
SEMANTIC APPLICATION DESIGN 

Philippe Larvet 
Alcatel-Lucent Bell Labs, Centre de Villarceaux, 91620 Nozay, France 

Keywords: Application design, software component, semantic component. 

Abstract: This paper presents a process to determine the design of an application by building and optimizing the 
network of semantic software components that compose the application. An application has to implement a 
given specification. We consider this specification is made of atomic requirements, logically linked 
together. Each requirement is expressed in natural language: this expression is seen as the semantic 
description of the requirement. Off-the-shelf components from which we want to build the application can 
also be described through a semantic description. We consider a component implements a requirement if the 
"semantic distance" between their two semantic descriptions is minimal. Consequently, designing an 
application consists of building and optimizing the logical network of all semantic optimal couples 
"requirement-component". The paper presents such a building and optimization automatic process, whose 
development and improvement are still in progress, and whose main advantage is to systematically derive 
the discovery and assembly of software components from the written specification of the application. 

1 PROBLEM OF APPLICATION 
DESIGN 

Software application design is traditionally a 
complex activity. According to the accepted 
definitions used as references in the scope of object-
oriented and component-based application 
development, and according to Grady Booch 
(Booch, 2007), design is "that stage of a system that 
describes how the system will be implemented, at a 
logical level above actual code. For design, 
strategic and tactical decisions are made to meet the 
required functional and quality requirements of the 
system. The results of this stage are represented by 
design-level models: static view, state machine view, 
and interaction view." The activity of design leads to 
the architecture of the application, which is "the 
organizational structure of a system, including its 
decomposition into components, their connectivity, 
interaction mechanisms, and the guiding principles 
that inform the design of the system." (Rumbaugh, 
Booch, Jacobson, 1999). 

Many authors have described several methods 
to guide the building of component-based 
applications (Bordeleau, 2005; Chusho, 2000; 
Kirtland, 1998) but except within the field of 
semantic web services (Narayanan, 2002), it seems 
an automatic semantic-oriented process has not been 

considered as a serious approach to design. 
Traditional component-based development 
approaches have two main drawbacks: they are often 
fully manual, and the process of finding and 
assembling the right components is not directly 
derived from the text of the written specification.  

Notice that research in semantic web services 
(Narayanan, 2002; Patel-Schneider, 2002) proposes 
a semantic-oriented design approach, by using a 
logic-based approach to the specification of 
semantics, whereas the approach presented in this 
paper uses natural language as the basis for 
specifying semantics. 

An application has to rely on a given 
specification. We consider this specification exists 
under the form of a natural language, informal text, 
that describes functional and non functional 
requirements the application has to cover. We have 
made three main assumptions in this paper: 
- a software application can be built by 

assembling off-the-shelf components; 
- the determination of components can be derived 

from the semantic analysis of the requirements; 
- application design, i.e. architecture of solution, 

can be derived from the architecture of the 
problem, i.e. from relationships between  
requirements. 

47
Larvet P. (2008).
SEMANTIC APPLICATION DESIGN.
In Proceedings of the Third International Conference on Evaluation of Novel Approaches to Software Engineering, pages 47-55
DOI: 10.5220/0001761900470055
Copyright c© SciTePress



2 THE PROPOSED PROCESS 

We see an application as a set of inter-related 
components. Each component has a functionality, 
expressed as a set of functions, and encapsulates and 
manages its own data: this is the component 
paradigm, derived from object-orientation and 
today's standard of development. 

Let us consider we have at our disposal many 
small off-the-shelf components, stored in 
appropriate component repositories. Each one covers 
a precise elementary function, an atom of 
functionality – for example file management, 
database access, GUI display mechanisms, text 
translation, HTML pages reading from URLs, 
elementary functions for text processing, etc. More 
simply than the concept of semantic component 
(Kaiya, 2005; Sjachyn, 2006; Hai, 2006), we 
propose each component is described through a 
semantic card which contains notably the goal of the 
component, expressed in natural language form and 
describing clearly what the component really does, 
what its functions are and which data it manipulates. 

