior can be put in CSP parallel compo-
sition to form a composite machine as follows:

• If both constituent machines ignore the event, the
composite machine ignores it;

• If either constituent machine refuses the event, the
composite machine refuses it;

• Otherwise the composite machine accepts the
event.

Based on this, we define a Protocol Machine as a ma-
chine that has a specified protocol whereby it will ac-
cept, refuse or ignore any event that is presented to
it; and observe that the above definition means that
the composition of two Protocol Machines is another
Protocol Machine. We neither prescribe nor proscribe
any particular notation for a Protocol Machine: either
for its state-space or for the internal mechanisms it
uses to decide its protocol behavior. In addition, we
allow a Protocol Machine to have arbitrary local stor-
age, in same manner as a class in conventional object
oriented programming. A Protocol Machine may up-
date its own local storage, but only when moving to a
new state as a result of accepting an event presented
to it; and it may read but not update the local storage
of other machines composed with it.

4 PROTOCOL MODELING

A Protocol Model is a model built from Protocol Ma-
chines. Such models are event driven and determin-
istic, and the language we use to build them belongs
to the class of languages termed synchronous reactive
(see (Benveniste and Berry, 2002)). In this section, we
outline the main concepts of this language 2. The de-
scription given here is not exhaustive, but sufficient as
a basis for the subsequent discussion of the wider im-
plications of the ideas. In particular, we do not define
a syntax for the language, such as might be presented
to a compiler.

4.1 Events and Machines

The language deals with event driven systems, where
an event (properly an ”event instance”) is the data rep-
resentation of an occurrence in the real world domain
that is of interest to the system. An event represents
such an occurrence as a set of data attributes. Every
event is an instance of an event-type, and the type of
an event determines its attribute schema, this being
the set of data attributes that completely define an in-
stance of the event-type. For instance, the attribute
schema for a Transfer event (to move funds from one
account to another) in a banking system might be:

Event-type: "Transfer",
Date-of-transfer: Date,
Source: acct-id,
Target: acct-id,
Amount: Currency

The system moves from one state to another as a
result of accepting events presented to it. This ap-
proach to modeling events is identical to that used
in other event based modeling approaches (Jackson,
1983; Cook and Daniels, 1994).

4.2 Objects and Repertoires

Our aim is to model systems that comprise a popula-
tion of objects, which are separately instantiated and
which each have their own, unique, identity - in other
words, an Object Model. We achieve this by defining
a Protocol Model as a collection of composed Proto-
col Machines (using the CSP composition described
above), each with an OID (object identifier) which
ties the machine to the object whose partial defini-
tion it represents. The OID of a machine is an im-
mutable property of the machine, given to it when

2We use the epithet ”Modeling Language” as the behav-
ioral semantics resemble those normally associated with a
modeling language.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

24

Protocol Model

Object o1
(three machines)

Object o2
(two machines)

Machine-Type: M1
OID: o1

Machine-Type: M2
OID: o1

Machine-Type: M3
OID: o1

Machine-Type: M1
OID: o2

Machine-Type:M4
OID: o2

Figure 1: Machines and Objects.

it is instantiated. The relationship between objects
and machines is depicted in Figure 1 which shows
two objects, one (with OID o1) comprising three ma-
chines and the other (with OID o2) comprising two.
It is crucial to understand that all of the machines in
Figure 1 are composed using the parallel composition
construct of CSP, both within and across objects.

As in CSP, every Protocol Machine divides the
universe of possible events into those that it under-
stands (can accept or refuse) and those that it does not
(and ignores). In CSP, this is done on the basis of the
alphabet of a process: the set of event symbols for
which the behavior of the process is defined. Thus the
alphabet, α(Q), of the process Q in the earlier exam-
ple would be the set {w,x,y,z}. Protocol Machines
have a similar but slightly more complex construct,
called the repertoire of a machine, which we now de-
scribe.

We define the repertoire of a machine3 m, denoted
by λ(m), as a set of triples each of the form [E,o,R],
with the following meaning:

An event instance e is in the repertoire of a ma-
chine m⇔ [E,o,R] ∈ λ(m), where:

• E is the event-type of e,

• the schema for E has an attribute with name R 4,

• The value of R in e is o, the OID of m.

