
VISUAL COMPOSITION OF COMPONENT SYSTEMS

Hans Albrecht Schmid
University of Applied Sciences Konstanz, Brauneggerstr. 55, Konstanz, Germany

Christian Martin Baranowski
SEITENBAU GmbH, Robert-Gerwig-Str. 10-12, Konstanz, Germany

Keywords: Visual component composition, components, component language, component fragment, distributed
component systems.

Abstract: Component composition has been remaining over a decade a (design) concept, but not found its way into
practical programming which is usually still done in the classical reference-based way. A new generation of
component languages like ArchJava has pushed forwards composition of subcomponents. But these
languages fall back into class-based programming of methods when Java program code is to be written e.g.
as a filter among subcomponents. In contrast, the CompJava Designer, a graphical editor, allows
constructing relatively complex and distributed component systems for practical applications by a seamless
visual composition process. It uses extended UML 2 component diagrams that allow visualizing the
compositional structure of components in order to better understand and communicate it. The designer is
based on the component language CompJava that has introduced component fragments and plugs as means
for composing a component both from subcomponents and structured units of code.

1 INTRODUCTION

Component composition (C. Szyperski, 1997) is less
error-prone than class-based programming with
reference handling and provides for a much clearer
and cleaner architecture. However, it has been for a
decade a concept that supplements classical
reference-based programming, but does not replace
it to a larger extent.

Classical component models, like CORBA
(K.Seetharaman, 1998), Enterprise JavaBeans (Sun
Microsystems, 2001), Corba Component Model, and
DCOM (C. Szyperski, 1997), define, with a few
exceptions for special cases, only provided, but no
required interfaces. Thus, the composition of
components is just a conceptual process that must be
realized by handling component resp. class
references.

After the development of mathematically
oriented composition-calculi, there have been efforts
to make them available for a practical application
(J.C.Seco and L.Caires, 2000). A new generation of
component languages based on that approach, like
ArchJava (J. Aldrich et al, 2002), and ACOEL
(V.C.Sreedhar, 2002), defines also required

interfaces. A connect-statement allows carrying out
composition of subcomponents in an elegant way.
But these languages fall back into class-based
programming with reference handling when
component code is to be supplied e.g. as a filter
among subcomponents. As a consequence, design on
a conceptual level is done by composition; but its
realization is done to quite a large extent in the same
way as class-based programming, as program
examples from ArchJava (J. Aldrich et al, 2002)
show. Another weakness is that these languages do
neither provide for a distribution model nor services
so that they are not apt to realize distributed systems.

To push forward composition was one of the
objectives we had in developing the component
language CompJava (H.A.Schmid, 2007) based on
concepts from the new component language
generation. It allows for composing a component
both from subcomponents and structured units of
code, introducing for that purpose component
fragments and plugs.

Additionally, it embodies also a distribution
model for the seamless composition of a system
from local components, distributed components and
services.

131
Albrecht Schmid H. and Martin Baranowski C. (2008).
VISUAL COMPOSITION OF COMPONENT SYSTEMS.
In Proceedings of the Third International Conference on Evaluation of Novel Approaches to Software Engineering, pages 131-139
DOI: 10.5220/0001764701310139
Copyright c© SciTePress

Figure 1: CompJava Designer showing of the composition of the MainWindow component from subcomponents and
component fragments.

During the development and work with
CompJava, we noticed that we usually visualized the
compositional structure of non-trivial components in
order to to better understand and communicate it.
We have put the visualization on a sound base by
defining CompJava diagrams, which extend UML 2
component diagrams (OMG, 2007) with component
fragments, plugs and the associated “wiring“. Their
transformation into the CompJava language is
defined precisely.

A graphical editor, called CompJava Designer,
was the last step towards a visual composition of
components. We show in this paper that relatively
complex distributed component systems may be
constructed seamlessly by visual composition,
without referring to the textual form of the
component language. The CompJava Designer was
constructed as an Eclipse plug-in from the model-
driven framework GMF, which is also an Eclipse-
plug-in. Let us mention shortly without going into
detail that the CompJava Designer is generated from
the same meta-model that is used by the CompJava
compiler in order to represent the result of
syntactical analysis for code generation.