Through an appropriate process we expose in 
detail below, the meaning of the sentence 
representing the component's goal - its semantics – 
can be determine and expressed in terms of an 
appropriate computable data structure. Thus, the 
idea is to mark every semantic atom of functionality 
with their appropriate semantic data structure. 

We also have at our disposal a specification 
document containing requirements describing what 
the application will do, what its functional and non-
functional features are. The requirements are a set of 
sentences expressed in natural language. Each 
sentence has a meaning which can be found out by 
using the same process. Each sentence, i.e. each 
piece of specification, each atom of requirement, can 
therefore be evaluated and marked, and each 
sentence will receive its own semantic data.  

Notice that this process is different than an 
ontology-based requirement analysis approach 
(Kaiya, 2005) – an ontology (McGuinness, 2004) is 
a formal description of the concepts manipulated in 
a given domain and of relationships between these 
concepts. Here, no external ontology is used to help 
requirements analysis, because semantics is 
extracted from the text itself. 

Sentences that compose requirements are 
logically linked to each other. Then, it is possible to 
determine a requirement network by scanning links 
between requirement atoms: this browsing will 
determine the structure of the 'specification 
molecule' – the molecule that describes the problem.  

Analyzing lots of specifications within the 
context of numerous industrial projects developed 
with an object-oriented approach (Larvet, 1994) has 
led us to observe that a link between two different 
requirements in the specification always leads to a 
link between the classes implementing these 
requirements. Indeed, two pieces of requirement are 
linked to each other when they both talk about a 
given data, constraint, functionality or feature of the 
targeted application. Then, the same link exists 
between the components implementing these 
requirements. 

Consequently, it makes sense to consider that 
links between the bricks of the problem have a 
similar correspondence to links between the blocks 
of the solution. In other terms, problem structure – 
'specification molecule' – is isomorphic to solution 
structure – 'design molecule'.  
 Our proposed process consists of three steps: 

1. finding the components whose semantic 
distance is the shortest with semantic atoms of 
requirements; 

2. organizing these components in order to 
constitute the 'solution molecule', i.e. the initial 
architecture of the application – this initial 
design being made by replicating the problem 
molecule and using solution atoms instead of 
problem atoms – but these kinds of atoms do 
not have exactly the same nature, so the initial 
component interaction model has to be 
optimized; and 

3. optimizing the structure of solution molecule in 
order to determine the best component 
interaction model.  
Within this approach, the initial component 

interaction model – corresponding to the initial 
design of the future application - is built from  
relationships between application's requirements: an 
association between two requirements will 
determine an association between the two 
components that cover these requirements.  

3 SEMANTIC CARDS FOR 
COMPONENTS 

Semantic cards (semCards) formally describe the 
small off-the-shelf components that are used to build 
applications. Each semCard contains the goal of the 
component and the list of its public functions with 
their input and output data. We propose a semCard 
has an XML representation where input and output 
data are described with three main attributes:  

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

48



1. a data name; 
2. a concept associated with the data, expressed 

in reference to a word defined in an external 
dictionary or thesaurus, in order to specify 
the semantics of the data; here, the concept 
belongs to a domain addressed by the 
component and whose name is mentioned in 
semCard's header; and 

3. a semantic tag, or semTag, of the data, which 
represents a stereotype of a semantic data 
type and specifies the nature of the data 
(Larvet, 2006); this semTag will be useful to 
determine and optimize components' 
interactions.  

The semantics of the operations' goals is defined 
with precise rules that help to write terse and non 
ambiguous expressions: 
- goals are expressed in natural language, using 

specific words; 
- these words belong to 'lists of concepts' that are 

embedded in the semCard and summarize the 
pertinent words to be used to write goals; and 

- words composing 'lists of concepts' are defined 
in external dictionaries and belong to related 
domains that are referenced in the semCard. 

