
AGILE METHODS AND REQUIREMENTS ENGINEERING IN
CHANGE INTENSIVE PROJECTS

Martin Fritzsche
Institut für Informatik, Technische Universität München, Boltzmannstr. 3, Garching b. München, Germany

Keywords: Agile software development, requirements engineering, eXtreme Programming, Scrum, Crystal, Dynamic
Systems Development Method, Adaptive Software Development.

Abstract: In this paper we discuss how well agile methods can deal with requirements related issues in change
intensive projects. Five agile methods are considered: eXtreme Programming, Scrum, Crystal, Dynamic
Systems Development Method and Adaptive Software Development. We analyze how well these methods
implement the basic goals of requirements engineering, how they counteract or support the occurrence of
requirements changes and how they cope with problems arising from changing requirements. We show that
agile methods provide a valid approach for requirements related issues, but also identify their weaknesses.

1 INTRODUCTION

Agile methods have become increasingly popular in
recent years. They are mostly used for development
in small projects focusing on web-based or mobile
applications. However they have been reported to be
also successful in larger projects (Elssamadisy,
2001, Cockburn and Highsmith, 2001). Agile
methods claim to be able to cope with changing
customer needs. In fact changing requirements are a
widespread problem and dealing with them is
deemed a critical success factor (Standish Group,
1995). This makes agile methods even more
interesting.

In this paper we focus on the question how agile
methods deal with requirements, particularly
unstable requirements. We show that they provide
specific practices that address requirements related
issues in general and the problem of changing
requirements in particular. However we also point
out where their shortcomings are and in which areas
adjustments would have to be made. In our analysis
we focus on five methods: eXtreme Programming
(XP) (Beck, 2000, Beck and Fowler, 2001), Scrum
(Schwaber, 1995, Schwaber and Beedle, 2002,
Schwaber, 2004), the Crystal Methodologies
(Crystal) (Cockburn, 2002), Dynamic Systems
Development Method (DSDM) (Stapleton, 1997)
and Adaptive Software Development (ASD)
(Highsmith, 2000).

The next section gives a brief overview on
related work. In section 3 we present our approach
to analyze agile methods in respect to their fitness
for requirements engineering in a change intensive
environment. We then perform the analysis. The last
section summarizes our findings.

2 RELATED WORK

There are some contributions to the topic of the agile
methods’ fitness for requirements engineering worth
mentioning. Leite (2001) extracts the requirements
related elements from XP. He then identifies several
aspects where XP has shortcomings in regard to
requirements engineering and proposes possible
solutions. However, while stating, that there are
other problems, he doesn’t list them. Leite’s work
provides a good starting point, but we want to carry
out a thorough examination of the topic and consider
also the problem of changing requirements.

Tomayko (2002) identifies several agile
practices for requirements engineering. He
concentrates on the problem of not being able to
make correct estimates when confronted with
unstable requirements.

Paetsch, Eberlein and Maurer (2003) provide a
good overview of the requirements part of XP,
Scrum, Crystal, DSDM and ASD. They then
propose several requirements engineering techniques
which should be incorporated by agile methods.

81
Fritzsche M. (2008).
AGILE METHODS AND REQUIREMENTS ENGINEERING IN CHANGE INTENSIVE PROJECTS.
In Proceedings of the Third International Conference on Evaluation of Novel Approaches to Software Engineering, pages 81-88
DOI: 10.5220/0001762900810088
Copyright c© SciTePress

They explain how they can improve agile methods,
but don’t explicitly list the problems they see in the
way agile methods operate. The same is done in an
earlier work by Eberlein and Leite (2002). While
these papers can be part of the solution, we first
want to exactly define the problem that has to be
solved. In a later step it would be useful to compare
the solution proposed in (Paetsch, Eberlein, Maurer,
2003) with our work and analyze which problems
can be solved by their proposal and which can’t.

3 FITNESS OF AGILE METHODS
FOR REQUIREMENTS
ENGINEERING

Our goal is to determine in how far agile methods
provide guidance concerning requirements
engineering issues in change intensive projects,
where their strengths and weaknesses lie, and where
adjustments have to be made. In this chapter we
suggest a qualitative approach for analyzing a
method’s fitness, apply the approach to XP, Scrum,
Crystal, DSDM and ASD and discuss the findings.