Consider machines in a banking model that represent
Accounts and handle Transfer events. Suppose that
there is one of these machines (m1) with OID 12345
and one (m2) with OID 34567, and consider their roles
in an event to transfer £250.00 from account 12345 to
account 34567, as shown below:

Event-type = "Transfer",
Date-of-transfer = 20-Jul-2007,

3We use ”machine” to mean a machine instance and use
a lower case symbol, m, to stand for a machine instance.
When we mean machine type we will say so explicitly and
use an upper case symbol, M. Similarly with events and
event types.

4R here stands for Role, as the attribute name normally
signifies the role the object is playing in handling an event.

Source = 12345,
Target = 34567,
Amount = 250.00

The machine m1 will have the entry [Transfer,
12345, Source] in its repertoire and will understand,
and either accept or refuse but will not ignore, the
Source side of the Transfer transaction. The machine
m2 will have [Transfer, 34567, Target] in its reper-
toire and will handle the Target side of the transac-
tion. Under the rules of CSP composition, only if both
machines accept the event will the model as a whole
accept it, and in this way the composition enforces
atomicity, as required by the rules of ACID transac-
tion handling 5.

Account machines in model with OIDs other than
12345 or 34567 will ignore this Transfer. Incorporat-
ing the OID in the repertoire entry makes the object
structure of the model transparent to the composition
scheme.

4.3 Machines Types and Representation

Like events, machines have types and instances, so
that every machine instance has a type, and behaves
according to its type. As stated earlier there is no stan-
dard representation of the behavior of a machine type,
but the graphical notation described below has proved
both usable and useful in practice.

The notation uses states and transitions and there
are two variants of the notation, as shown in Figure 2.
In both variants, the diagram represents a successful
event acceptance scenario. In both cases the circles
represent states of the machine, and the arrow repre-
sents the effect of an event. The arrow (transition)
is marked with the repertoire entry to which the sce-
nario applies. As we are at the type level here, the
OID is omitted from the repertoire entry leading to the
form [E,R] shown (the OID is added to create the full
form [E,o,R] when a machine instance is created).
The solid (shaded) parts of the diagram represent the
way the machine updates its own local storage, and

5Described,for instance, in (Gray, 1981).

PROGRAMMING IN PROTOCOLS - A Paradigm of Behavioral Programming

25

s1 s2

Update Spec.

f1 f2
[E,R] [E,R]

Update Spec.

Figure 2: Transitions.

the dotted parts represent the tests that must succeed
for the event to be accepted, as described below.

In the left hand form, the state of the machine is
represented by a distinguished variable (the state vari-
able) in the local storage of the machine. This vari-
able has an enumerated type of which s1 and s2 are
two possible values. This diagram has the following
semantics:

• The scenario is applicable if the value of the state
variable before the event is s1.

• The scenario results in a set of updates, specified
by Update Spec , being applied to the local storage
of the machine.

• In addition, the scenario results in the machine’s
state variable being set to s2 after the event, this
being the only mechanism whereby the state vari-
able can be changed.

In the right hand form, the circles (this time with a
double outline) represent values that are computed by
the machine, using a distinguished function called the
machine’s state function. This domain of this func-
tion is the local storage of the machine and all com-
posed machines and the function returns an enumer-
ated type, of which f 1 and f 2 are two possible values.
Again, the diagram represents a successful event ac-
ceptance scenario, but with the following semantics:

• The scenario applies if the value returned by the
state function before the event is f 1 and the value
returned by the state function after the event is f 2.

• The scenario results in a set of updates, specified
by Update Spec , being applied to the local storage
of the machine.

The behavior of a machine type is specified as a set of
success scenarios, with the following rules:

• The two variants are not mixed within a given ma-
chine type. A machine type is either stored state
in which case it has a single, distinguished, state
variable as part of its local state and only uses
left hand variant scenarios; or it is derived state
in which case it has a single, distinguished, state
function that returns its state value and only uses
right hand variant scenarios.

• The success scenarios of a given machine type are
mutually exclusive, so that it is not possible that

two (or more) scenarios can succeed for the same
event 6.