Ontologies could be used to summarize and 
formalize the definitions of concepts and domains, 
but this is not mandatory. RDF (Patel-Schneider & 
Siméon, 2002) or OWL (McGuinness, 2004) are 
convenient to depict such ontologies, because they 
are standard and well-tooled languages, but simple 
ad-hoc appropriate XML files containing word 
definitions and domain descriptions are also suitable. 

Here is, as an example, the semCard for an RSS-
feed-accessor component: 

 
<semCard> 
<URL>http://xxx.xx.xxx.x/components/RSS
/RSS_Component.asmx</URL> 
  <component name="RSS"> 
    <domains> 
      <domain name="RSS"> 
        <concepts list="RSS, RSS_feed, 
URL, news" /></domain> 
      <domain name="News"> 
        <concepts list="news, title, 
titles, description, article, text, 
News Agency" /></domain> 
    </domains> 
    <operation name="getAllTitles"> 
      <goal>The goal of the operation 
getAllTitles is to deliver the titles 
of all the news of the RSS feed 
addressed by a given URL.</goal> 
      <input name="URL_RSS" 
concept="RSS#URL" semTag="URL" /> 

      <output name="titles" 
concept="News#title" semTag="text" /> 
    </operation> 
    <operation 
name="getDescriptionOfTitle"> 
      <goal>The goal of the operation 
getDescriptionOfTitle is to deliver the 
description of the given title of one 
news of the RSS feed addressed by a 
given URL.</goal> 
      <input name="URL_RSS" 
concept="RSS#URL" semTag="URL" /> 
      <input name="title"   
concept="News#title" 
semTag="short_text" /> 
      <output name="description_ 
of_title" concept="News#description" 
semTag="text" /> 
    </operation> 
  </component> 
</semCard> 

4 DETERMINING THE 
MEANING OF SENTENCES 

One key to our process is the possibility to compare 
the meaning of a requirement extracted from the 
specification document with a component's goal, 
written in the component's semCard. This 
comparison is done in order to be able to choose this 
component because it is intended to cover the 
requirement. 

The key to this comparison is the ability to 
determine the meaning of a text. We consider this  
meaning is made up of the concatenation of 
elementary meanings of all the pertinent terms that 
compose the text. The ability to compare the 
meaning of two different texts implies the ability to 
compare two different terms and to determine 
whether they are semantically close or not. 

Important works have been done related to 
semantic proximity in natural language expressions 
(Khaitan, 2006; Corley, 2005; Guha et al. 2003;  
Mayfield and Finin, 2003; Guarino et al., 1999;  
Evans and Zhai, 1996). The novelty of our approach 
is to propose a way to express the meaning of an 
elementary term in order to process a comparison 
with another term. To do so, we build a "synonym 
vector" with the synonyms of the term that can be 
found in a thesaurus, and we call it a synVector. 
For example, the synVector of "battle" is: 

battle = {fight, clash, combat, 
encounter, skirmish, scuffle, mêlée, 
conflict, confrontation, fracas, fray, 

SEMANTIC APPLICATION DESIGN

49



action; struggle, crusade, war, 
campaign, drive, wrangle, engagement} 

Other examples: 
war = {conflict, combat, warfare, 

fighting, confrontation, hostilities, 
battle; campaign, struggle, crusade; 
competition, rivalry, feud} 

peace = {concord, peacetime, 
amity, harmony, armistice, 
reconciliation, ceasefire, accord, 
goodwill; agreement, pact, 
pacification, neutrality, negotiation} 

Table 1: Functions defined on synVectors. 