This paper presupposes some basic familiarity
with components and UML 2 component diagrams.
Its organization is the following. Section 2 presents
the CompJava Designer with its different kinds of
diagrams and the composition process. Section 3

gives a rough overview about the (textual)
component language as a background for the visual
design. Section 4 presents a non-trivial example for
the composition of a distributed chat application
system. Section 5 discusses related work.

2 COMPJAVA DESIGNER

CompJava is a distributed Java-based component
language. The first non-distributed version has been
available since winter 2003/2004, three more
compiler and language versions followed. The
current version with distributed components is
integrated in Eclipse and available on
www.compjava.org.

CompJava allows composing a component from
subcomponents, which are instances of other
components, and from the newly introduced
component fragments. It defines component types,
components and component instances, similarly as
Java defines interfaces, classes and class instances.
Each component has a component type. One may
create any number of component instances from a
component.

The CompJava Designer (used to create all
presented diagrams except for Figure 2) is a
graphical design tool available as Eclipse-plug-in. It

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

132

allows the visual composition of components by
constructing CompJava diagrams and generating
code from them. For a graphical representation of
component composition, we use CompJava
component diagrams which are UML 2 component
diagrams (OMG, 2007) enriched with component
fragments and plugs.

Component fragments structure the component
code so that a component has (practically) no
methods. A component fragment may be used as a
kind of filter for subcomponents or for building a
component directly from Java code. A plug is used
as a connection point for the “wiring“.

We use the composition of a chat client of an
instant messaging system as a running example.
Instant messaging is a distributed application formed
from services, distributed components and local
components. Here we present mainly local aspects.
The instant messaging system was developed by a
student without prior knowledge of CompJava as a
diploma thesis (M. Klenk, 2002).

2.1 Example

The CompJava Designer (see Figure 1) displays: a
CompJava diagram in its main window; a palette
with tools for constructing CompJava diagrams; and
(bottom) a textual editor for properties of CompJava
diagram objects. The diagram is a CompJava
composition design diagram that shows the design of
the composition of the MainWindow component of
the chat client.

MainWindow is a component of component type
MainWindowType (analogous to class and interface).
It presents in encapsulated windows all information
about chats and users except for the exchanged
messages. MainWindow receives new information
from the server about events via the provided
MainWinEvent port, and it sends off information
about events from its user via the required
MainWinInput port. It is composed from
subcomponents with the types
MainWindowGUIType, DiscussionWindow-Type,
LoginWindowType, and ConfirmLoginWindowType,
and from two component fragments implementing
the interface MainWinEvent res. InnerEvent.

The inside of the ports of a parent component
like MainWindow may be “wired“ to ports of
subcomponents or to component fragments like that
implementing MainWinEvent. Ports of
subcomponents may be “wired“ to ports of other
subcomponents, like the required ports of
MainWindowGUIType to provided ports of
DiscussionWindowType and LoginWindowType, or

via the intermediary of a plug (depicted by a
diamond) like pInnerEvent of type InnerEvent (see
middle right) to a component fragment like the one
implementing the interface InnerEvent.

The “wiring“, depicted by arrows, which
represents the connect- and attach-statements of the
CompJava language (compare 3.2), is subject to
consistency constraints. The conditions to be
fulfilled for composing components are: the port-
matching constraint is that a provided (port)
interface extends (incl. equals) a required (port)
interface; and the n:1 multiplicity constraint is that a
required port is connected or attached to only one
provided port res. plug, and a plug is attached to
only one component fragment or provided port.
These constraints are checked in real-time by the
editor.

2.2 CompJava Diagrams

The CompJava Designer allows constructing four
different kinds of CompJava diagrams:
• A Port Interface Diagram defines port

interfaces in the form of Java interfaces (in
UML or text form).

• A Component Type Diagram defines a
component type specifying all port interfaces by
which a component of that type may collaborate
with the outside. It specifies also the
distribution-related property whether the ports
may be invoked remotely (via RMI/Corba) or
may define services.