Finally, the success scenario diagrams for a single ma-
chine type can be ”stitched together” to form a single
graphical state transition diagram that represents the
behavior of the machine.

5 EXAMPLE

Figure 3 is an example of a Protocol Model, show-
ing the behavior of the machine types of the model.
This model has two object types, Customer and Account,
whose behavior is defined using one and four machine
types respectively.

Note the following about this model:
• Account Machine 2 allows the repertoire entry

[Transfer, Source] when in the state Unfrozen
but not in the state Frozen . This means that it is
not possible to transfer funds out of a frozen Ac-
count. However Account Machine 2 does not have
the entry [Transfer, Target] in its repertoire, so
whether an account is frozen or not has no af-
fect on its ability to act as the target of transferred
funds.

• Some transitions are labeled with two reper-
toire entries, for instance [Withdraw, From] and
[Transfer, Source] in Account Machine 1 . Using
a single transition arrow and specification of up-
dates for both is possible because both are treated
identically by this machine. This is discussed fur-
ther in Section 6.4.

• Account Machine 3 and Account Machine 4 (both
of which use the right hand form in Figure 2) have
no ending and starting states respectively. This
means that there is no protocol test on the event(s)
in these machines after and before the event re-
spectively.

• Two of the event types in the model, Open and
Transfer , require the engagement of two objects:
a Customer and an Account, and two Accounts re-
spectively. For these events, the CSP composi-
tion rules ensure that the model accepts the event

6This is typically arranged by ensuring that, if two
success scenarios in the same machine type apply to the
same repertoire entry, they have mutually exclusive starting
states.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

26

Customer Machine

[Register,Customer]

Registered Left
[Leave,Customer]

[Open,Owner]

Store: Full Name;
Address;

[Open,Account]

Active Closed

[Close,Account]

[Deposit,Into]
[Transfer,Target]

[Withdraw,From]
[Transfer,Source]

Balance := Balance
+ Event.amount;

Balance := Balance
- Event.amount;

Balance := 0;
Store: Owner;

Account Machine 1

[Open,Account]

Un-
frozen

[Withdraw,From]
[Transfer,Source]

Account Machine 2

Frozen

[Release,Account]

[Freeze,Account]

State Function:
if (Balance < -50) return “Over Limit”;
else return “Within Limit”;

Account Machine 4

Within
Limit[Withdraw,From]

In
Credit

State Function:
if (Balance < 0) return “Overdrawn”;
else return “In Credit”;

Account Machine 3

[Release,Account]

[Close,Account]

Register:
Date of Register: Date
Customer : OID (Customer)
Full Name: String
Address: String

Open:
Date of Open: Date
Owner: OID (Customer)
Account : OID (Account)

Leave:
Date of Leave: Date
Customer : OID (Customer)
Reason: String

Transfer:
Date of Transfer: Date
Source : OID (Account)
Target : OID (Account)
Amount: Currency

Deposit:
Date of Deposit: Date
Into : OID (Account)
Amount: Currency

Withdraw:
Date of Withdraw: Date
From: OID (Account)
Amount: Currency

Close:
Date of Close: Date
Account : OID (Account)

Freeze:
Date of Freeze: Date
Account : OID (Account)
Reason: String

Release:
Date of Release: Date
Account : OID (Account)

Events

Underlined attribute names are used as the Role
components of the repertoire entries above.

Local Storage:
Full Name: String
Address: String

Local Storage:
Owner: OID (Customer)
Balance: Currency

Account Machines 2, 3 and 4
have no Local Storage (apart
from their implicit OID and, in

the case of Account Machine 2,
its implicit stored state).

Figure 3: Bank Model.

iff both objects involved accept it, as required by
ACID event handing.

• Presentation of an event containing an OID that
does not exist in the model causes a new object to
be instantiated with the new OID. Such an event
will only be successful (accepted) if it is also the
creation event for the new object: as Register is
the creation event for Customer , and Open is for
Account.

6 THEORETICAL
OBSERVATIONS

In this section, we discuss some of the theoretical ob-
servations stemming from our work.