Notation Semantics 
synV(word) synVector for the term 'word' 

card(V1) cardinal(vector V1)  

common(V1, V2) 

{syn1, syn2, …, synn} | syni ∈ V1 and 

syni ∈ V2 

Example:  

card(common(synV("battle"), 

synV("war"))) = 9 

avg(V1, V2) average(cardinals(V1,V2)) 

semProx(T1, T2) 

100 * card(common(synV(T1), 

synV(T2))) / avg(synV(T1), 

synV(T2)) 

phraseVector(sen

tence) 

{synV(Ti)} | Ti ∈ {T1, T2, … Tn} and 

Ti = pertinent word of <sentence> 

semVector(sente

nce1, sentence2) 

{best values of comparisons among 

all couples synV(T1),synV(T2) | T1 ∈ 

sentence1 and T2 ∈ sentence2} 

diff(semV(req1,re

q2), 

semV(req1,req3)) 

abs( semVector(req1,req2) – 

semVector(req1, req3) ) 

 
The concept of semantic proximity between two 

terms T1 and T2 = semProx(T1,T2), gives a ratio 
taking into account common synonyms within the 
two synVectors of T1 and T2. If semProx is greater 
than a given value A (for instance 50) or close to 
100, we consider the two terms are semantically 
close. For example, semProx("battle", "war") 
= 100 * 9 / 0.5 * (19 + 13) = 56.25. In 
other words, in the union of synonyms sets for 
"battle" and "war", 56% of the elements are found in 
duplicate. Inversely, if semProx is less than a given 
value B (for instance 10) or close to zero, the two 
terms are semantically distant. Obviously, for 
instance, semProx("war", "peace") = 0. 

Values of levels A and B can be "tuned", 
according to the category of texts to be processed. 

 

The determination of the meaning of a given 
sentence is made as follows: 
- the sentence is analyzed and pertinent words are 

extracted – non-pertinent words like articles, 
prepositions, conjunctions, etc, are ignored; 

- for each pertinent word, a synVector is built; 
- a vector of vectors for the whole sentence - a 

phraseVector - is built by assembling all  
synVectors of pertinent words contained in the 
sentence, as shown in Figure 1. 

 

 
Figure 1: Building a semVector from phraseVectors of 
two sentences. 

For example, let us build a phraseVector for the 
following requirement, extracted from the 
specification of a Call Management System: 

requirement = The caller makes a 
call to a receiver by creating a 
message that contains the call subject, 
submitted to the receiver at the same 
time 

Pertinent terms are: caller, call, make a call, 
receiver, message, subject, submit. 
The phraseVector for this requirement is the 
concatenation of the following synVectors: 

synV(caller) = {phone caller, 
telephone caller, visitor, guest, 
company}(5) 

synV(call) = {phone call, telephone 
call, buzz, bell, ring; demand, 
request, plea, appeal, bid, 
invitation}(11) 

synV(make a call) = {phone, make a 
demand, send a request}(3) 

synV(receiver) = {recipient, heir, 
addressee, beneficiary, inheritor, 
heritor}(6)  

synV(message) = {communication, 
memo, memorandum, note, letter, 
missive, dispatch}(7) 

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

50



synV(subject) = {topic, theme, 
focus, subject matter, area under 
discussion, question, issue, matter, 
business, substance, text; field, 
study, discipline, area}(15) 

synV(submit) = {offer, present, 
propose, suggest, tender}(5) 

phraseVector(requirement) = 
{synV(caller), synV(call), synV(make a 
call), synV(receiver), synV(message), 
synV(subject), synV(submit)) 
 

The comparison of three sentences S1, S2 and 
S3 is made by comparing their phraseVectors (see 
Figure 1). This comparison builds a result that will 
be used to calculate the semantic distance between 
the sentences. Let us detail the phraseVectors 
comparison steps:  
- internal synVectors of the two phraseVectors 

are compared two by two – this means every 
synVector in S1 is compared to every one in S2 
and S3;  

- a semantic proximity (semProx) is calculated 
for each pair; 

- the best values of semProx among all 
comparisons are kept in an ordered external 
semantic vector, a semVector, as a result of the 
comparison; then 

- the comparison of semVectors for sentences S1 
and S2, and for S1and S3, allows to determine 
whether S1 is semantically closer to S2 or S3. 