3.1 An Approach to Analyze the
Fitness of Agile Methods for
Requirements Engineering

To analyze the fitness of a method for requirements
engineering in change intensive projects several
dimensions have to be considered. First we have to
investigate in how far the method achieves the
general goals of requirements engineering, i.e. issues
that always have to be addressed, independent of
change intensity. Second we have to analyze how
the method mitigates requirements changes or
whether it augments the occurrence of changes. We
only consider sources of changes that can be
influenced by the method. External changes like the
introduction of new technology, changing laws or
business strategies are not regarded. Third we have
to discuss whether and how the method deals with
problems arising from changing requirements.

For each of the three dimensions in our analysis
we developed a catalogue of criteria that have to be
considered. In each of the categories there are items
of varying degree of detail as their numeration
suggests. Subordinate items are issues that
complement the associated superordinate items.

To each of the criteria we discuss the common
aspects of the five agile methods and point out the
specifics of individual methods.

3.2 Applying the Approach

3.2.1 Goals of Requirements Engineering

1. Discover the goals which are pursued by
developing the system: Agile methods don’t try to
gather all goals of the system at the beginning of the
project. Instead they develop only a rough sketch of
the goals and refine them during the course of the
project. They assume that not all goals can be known
ad initio and therefore rely on learning processes
during development. They employ iterations and
frequent releases to support learning and feedback
cycles. A project vision is explicitly developed by
XP, DSDM and ASD. DSDM and ASD make use of
prototypes to support the discovery of goals.
1.1. Discover all Stakeholders’ Needs: The
stakeholders’ needs aren’t collected completely at
the beginning of the project but developed
iteratively. Agile methods rely heavily on feedback
from development and from the usage of the system
to discover the real needs of the stakeholders.
Stakeholders are involved in the project regularly or
even continuously in the case of XP and Crystal.
Scrum and DSDM address all stakeholder classes.
DSDM even demands that workshops for
stakeholder discovery are held. XP and Crystal
strongly focus on users and customers, respectively.
They lack in covering this goal because they don’t
consider all different stakeholder classes.
1.1.1. Define Requirements Necessary to meet the
stakeholders’ needs: Requirements are defined and
refined iteratively during the course of the project.
Their necessity and sufficiency can be evaluated
through iterations and feedback from the use of the
system. By intensively integrating the stakeholders
into the project and giving them the competence to
make decisions about requirements agile methods
are able to relate the requirements to the
stakeholders’ needs.
1.1.2. Identify Rationale for Requirements: The
analyzed methods don’t explicitly address the issue
of identifying and documenting the rationale for
requirements. Since the stakeholders are involved
throughout the project they can be asked about the
rationale for the requirements if necessary. Though,
usually they won’t be able to remember every
requirement’s rationale.
1.1.3. Consider Changes to the Stakeholders’ needs:
Agile methods don’t try to anticipate changes to the
stakeholders’ needs. Instead they integrate
stakeholders into the project, so that they quickly are
informed about changes to the stakeholders’ needs.
The methods can react flexibly to changes. At the

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

82

end of each iteration it is possible to change the
direction of the project.
1.2. Gain a Broad Understanding of the Domain, the
Organization and the Business Processes: Agile
methods don’t conduct a systematic analysis of the
domain at the beginning of the project. Instead the
domain knowledge is gained through the integration
of domain experts and continuous learning due to
iterations and feedback from the use of the system.
XP and DSDM make a small domain analysis at the
project beginning. DSDM and ASD feature
prototyping to increase the understanding of the
domain.
1.3. Understand the System’s Impact on Business
Processes: Agile methods don’t conduct extensive
studies to understand the system’s impact on
business processes at the beginning of the project.
The impacts are directly observed using early and
frequent releases. Led by the feedback gained from
the system’s use, the development can be adjusted
accordingly. XP additionally employs spikes, while
DSDM and ASD use prototypes to increase the
understanding of the system’s impact.
1.4. Assure the System’s Profitability: After each
release the project can be ended if future
development isn’t expected to be profitable. Scrum
and XP make cost estimates. XP additionally
demands that each story has to provide business
value.
1.4.1. Determine Return on Investment of the System
and Individual Requirements: Scrum and XP
provide cost estimates. The business value each
requirement provides influences the priority the
customer assigns to them. A detailed analysis of the
return on investment of the individual requirements
is not carried out.
1.5. Define System Scope: This goal isn’t explicitly
addressed by agile methods.
2. Achieve the Most Important Goals which are
Pursued by Developing the System: The order in
which the goals are realized is set by their priorities.
Therefore mainly unimportant goals remain
unrealized if the project is cancelled before all goals
are implemented.
2.1. Select the Necessary Requirements to achieve
the Most Important Goals: XP’s customer decides
which stories should be implemented next. The
developers have to discuss with the customer which
steps are necessary to realize them. Scrum demands
that the goals are broken up into detailed
requirements. Thereby the method enforces the
relation of the detailed requirements to the goals.
Crystal and DSDM don’t define how requirements
are selected. ASD features JAD workshops for the