6.1 Derived States and Composition

Most modeling formalisms recognize the concept of
a derived attribute7. However, the use of a derived
quantity as the state of behavioral machine (as we do
in the right hand form of Figure 2) is, as far as we

7In UML, a derived attribute is indicated by prefixing its
name with ”/”.

know, unique to our approach. Without this capabil-
ity, states determining protocol behavior that involve
derived quantities have to be expressed in other ways:
typically by the use of guards on transitions, or by
omitting such rules from the model and handling them
in code. It would not be possible, for instance, to de-
fine In Credit and Overdrawn as states of an account
(as we have in Account Machine 3), or show the proto-
col rules that depend on these states in diagrammatic
form.

Describing complex behavior as a composition of
separate machines, some with stored and some with
derived states, helps to ensure that descriptions re-
main as simple as possible, and to avoid the prob-
lem of combinatorial state-space explosion that re-
sults from representing complex behavior in a single
diagram. In addition it is the basis for reuse, as de-
scribed in the next Section.

6.2 Inheritance, Reuse and Behavioral
Conformance

A cornerstone of Protocol Modeling is the idea that
the behavior of an object is the composition of par-
tial behavior descriptions. If we add to this the idea
that these partial behavior descriptions can be reused

PROGRAMMING IN PROTOCOLS - A Paradigm of Behavioral Programming

27

across different object types, we arrive very naturally
at a pure mixin approach to behavioral reuse (in the
sense described in (Bracha and Cook, 1990)). Thus,
in a banking context where it is desired to define a va-
riety of different types of account product, a catalogue
of machines such as those shown in Figure 3 can be
created and assembled in different combinations to
form different account product variants with different
behavioral rules. The machine Account Machine 1 ,
as it defines the core protocol of an account and the
maintenance of the account balance, is likely to be a
common mixin to all variants.

The use of CSP as the means of combining the
mixin components of an object guarantees that the
composite has Observational Conformance (a term
coined by Ebert and Engels in (Ebert and Engels,
1994b)) with the components contributing to it 8. As
far as we know, Protocol Modeling is the only be-
havioral modeling approach that guarantees a degree
of behavioral conformance by virtue of its semantics,
in contrast to other published approaches which re-
quire that (sometimes complex) formation rules be
followed to achieve behavioral conformance 9. More-
over, most published approaches which address this
matter focus on substitutability as the measure of con-
formance required. In our view substitutability is the
wrong measure of behavioral conformance in context
of model reuse, as it applies to subtyping rather than
the creation of behavioral variants 10.

It seems that our compositional approach leads
very naturally to mixin based reuse. However, the
mainstream of object modeling, particularly as em-
bodied in UML, has followed OO programming tech-
nologies down the inheritance path. We think that
the natural way that mixins ”fall out” of the Protocol
Modeling approach casts doubt on whether hierarchi-
cal inheritance is the appropriate reuse paradigm for
modeling behavioral variants.

6.3 Local Reasoning

A concern in compositional approaches to software
development is that of Local Reasoning: the ability to
argue about the behavior of the whole based on ex-
amination of only a part. Without the ability to reason
locally, all parts of the design have to be viewed in
order to reach any conclusion about behavior, making
the retention of intellectual control hard in all but the
simplest of problems. This issue has been discussed

8As discussed in (McNeile and Simons, 2003).
9See, for instance, (Cook and Daniels, 1994), (Ebert and

Engels, 1994a), and (Schrefli and Stumptner, 2000).
10The same point is made in (Cook et al., 1990).

particularly in the context of Aspect Orientation, for
instance by (Dantas and Walker, 2006).

We argue that the use of CSP composition enables
local reasoning at a behavior level, on the following
grounds (this argument is sketched only). Suppose
that:

• m is the composition of two machines m1 of type
M1 and m2 of type M2 .

• traces(m) ¹λ(m1) is traces(m) restricted to the
repertoire of m1.

where traces(m) is the set of sequences of event in-
stances that m can accept. Then we have, as a prop-
erty of CSP composition, that:

traces(m) ¹λ(m1) ⊆ traces(m1)

Using this we can determine from examination of M1
alone that an event sequence that purports to be a trace
of m is not actually so, because it fails to meet the
above condition. This ability to argue about m from
knowledge of M1 alone constitutes a form of behav-
ioral Local Reasoning.