 
The search of components that cover a given 

specification follows the phraseVector approach: 
- phraseVectors of requirements are built; 
- phraseVectors of components' goals are built; 
- phraseVectors are compared and the 

corresponding semVectors are built for every 
pair requirement-component; and 

- the best semVectors are kept and help to 
determine the components that are able to fulfill 
the requirements. 

5 DETERMINING THE 
PROBLEM NETWORK 

The requirement network summarizes and represents 
the links between the requirements. 

The phraseVector approach reveals the links 
between the requirement atoms and helps the 
building of 'problem molecule': the sentences of the 
specification are semantically compared two by two, 
phraseVectors are built and semVectors are 
calculated. 

 
Figure 2: Building the requirement network. 

The result, for each requirement, is a set of 
vectors that represent the links, in terms of semantic 
distance, of each requirement with respect to the 
others. We can "tune" the level of this semantic 
distance to keep only the "best" semVectors in terms 
of semantic proximity, i.e. the most semantically 
pertinent links for a given requirement. This means 
each requirement has a limited number of 
semantically closest other requirements; in other 
terms, a requirement can be formally described by a 
limited set of semVectors that represent the 
semantically closest other requirements. 

The links can be represented in a 2D or 3D 
space; the aim is to get a convenient model of the 
problem, i.e. a representation we can communicate 
and we can structurally compare to another. On this 
model, we make graphically appear the links 
between requirements. Only the best links are kept, 
i.e. the links whose semVector value is larger.  

For example, Req2 is linked with Req3 and 
Req5, but  

semVector(Req2,Req5)>semVector(Req2,Req3) 

this means the semVector resulting of the 
comparison between Req2 and Req5 is greater than 
the semVector resulting of the comparison between 
Req2 and Req3, then only the link Req2-Req5 will 
be  kept on the final model. This is a question of 
optimization. Tuning the model is possible by 
determining the maximum acceptable gap between 
two semVectors.  

6 BUILDING A PRIMARY 
SOLUTION NETWORK 

We assume that the structure of the solution, i.e. the 
architecture of the design, is isomorphic to the 

SEMANTIC APPLICATION DESIGN

51



structure of the problem. Solution molecule has the 
same spatial structure as problem molecule, although 
they do not contain and use the same kinds of atoms: 
problem atoms are requirements, solution atoms are 
components. Problem atoms are linked together 
because they share the same concepts and address 
the same requirements, solution atoms are linked 
together because they share or exchange the same 
data, however the network that links the 
requirements together contains the same paths as the 
network of the solution. 

The problem now consists of finding the 
components whose semantic distance is the shortest 
from the semantic atoms of requirements, and 
organizing these components in order to constitute 
the solution molecule, i.e. the architecture of the 
application that will suitably solve the problem 
expressed in the specification document. 

To build this organization, we will apply the 
following steps: 
- find the components that cover the requirements 

by using the semVector approach; this will build 
a list of components, not yet linked together (see 
Figure 3); 

- replicate the structure of the problem molecule 
inside the components list using solution atoms 
instead of problem atoms, i.e. by attaching to the 
corresponding components the links between the 
requirements they fulfill; this will build a rough 
version of the solution molecule; 

- and finally optimize this primary version in order 
to determine the best structure for the solution 
molecule. This will become the final architecture 
for the application. 

 

 
Figure 3: SemVectors help to determine which 
components fulfill which requirements. 

The optimization process will use semantic tags 
attached to data descriptions of components' 
operations to determine and optimize interactions 
between components. The final result of this process 

is an interaction diagram showing coupling and 
interdependencies between components. 

Replicating requirements links inside 
components' structure associates components in the 
same way requirements are associated in the 
specification; but of course these associations are not 
all valid: the fact that two requirements share the 
same concepts does not necessarily imply the two 
corresponding components have an interaction.  

The role of the optimization process is to keep 
only the most useful of the links inherited from the 
problem molecule, i.e. the associations 
corresponding to actual data exchanges between 
components. 