selection of requirements. How exactly the
requirements are selected isn’t specified.
2.2. Realize the Necessary Requirements: XP applies
a test-first approach. Tests are created before the
code. When the tests work, the implementation
stops. Therefore only that which is necessary is
implemented. The other agile methods don’t address
this topic.
2.2.1. Consider Only Viable Requirements:
2.2.1.1. Understand which Requirements cannot be
realized: Apart from DSDM the agile methods don’t
undertake a thorough feasibility study. Whether
requirements are feasible is often discovered only
during development. Though, there are some single
techniques, agile methods employ. XP, DSDM and
ASD make risk analyses. XP and Scrum make cost
estimates. DSDM and ASD use prototypes.
2.2.1.1.1. Resolve Conflicts between Requirements
Favouring High-priority Requirements: Agile
methods don’t perform a thorough analysis of
conflicts between requirements. Conflicts may be
discovered by chance during development. A fast
reaction to identified conflicts is possible, due to
short iterations. XP demands that stories should be
independent, which lessens the probability of
conflicts a bit. Conflicts may be discovered using
spikes and conflicting tests. DSDM and ASD
employ prototyping during which conflicts can be
found.
2.2.1.1.1.1. Determine which Requirements Take
Precedence in the Development: XP lets the
customer decide on requirement priorities. In Scrum
based projects priorities are set by the Product
Owner in conjunction with the stakeholders. ASD
demands that poorly understood but critical
requirements take priority. Regarding other priorities
no explicit statement is made.
2.2.1.1.2. Check Budget: Agile methods utilize time
boxing to fix the costs within an iteration. The use of
iterations makes it possible to flexibly adapt the
length of the project, if the contracting allows it.
Therefore one can react to budget problems
accordingly. Long term planning of the budget is
difficult because of unclear requirements. XP and
Scrum make cost estimates to control the budget. In
addition Scrum demands that the budget is managed
empirically.
2.2.1.1.3. Check Schedule: Time boxing and
iterations allow a rigorous control of the schedule
and easy corrections. While short term plans are
relatively well controlled, the long term planning of
the schedule is difficult because of unclear
requirements. XP’s and Scrum’s use of cost
estimates makes a more realistic schedule possible.

AGILE METHODS AND REQUIREMENTS ENGINEERING IN CHANGE INTENSIVE PROJECTS

83

2.2.1.2. Communicate the Feasibility of the
Requirements to the Stakeholders: Apart from
DSDM agile methods don’t analyze the feasibility of
the requirements at the beginning of the project.
Therefore they can only communicate it to the
stakeholders later, when it is known. Iterations and
releases provide the opportunity to communicate
with the stakeholders. DSDM communicates the
feasibility of the requirements at the beginning of
the project to the stakeholders during the feasibility
study. Using XP or Crystal the communication is
easier because customers are integrated into the
team. In an XP project the developers consult the
customer during requirements elicitation by
estimating the feasibility of requirements.
2.2.2. Communicate Requirements to the
Developers: XP employs story cards, acceptance
tests and direct communication to communicate
requirements to the developers. The method is very
dependent on how good the customer can be
integrated into the team to facilitate communication
about requirements details. In addition it can be
difficult to capture non functional requirements in
test specifications. Scrum uses the Product, Release
and Sprint Backlogs to communicate requirements.
Crystal features use cases as requirements
specification and integrates the customer
continuously into the team to enable constant direct
communication. DSDM communicates requirements
using requirements lists and direct communication.
ASD also employs direct communication via
reviews and JAD workshops.
2.2.2.1. Assure that the Requirements are
Comprehensible for the Developers: Agile methods
employ direct communication to ensure that the
requirements are comprehensible. The developers
have the possibility to ask the stakeholders about
things they don’t understand. Misunderstandings can
be discovered and rectified at the end of each
iteration. XP specifies the requirements in an
understandable way using tests. Scrum lists the
details about requirements in the Product Backlog.
Crystal’s use cases can be written in an
understandable way. DSDM and ASD employ
prototypes to increase requirements understanding.
2.2.2.2. Define the Requirements Correctly: Direct
communication and lists of requirements lack formal
precision. Therefore the correctness is not assured.
XP and Crystal offer with test specifications and use
cases, respectively, notations which can provide
enough precision if employed accordingly.
2.3. Assure Compliance with Requirements:
Compliance with requirements is controlled through
reviews at the end of iterations and through the use
of the system. Apart from ASD all methods stress