6.4 Abstraction

Protocol Modeling enables abstraction in models, in
the sense that one machine can contain constructs that
represent a set of similar constructs in another ma-
chine, with the differences that distinguish the indi-
viduals of the set abstracted away. In a modeling ap-
proach, the ability to abstract is essential to achieving
economy and simplicity of expression.

The two forms of abstraction supported are by
event and state.

By Event: In the Banking Model shown in Fig-
ure 3, the repertoire entries [Withdraw,
From] and [Transfer, Source] appear in both
Account Machine 1 and Account Machine 2 at-
tached to the same transition. This means that, in
both of these machines, the two repertoire entries
are treated identically: including the updates
performed to the local storage of the machines.
This is equivalent to saying that the difference
between these repertoire entries is immaterial for
these transitions, and we can use a single name
Debit defined as follows:
Debit = {[Withdraw,From], [Transfer,Source]}
instead. Note that the Debit abstraction could not
be used in Account Machine 4 , as this machine
does not constrain Transfers.

By State: The ability to abstract by state stems from
use of derived states, as described earlier in Sec-
tion 4.3. For instance, the state In Credit in

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

28

Account Machine 3 can be viewed as an abstrac-
tion of all non-negative values of the local storage
attribute Balance in Account Machine 1 .

The use of these abstraction mechanisms has no
affect on the semantics of machine composition, and
is therefore orthogonal to the ability to perform local
reasoning about behavior.

6.5 Behavioral Types

So far we have taken the protocol rules specified in
a Protocol Model to be non-discretionary statements
about when an event can take place. If an event is
refused, no update or change of state takes place. In
effect, the event is rejected as an error. Other classes
of behavioral rules are weaker than this, and should
not prevent an event but only provide guidance on
whether it should happen or not. An example is at-
tempting to access a website in Microsoft Internet Ex-
plorer v.7 (IE) when the security certificate held by
site is not recognized or is invalid. IE alerts the user,
with an alert and by coloring the header bar red, but
does not prevent access to the site.

In the model shown in Figure 3, it may be that the
Bank’s policy is not to prevent its Customers from go-
ing over their account overdraft limit but merely warn
them if a withdraw does so. A violation of the rule in
Account Machine 4 should not then cause a Withdraw
event to be rejected, but instead should cause an alert
to the Customer that the event breaches the account
limit. To model this, we give a different Behavioral
Type to Account Machine 4 to reflect this weaker pro-
tocol effect. A range of such weaker Behavioral Types
is possible, two being:

Allowed: Refused events are flagged as not desired
or in violation of policy (but are not prevented).

Desired: Accepted events are flagged as desired or
required (i.e., similar to a workflow rule).

Combining machines with different Behavioral Types
so as to prevent, encourage and discourage differ-
ent events under different circumstances is a way of
building behavioral intelligence into the model, so
that the system is active in policing the rules and poli-
cies required in the domain. Complete discussion of
this topic is beyond the scope of this paper, and more
information can be found in (McNeile and Simons,
2007).

Building behavioral intelligence into objects in
this way means that business processes become emer-
gent properties of the combined behavior of the par-
ticipating objects, rather than being defined as process
flow models using languages such as BPEL. This idea
(which has hinted at by others, for instance Fielding

with his idea of Hypermedia as the engine of applica-
tion state (Fielding, 2000)) involves less redundancy
of rule definition than the process flow modeling ap-
proach, which normally requires that behavioral rules
about an object be repeated in each process that in-
volves the object. Making an object the owner of its
own behavioral rules ensures that any change is auto-
matically propagated to all business process contexts
in which that object participates. This makes pro-
cesses easier to modify and hence enhances business
agility.

7 PRACTICAL OBSERVATIONS

The aim of a language such as the one described
here must be to close the gap between the way soft-
ware is described in the analysis and design stages of
a project, and the way it is described in executable
form. The more this gap can be closed, the better the
software development process can be engineered to
avoid the familiar problems associated with human in-
terpretation and translation of one description into an-
other. Ideally, in our view, the software development
should involve executable artifacts from the begin-
ning, and the process should be based around incre-
mental review, testing and refinement (and, perhaps,
automated transformation) of such artifacts. The early
focus of the process is on the behavioral requirements,
the later focus on the implementation environment
(target platform) and such issues as performance.