7 OPTIMIZING THE SOLUTION 
NETWORK  

In order to automatically determine real connections 
corresponding to actual data exchanges between 
components, we use the semantic tags (semTags) 
added as semantic metadata to inputs and output of 
components' operations (Larvet, 2006). 

If these semTags are suitably chosen and set,  
components can be connected and their connectivity 
can be formally expressed.  

For example, if output of Comp1.operationA 
semantically fits with input of Comp2.operationB, 
then Comp1 can be connected to Comp2 through the 
link "output of A" to "input of B". 
So, we can write: 
out_A=Comp1.operationA(parameters); 
out_B=Comp2.operationB(out_A); 

or, more directly: 
out_B=Comp2.operationB(Comp1.operationA
(parameters)); 

This means the two connected data have the 
same semantic "dimension", i.e. they are process-
compatible; they share not only the same data type, 
but the same nature of data. SemTags express 
semantic data types and are similar to UML tagged 
values (Rumbaugh et al., 1999); they are attached to 
inputs and outputs within the semCards, and ensure 
the consistency of components' interfaces; for this 
reason they are important elements for optimizing 
components interactions (see for instance semtags in 
RSS-feed-accessor semCard, in paragraph 3.)  

7.1 Automating the Optimization of 
Solution Network 

An example will help us to describe the process that 
takes into account semantic tags in order to build an 

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

52



automatic assembly of components. Suppose we 
want to produce a translated version of a news feed. 
This requirement is expressed in natural language in 
the specification, and the semVector-plus-
component-discovery approach has allocated two 
components to this requirement: a RSS-accessor 
component and a Translator component.  

The RSS component aims at gathering information 
from RSS feeds accessible via Internet, and its 
interface contains two operations: getAllTitles() 
gets all the main titles of the feed for a given URL, and 
getDescriptionOfTitle() gets the text of the 
short article for this title.  

The Translator component is a classical one whose 
operation translate() transforms a text (given as 
an input parameter) written in a given source language 
(input parameter) into a translated text (output) written 
in a destination language (input parameter). 

The problem is to assemble automatically and 
logically these two components, i.e. their three 
operations (see Figure 4) in order to fulfill the 
original requirement: provide a translated version of 
a news feed. 

 
Figure 4: How to assemble these 3 operations? 

The first key is to consider semantic tags as inputs 
and outputs of operations, instead of data. Then, some 
possible connectivities appear (see Figure 5), but not 
precisely enough to make a fully consistent 
composition. 

 
Figure 5: Possible connections (in blue) appear by 
considering semantic tags instead of data names. 

The second key is to consider the main output of 
the targeted component assembly in order to find 
which operations can provide its inputs, and to 
iterate the process for these operations: search which 
other operations can provide their inputs. Then, we 
go back progressively from the main output to the 
input data necessary to produce it, and in doing this, 
we automatically assemble the different operations 
by linking their outputs and inputs.  

At the same time, the links are stored in a FILO 
(first in, last out) stack under the form of pseudo-
code expressing the operation calls. At the end of 
this process, the content of the stack represents the 
correct interactions between the components. 

The main output of the component assembly is 
given by the expression of the original requirement. 
For our example, a translated version is wished: the 
main output is a translated text, i.e. the output of the 
operation Translator.translate(). We can push 
this main output in the stack, expressed as the 
"return" of the function represented by the targeted 
component assembly: 

translated_text = 
Translator.translate(text_to_trans
late, src_lang, dest_lang); 
return translated_text; 
Let us go back now to the inputs of this 

operation, whose semantic tags are "language", 
"language" and "text". A data with a semantic tag 
"text" is provided by the operation 
RSS.getDescriptionOfTitle(). 