the importance of tests to control the compliance
with requirements.
2.3.1. Identify Development Risks and Provide
Preventive Actions and Contingency Plans: Agile
methods don’t try to anticipate problems and don’t
create risk mitigation and contingency plans. Instead
they try to flexibly react to occurring problems.
Iterations are an important instrument in this regard.
XP, DSDM and ASD perform risk analyses. To
explore risks XP employs spikes while DSDM and
ASD make use of prototypes.
2.3.2. Communicate Possible Problems and Risks in
the Development to the Stakeholders: Review
meetings at the end of iterations provide a platform
where problems and risks in the development can be
communicated to the stakeholders. The risk analyses
employed in XP, DSDM and ASD make
communication of possible risks early in the project
possible. XP, Crystal and DSDM can communicate
problems and risks continuously because of the
customer’s constant integration into the team.
3. Enhance the Quality of the Product: Agile
methods employ frequent stakeholder reviews to
control the quality of the product. XP, Crystal and
DSDM stress the importance of tests for quality
control.
3.1. Assure Quality in the Process: XP and Scrum
employ regular meetings where the team discusses
how the process can be improved.

3.2.2 Reasons for Intensive Change of
Requirements

1. Project internal factors:
1.1. Factors Concerning the Understanding of the
Requirements: Agile methods don’t strive for a
complete understanding of the requirements at the
beginning of the project. They rely on learning
processes facilitated by feedback through frequent
iterations and releases. They use simple and easy to
understand communication channels. These are
however not precise. Therefore misunderstandings
may happen.
1.1.1. Requirements were Misunderstood at the
Beginning of the Project: Requirements aren’t
analyzed in detail at the beginning of the project.
Therefore they will be misunderstood often.
1.1.2. Conflicts between Requirements are found:
Agile methods don’t analyze requirements regarding
conflicts at the beginning of the project. Therefore
conflicts are discovered later during development
and cause late requirements changes.
1.1.3. Priorities of Requirements Change: As
requirements become more and more understood
their priorities can change.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

84

1.1.4. New Stakeholders are Introduced: Agile
methods state that the stakeholders should be
integrated right from the start of the project.
However, only DSDM demands a systematic search
for stakeholders. Crystal and XP focus on users and
customers, respectively, and are likely to disregard
other stakeholder classes.
1.2. Factors Concerning the Realization of the
Requirements:
1.2.1. Requirements cannot be realized: Since
requirements remain poorly understood for a long
time, it will often happen, that late in the project the
team discovers, that certain requirements cannot be
realized. XP, DSDM and ASD provide with risk
analyses a rudimentary way to identify requirements
which cannot be realized. DSDM and ASD
additionally employ prototyping.
1.2.2. Requirements cannot be realized within the
given Schedule and Budget: The short planning
horizon increases the precision of the plans.
However due to the unclearness in requirements
agile methods have difficulties to correctly estimate
the cost of individual requirements and the project as
a whole.
1.3. Factors Concerning the Organization:
1.3.1. Budget and Schedule Changes: Due to the
short planning horizon short term budget and
schedule are relatively precise. Because of unclear
requirements the correct estimation of budget and
schedule for the whole project, however, is very
difficult. Requirements changes therefore arise
because of wrong estimates.