The language described here has proved valuable
in the early stages of development, where the focus is
on behavioral requirements. The richness of the be-
havioral semantics of the language makes it possible
to provide a generic user interface which interprets the
model to:
• Display, for a selected object, what events the ob-

ject understands.
• Color code events to indicate whether they are not

possible (”Greying out”), possible but discour-
aged, or possible and encouraged.

• Create ”pick-lists” of suitable target objects for an
event, being those objects that understand and can
accept it.

• Create suitable user-oriented error or warning
messages when a protocol rule has been violated.

An illustrative example of such a generic user inter-
face is shown in Figure 4. The important point is that
a generic user interface requires no more information
than is present in the model (for instance Figure 3)
and the associated instance data, so it is not neces-
sary to model or program it. This means that when

PROGRAMMING IN PROTOCOLS - A Paradigm of Behavioral Programming

29

List of object types in the model.
List of Instances of the selected object type.

Attribute valuesof the selected instance. Event types allowed by the selected instance.Entry of attribute values to submit an event – in this case, a “Cash Withdraw”.Error message indicating that the submitted “Cash Withdraw” event has violated the post-state constraint that the Account may not be taken below the limit of -£50.Button to submit the event to the model.
Figure 4: Generic User Interface.

the model is changed the user interface changes ac-
cording, and this makes it is easy to support a rapid
cycle of develop, review and revise in the context of
an iterative approach to model construction and vali-
dation. Because the user interface does not show or
require any understanding of the internal structure of
the model (in terms of the way objects are modeled as
composed machines) stakeholders who are unfamiliar
and/or uncomfortable with formal behavior modeling
notations can successfully engage in, and contribute
to, the model validation process.

REFERENCES
Benveniste, A. and Berry, G. (2002). The synchronous ap-

proach to reactive and real-time systems. Kluwer Aca-
demic Publishers.

Bracha, G. and Cook, W. (1990). Mixin-based inheritance.
In ASM conference on Object-Oriented Programming,
Systems, Langiuages, Applications, pages 179–183.

Cook, S. and Daniels, J. (1994). Designing Object Systems:
Object-oriented Modelling with Syntropy. Prentice-
Hall.

Cook, W., Hill, W., and P.Canning (1990). Inheritance is not
subtyping. In 17th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages
125–135. ACM.

Dantas, D. and Walker, D. (2006). Harmless advice. In 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 383–396. ACM.

Ebert, J. and Engels, G. (1994a). Dynamic models and be-
havioural views. LNCS 858.

Ebert, J. and Engels, G. (1994b). Observable or invoca-
ble behaviour - you have to choose. Technical report
94-38. Department of Computer Science, Leiden Uni-
versity.

Fielding, R. (2000). Architectural Styles and the Design
of Network-based Software Architectures. PhD thesis,
University of California, Irvine.

Gray, J. (1981). The transaction concept: Virtues and limi-
tations. In 7th International Conference on Very Large
Data Bases, pages 144–154.

Jackson, M. (1983). System Development. Prentice Hall.

McNeile, A. and Simons, N. (2003). State machines as mix-
ins. Journal of Object Technology, 2(6):85–101.

McNeile, A. and Simons, N. (2006). Protocol mod-
elling. a modelling approach that supports reusable
behavioural abstractions. Journal of Software and Sys-
tem Modeling, 5(1):91–107.

McNeile, A. and Simons, N. (2007). A typing scheme for
behavioural models. Journal of Object Technology,
6(10):81–94.

Schrefli, M. and Stumptner, M. (2000). On the design of
behavior consistent specialization of object life cycles
in obd and uml. In Advances in Object-Oriented Data
Modelling, pages 65–104. MIT Press.

Shlaer, S. and Mellor, S. (1992). Object Life Cycles -
Modeling the World in States. Yourdon Press/Prentice
Hall.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

30