Then, we can connect this operation to 
Translator.translate().We can add the call 
to the operation RSS.getDescriptionOf-
Title() in the stack, linking with 
Translator.translate() through the name of 
the exchanged parameter: 

text_to_translate = 
RSS.getDescriptionOfTitle(site_add
ress, title); 
translated_text = 
Translator.translate(text_to_trans
late, src_lang, dest_lang); 
return translated_text; 

Now, let us go back to the inputs of 
RSS.getDescriptionOfTitle(), whose semantic 
tags are "URL" and "title". A data with a semantic tag 
"title" is provided by the operation 
RSS.getAllTitles(). 
So, we can also connect these two operations by 
pushing a new operation call in the stack: 

titles = 
RSS.getRSSTitles(adr_site); 
text_to_translate = 
RSS.getDescriptionOfTitle(site_add
ress, title); 

SEMANTIC APPLICATION DESIGN

53



translated_text = 
Translator.translate(text_to_trans
late, src_lang, dest_lang); 
return translated_text; 
With all the components allocated to the 

original requirement being used and connected 
together, the stack now contains the general texture of 
the component assembly, under the form of a nearly 
executable pseudo-code. However, this pseudo-code 
must be refined before it can be executed:  

- the data types must be taken into account; for 
example, RSS.getAllTitles() returns an 
array of Strings and not a single String; 

- the names of some parameters can be solved 
through their semantics, i.e. with the help of their 
semTags: for instance, "adr_site" and 
"site_address" recover the same concept and 
have the same semTag;   

- some other parameters can be solved with some 
useful information contained in the original 
requirement; for example, if the requirement 
specifies a french translation, then the parameter 
"dest_lang" of the operation 
Translator.translate() has to be set to 
"french"; and 

- some additional components or operations can 
be used to solve other parameters; for example, 
the parameter "src_lang" can be set by using a 
utility component, a "Language Finder", to 
automatically determine the source language of a 
given text, or an operation 
getSourceLanguage() on the RSS feed 
component. 

 

A specific module, whose detailed description is 
outside the scope of this paper, makes these 
refinements in order to complete the pseudo-code: 

 

Vector ComponentAssembly(String 
site_address) { 

Vector result; 
titles = 
RSS.getAllTitles(site_address); 
foreach title in titles { 

    text_to_translate = 
RSS.getDescriptionOfTitle(site_add
ress, title); 
 source_lang = 

LanguageFinder.getLanguage(text_to
_translate); 
translated_text = 
Translator.Translate(text_to_tra
nslate, source_lang, "french"); 
 result.add(title + translated_ 

text); 
} 
return result; 

} 

This pseudo-code can finally be transformed into 
an executable Java file for example, in order to test 
the validity of the component assembly produced by 
the optimization process. 

The final interaction diagram between the 
components, obtained as a result of the optimization 
process, can be considered as a first draft of the 
design of the future application. The interest of this 
draft is to be delivered with a quasi-executable 
pseudo-code allowing validation tests of the 
architecture of the future application. 

8 CONCLUSIONS 

The paper has described an application of a natural 
language (NL) technology combined with a 
component-composition optimization process in 
order to allow the automatic construction of software 
applications. We have presented an original but 
partly operational process to determine the meaning 
of a NL text, and to use this meaning to find the 
right components fulfilling original NL-expressed 
requirements of an application specification. This 
process leads to an initial architectural structure of 
the targeted application, optimizable with a 
complementary process in order to get an acceptable 
and testable draft of the application design. 

Among some advantages of this approach, notice 
that it is performed rapidly and fully automatically, 
it works directly from the original application 
requirements and delivers a quasi-executable 
pseudo-code as a useful sub-product allowing a 
validation of the future application's architecture. 
Moreover, traceability between requirements and 
architecture is guaranteed. 

Still in progress, the process has to be improved 
and refined. An important part of the future work is 
to do more complete and rigorous experimentation, 
validation, and perhaps tuning. 