3.2.3 Difficulties with Changing
Requirements

1. Additional Effort is generated:
1.1. Stakeholders have to be Assembled again in
Order to decide about the Acceptance of Changes:
No additional effort is generated, because agile
methods already assemble the stakeholders at the
end of iterations. XP, Crystal and DSDM even
involve the stakeholders continuously.
1.2. Artifacts have to be adjusted:
1.2.1. Identify Artifacts that have to be adjusted:
Agile methods create only as much artifacts as
deemed absolutely necessary. However as Leite
(2001) points out for the example of XP, they don’t
provide traceability between the requirements and
the parts of the artifacts that depend on them.
1.2.2. Modify, discard or add Artifacts: The
associated effort is small in comparison to other
methods, because agile methods create fewer
artifacts.

1.2.3. Artifacts should be Extendable und
Modifiable: Changes are everyday business for agile
methods. Therefore artifacts are designed in a way
that makes such changes easy. In addition only few
artifacts are created, in order to cut the effort in
updating multiple artifacts. XP and DSDM stress the
importance of regression tests for reducing the effort
necessary for incorporating changes.
1.2.4. Adjustments are Often Complicated and
Error-prone: Artifacts are held simple and easy to
change. Therefore agile methods mitigate this
problem. XP and DSDM furthermore employ
regression tests. XP also demands constant
refactoring to improve the structure of the code and
prevent it from decaying to the point adjustments get
too complicated.
1.3. Initial Effort may be wasted when Requirements
Change: Agile methods invest less initial effort in
comparison to other methods. Therefore, if
requirements change less, effort is wasted.
1.4. Requirements Changes may get denied because
People Shy the Additional Effort: Changes are
expected to happen and welcomed. Therefore it is
not probable that teams using agile methods shy the
effort to include changes.
2. Not all Conflicts can be detected at Project
Beginning: Agile methods don’t perform a conflict
analysis at the beginning of the project. This is a
problem they encounter even without changes.
3. Not Documented thoughts about Requirements
are no Longer Present but needed when
Requirements Change: Agile methods create very
little documentation. Therefore this is a widespread
problem. It is remedied a bit because stakeholders
are involved throughout the project and still can be
asked about their thoughts on requirements changes.
4. Project Plan has to be adjusted: Agile methods
only put up detailed plans for the immediate future,
so that less replanning is necessary. In addition the
iterations make adjustments to plans easy.
4.1. Estimates have to be updated: XP, Scrum and
DSDM update the estimates regularly. Crystal and
ASD don’t define which estimates are made and
when they are updated.
4.2. Content of Releases and Iterations can Change:
The short planning horizon minimizes the effort
necessary to adjust the content of releases and
iterations.
4.3. Schedule and Budget can Change: Due to the
use of time boxing and fix team sizes the schedule
and budget for a given iteration practically don’t
change. Agile methods have problems with long
term planning though. They have great difficulty in
fixing schedule and budget for the whole project.
5. Problems with costs arise:
5.1. System Costs are not known at Project
Beginning: The requirements are not completely

AGILE METHODS AND REQUIREMENTS ENGINEERING IN CHANGE INTENSIVE PROJECTS

85

understood at the beginning and no thorough
analysis of the requirements is made. Agile methods
can’t correctly estimate the system cost at project
beginning. (Tomayko, 2002).
5.2. Changes possibly cannot be realized within the
Budget: The use of iterative planning allows for a
flexible extension of the project if the budget can be
increased to realize all the changes. XP, Scrum and
DSDM make use of priorities to ensure that the most
important requirements changes will be realized.
5.3. Late changes can be particularly costly: If the
costs of late changes cannot effectively be controlled
then agile methods cannot successfully be applied.

Only XP offers concrete methods to counteract
increasing costs: Object orientation, simple design,
automated tests and refactoring.

3.3 Summary of the Findings

In Table 1, Table 2 and Table 3 we rate how the
agile methods perform based on our findings. We
differentiate three ratings: good coverage of the
criterion (+), medium coverage (0) and bad coverage
(-).

Table 1: Ratings of agile methods regarding their ability to reach general goals of requirements engineering.

 XP Scrum Crystal DSDM ASD
1. Discover the goals which are pursued by developing the system + + + + +
1.1. Discover all stakeholders’ needs 0 + 0 + 0
1.1.1. Define requirements necessary to meet the stakeholders’ needs + + + + +
1.1.2.. Identify rationale for requirements - - - - -
1.1.3. Consider changes to the stakeholders’ needs + + + + +
1.2. Gain a broad understanding of the domain, the organization and the
business processes

+ + + + +

1.3. Understand the system’s impact on business processes + + + + +
1.4. Assure the system’s profitability + + 0 0 0
1.4.1. Determine return on investment of the system and individual
requirements

0 0 - - -

1.5. Define system scope - - - - -
2. Achieve the most important goals which are pursued by developing the
system

+ + + + +

2.1. Select the necessary requirements to achieve the most important goals + + - - 0
2.2. Realize the necessary requirements + - - - -
2.2.1. Consider only viable requirements
2.2.1.1. Understand which requirements cannot be realized 0 0 - + 0
2.2.1.1.1. Resolve conflicts between requirements favouring high-priority
requirements

- - - - -

2.2.1.1.1.1. Determine which requirements take precedence in the
development

+ + - - 0

2.2.1.1.2. Check budget 0 0 0 0 0
2.2.1.1.3. Check schedule 0 0 0 0 0
2.2.1.2. Communicate the feasibility of the requirements to the stakeholders + + + + +
2.2.2. Communicate requirements to the developers + + + + +
2.2.2.1. Assure that the requirements are comprehensible for the
developers

+ + 0 0 0

2.2.2.2. Define the requirements correctly 0 - - - 0
2.3. Assure compliance with requirements + + + + 0
2.3.1. Identify development risks and provide preventive actions and
contingency plans

- - - - -

2.3.2. Communicate possible problems and risks in the development to the
stakeholders

+ 0 0 + 0

3. Enhance the quality of the product + 0 + + 0
3.1. Assure quality in the process 0 0 - - -

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

86

Table 2: Ratings of agile methods regarding their ability to counteract reasons for intensive change of requirements.

 XP Scrum Crystal DSDM ASD
1. Project internal factors
1.1. Factors concerning the understanding of the requirements - - - - -
1.1.1. Requirements were misunderstood at the beginning of the
project

- - - - -

1.1.2. Conflicts between requirements are found - - - - -
1.1.3. Priorities of requirements change - - - - -
1.1.4. New stakeholders are introduced - - - + -
1.2. Factors concerning the realization of the requirements
1.2.1. Requirements cannot be realized 0 - - 0 0
1.2.2. Requirements cannot be realized within the given
schedule and budget

- - - - -

1.3. Factors concerning the organization
1.3.1. Budget and schedule changes - - - - -

Table 3: Ratings of agile methods regarding their ability to deal with difficulties because of changing requirements.

 XP Scrum Crystal DSDM ASD
1. Additional effort is generated
1.1. Stakeholders have to be assembled again in order to decide
about the acceptance of changes

+ + + + +

1.2. Artifacts have to be adjusted
1.2.1. Identify artifacts that have to be adjusted 0 0 0 0 0
1.2.2. Modify, discard or add artifacts + + + + +
1.2.3. Artifacts should be extendable und modifiable + + + + +
1.2.4. Adjustments are often complicated and error-prone + 0 0 0 0
1.3. Initial effort may be wasted when requirements change + + + + +
1.4. Requirements changes may get denied because people shy
the additional effort

+ + + + +

2. Not all conflicts can be detected at project beginning - - - - -
3. Not documented thoughts about requirements are no longer
present but needed when requirements change

0 0 0 0 0

4. Project plan has to be adjusted + + + + +
4.1. Estimates have to be updated 0 0 - 0 -
4.2. Content of releases and iterations can change + + + + +
4.3. Schedule and budget can change - - - - -
5. Problems with costs arise
5.1. System costs are not known at project beginning - - - - -
5.2. Changes possibly cannot be realized within the budget + + 0 + 0
5.3. Late changes can be particularly costly + - - - -

Agile methods offer a different approach to

requirements than traditional methods. They make
use of frequent or continuous stakeholder
involvement and intensive feedback and profit from
learning processes to iteratively elicit, analyze and
validate requirements. Instead of putting up detailed
plans at the beginning of the project they plan
iteratively and only for the immediate future.