REFERENCES 

Booch G., 2007. "Object-Oriented Analysis and Design 
with Applications", 3rd Edition – Cased, Addison-
Wesley (2007), ISBN 9780201895513 

Bordeleau F., Hermeling M., 2005. "Model-Driven 
Development for Component-Based Application 
Portability", COTS Journal, August 2005 

Chusho T., Ishigure I., Konda N., Iwata T., 2000. 
"Component-based application development on 
architecture of a model, UI and components," apsec, p. 

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

54



349, Seventh Asia-Pacific Software Engineering 
Conference (APSEC'00). 

Corley C. and Mihalcea R., 2005. "Measuring the 
Semantic Similarity of Texts". Proceedings of the 
ACL Workshop on Empirical Modeling of Semantic 
Equivalence and Entailment, page 1318, Ann Arbor. 

Evans D. and Zhai C., 1996. "Nounphrase analysis in 
unrestricted text for information Retrieval", 
Proceedings of the 34th Annual Meeting of the 
Association for Computational Linguistics, 1996. 

Guarino N., Masolo C., Vetere G., 1999. "OntoSeek: 
Content-Based Access to the Web", IEEE Intelligent 
Systems, Vol. 14, No. 3, May/June 1999. 

Guha R., McCool R., Miller E., 2003. "Semantic Search", 
Proceedings of 12th international conference on World 
Wide Web, Budapest, Hungary, May 2003. 

Hai Zh., 2006. "Semantic component networking: Toward 
the synergy of static reuse and dynamic clustering of 
resources in the knowledge grid", Oct. 2006, Journal 
of Systems and Software, V79, 10, p.1469-82. 

Kaiya H., Cai Saeki, Ohnishi A., 2005. "Ontology-based 
requirements analysis: lightweight semantic processing 
approach", Sept. 2005, Proceedings. Fifth International 
Conference on Quality Software (QSIC 2005), p.478 

Khaitan S. et al., 2006. "Exploiting Semantic Proximity 
for Information Retrieval", available at http:// 
www.cse.iitb.ac.in/~pb/papers/IJCAI-CLIA-
Exploiting-Semantics.pdf 

Kirtland Mary, 1998. "Designing Component-based 
Applications", Microsoft Press; Pap/Cdr edition, 
December 1998, ISBN 978-0735605237 

Larvet Ph., 1994. "Analyse des systèmes, de l'approche 
fonctionnelle à l'approche objet", InterEditions, Paris. 

Larvet Ph., 2006. "Composing Automatically Web 
Services through Semantic Tags", ICSSEA 2006, 
International Conference on Software and Systems 
Engineering and their Applications, CNAM Paris 
(France), December 2006. 

Mayfield J. and Finin T., 2003. "Information retrieval on 
the semantic web: Integrating inference and retrieval", 
Proceedings SIGIR 2003 Semantic Web Workshop. 

McGuinness D.L., van Harmelen F., 2004. "OWL Web 
Ontology Language", W3C Recommendation 10 
February 2004, Editors: Knowledge Systems 
Laboratory, Stanford University, Vrije Universiteit, 
Amsterdam 

Narayanan S., McIlraith S., 2002. "Simulation, 
Verification and Automated Composition of Web 
Services", Proceedings of the Eleventh International 
World Wide Web Conference (WWW-11), pp. 77-88, 
May 7-11, 2002, Honolulu, Hawaii, USA.  

Patel-Schneider P., Siméon J., 2002. "The Yin/Yang Web: 
XML Syntax and RDF Semantics", WWW May 2002, 
Honolulu, Hawaii, USA. ACM Public. 

Patel-Schneider P., Fensel D., 2002. "Layering the 
Semantic Web: Problems and Directions"  - The 
Semantic Web-ISWC 2002: First International 
Semantic Web. 

Rumbaugh J., Booch G., Jacobson I., 1999. "The Unified 
Modeling Language, Reference Manual", Addison-
Wesley, New York (1999) 

Sjachyn M., Beus-Dukic L., 2006. "Semantic component 
selection", 5th International Conference on Commercial-
off-the-Shelf (COTS)-Based Software Systems. 

SEMANTIC APPLICATION DESIGN

55