While fulfilling many of the goals of requirements
engineering their approach poses several problems.
First of all some agile methods fail to recognize that
besides customers and users there are other classes of
stakeholders that also have to be considered. DSDM

and Scrum however prove that even in an agile
environment different stakeholder classes can be
considered. The main problem of agile methods
regarding requirements is that they gain only little
understanding about the requirements at project
beginning. Hence they can’t define the system scope,
conflicts can’t be detected, estimates are likely to be
wrong, many risks remain unknown and the correct
planning of schedule and budget for the project is
very difficult. All these factors contribute to later
changes in the project. Agile methods acknowledge
the fact that there always are changes that can’t be
prevented. Therefore they postpone many necessary

AGILE METHODS AND REQUIREMENTS ENGINEERING IN CHANGE INTENSIVE PROJECTS

87

requirements engineering activities and thus cause
additional changes. In our opinion they in fact are
able to cope with changes reasonably well, so theirs is
a valid approach. However they rely on two very
critical points. On the one hand their success is
dependent on their ability to effectively involve the
stakeholders throughout the project, which isn’t
always possible. On the other hand they rely on
changes not getting too costly. Changes that have
great impact on the system can be very costly and can
prove to be critical for the project, as is shown by
Boehm (1981).

We suggest differentiating between different
types of requirements, rating them according to their
probability to change and their impact on the system.
We think it would be advantageous for agile
methods to follow a higher ceremony traditional
requirements approach for requirements that are not
likely to change and those who have great impact on
the system while following their lightweight
approach for other requirements. However this is
just an assumption and remains to be proven
empirically.

One still has to remember that another project
characteristic that is often found in an agile
environment is strong time constraints. The effort
invested in requirements activities has to be
balanced with their benefit. Though, if some changes
in requirements can effectively be prevented by a
little effort early in the project it may well be worth
it.

4 CONCLUSIONS

Our aim in this paper was to show whether and how
agile methods deal with requirements related issues
in a change intensive environment. We showed that
agile methods provide a valid approach but we also
identified several weaknesses. Our work gives an
overview over the problems agile methods have
concerning requirements and can serve as a basis for
further discussion. However we performed our
analysis only qualitatively. Studies based on
empirical data are necessary to solidify our findings.
Furthermore, solutions for the identified problems
need to be found and empirically evaluated.

ACKNOWLEDGEMENTS

This work has been supported by the German
ministry of education and research (BMBF) within
the project “Interorganisationale Softwareentwicklung

unter dem Aspekt der Wandlungsfähigkeit und der
Wiederverwendung” (IOSE-W2), grant no. 01/SF 03.

REFERENCES

Beck, K., 2000. Extreme Programming Explained –
Embrace Change, Addison-Wesley, Boston.

Beck, K., Fowler, M., 2001. Planning Extreme
Programming, Addison-Wesley, Boston.

Boehm, B.W., 1981. Software Engineering Economics,
Prentice-Hall, Englewood Cliffs.

Cockburn, A., Highsmith, J.A., 2001. Agile Software
Development, Prentice-Hall, Englewood Cliffs.

Cockburn, A., 2002. Agile Software Development,
Addison-Wesley, Boston.

Eberlein, A., Leite, J.C.S. do Prado, 2002. Agile
Requirements Definition – A View from
Requirements Engineering. In TCRE’02, International
Workshop on Time-Constrained Requirements
Engineering (TCRE'02).

Elssamadisy, A., 2001. XP on a Large Project – A
Developer’s View. In Proceedings of the XP Universe
Conference. Object Mentor Inc.

Highsmith, J.A., 2000. Adaptive Software Development –
A Collaborative Approach to Managing Complex
Systems, Dorset House Publishing, New York.

Leite, J.C.S. do Prado, 2001. Extreme Requirements. In
Jornadas de Ingenieria de Requisitos Aplicadas.

Paetsch, F., Eberlein, A., Maurer, F., 2003. Requirements
Engineering and Agile Software Development. In
Proceedings of the International Workshop on
Enabling Technologies – Infrastructure for
Collbaborative Enterprises.

Schwaber, K., 1995. Scrum Development Process. In
OOPSLA’95, Workshop on Business Object Design
and Implementation. Springer Verlag.

Schwaber, K., 2004. Agile Project Management with
Scrum, Microsoft Press, Redmond.

Schwaber, K., Beedle, M., 2002. Agile Software
Development with Scrum, Prentice-Hall, Upper Saddle
River.

Standish Group, 1995. The Chaos Report. http://
www.standishgroup.com.

Stapleton, J., 1997. Dynamic Systems Development
Method – The Method in Practice, Addison-Wesley,
Boston.

Tomayko, J.E., 2002. Engineering of Unstable
Requirements Using Agile Methods. In TCRE’02,
International Workshop on Time-Constrained
Requirements Engineering (TCRE'02).

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

88