• A Composition Design Diagram shows the
design of the composition of a component (see
Figure 1). It specifies: the component type (but
not name) of subcomponents; component
fragments; the wiring; and also whether the
implementation of the component may be
distributed, i.e. it may have remote
subcomponents. The design of a component
fragment specifies the interface it implements; it
specifies indirectly (via the wiring) the plugs or
ports from which it may invoke methods

• A Composition Implementation Diagram
shows the implementation of the composition of
a component. It is constructed from a
composition design diagram by selecting the
subcomponents, which each must have the
specified component type; and by implementing
the specified component fragments, and
possibly inner classes. A component fragment is
implemented either by an anonymous class, an
inner class or as a method block (the latter is
depicted like an anonymous class without class

VISUAL COMPOSITION OF COMPONENT SYSTEMS

133

head) (for a more details see (H.A.Schmid,
2007)). One implements a component fragment
in an automatically opened Java editor window,
which provides the methods implementing the
component fragment interface, with empty
implementations to be filled out.

In contrast to UML2 component diagrams, we
distinguish between composition design and
implementation diagrams since
1. in general, one should distinguish design and

implementation
2. when designing the composition of a component,

only the component types of the subcomponents,
but not their implementation should have to be
known.

Once the implementation of a composition is
finished, one may start automatic code generation
and compilation using under the cover the
CompJava compiler. For designing and
implementing the composition of static component
architectures, there is usually no programming of
CompJava code and no separate programming of
Java code required.

2.3 Composition Process

Component composition is a fully hierarchic process
so that components may be nested to an arbitrary
level. The intuitive diagram of Figure 2 kind of
collapses the formal diagrams (which contain only
one nesting level) of Figures 3, 4 and 5.

Figure 2: The figure shows component composition for
only one nesting level.

When composition was a strict top-down process,
one would perform the following steps one after
another:
1. specifying the types of the highest-level

component like MainWindowType, and of its
subcomponents like MainWindowGUIType and
DiscussionWindowType;

2. specifying port interfaces like MainWinEvent
and MainWinInput;

3. designing the composition of the parent
component like MainWindow from
subcomponents of a given type like like
MainWindowGUIType and DiscussionWindow-
Type and from component fragment
specifications, and design the “wiring”;

4. implementing the composition.
However, component composition is in reality

not a strict top-down process, but re-iterates the
different process steps. It may be necessary to
specify or modify port interfaces and component
types when designing the composition or even
implementing the composition of a component.
Therefore, the CompJava Designer allows
specifying or modifying port interface diagrams or
component type diagrams together with composition
design diagrams and composition implementation
diagrams.

Section 4 describes the composition design of the
client component of the chat application, which
forms a relatively complex real-world example.

3 COMPJAVA

This section gives a rough overview about the
(textual) component language as a background for
the visual design. A systematical introduction and
definition of the local language constructs is given in
(H.A.Schmid, 2007).

3.1 Component Type

Component types allow defining e.g. product line
architectures or component frameworks, and they
allow separating the design of component
composition from its implementation. That means
the composition of a component from
subcomponents may be designed with the
subcomponents types, prior to the design of the
subcomponents, as section 2 has shown.
For example, consider the type MainWindowType
(of a MainWindow component):

interface MainWinEvent { ...};
interface MainWinInput { ...};

component type MainWindowType {
 port eventIn provides MainWinEvent;
 port eventOut requires MainWinInput;
}

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

134

A component type specifies the ports via which a
component may collaborate with other components,
using Java interfaces as port interfaces. E.g. the
MainWindowType defines the port eventIn with the
provided interface MainWinEvent and the port
eventOut with the required interface MainWinInput.
CompJava allows declaring also event ports and port
arrays.

A remotable component type, which is denoted
by the modifier “remotable”, imposes the
remotability restriction on the (local) port interfaces:
the provided and required interfaces must expose
only types with a copy-semantics, or references to
distributed components. A service component type
imposes the restriction that all port interfaces must
be service interfaces. A service interface is
constrained to exposing only Java primitive types or
serializable types that are formed essentially by data.

3.2 Components

A component has the component type indicated by
the ofType-clause; it implements the provided
interfaces, possibly using operations of required
interfaces. A distributed component, like
ChatServer, is composed from subcomponents,
which may be allocated remotely from the
component. This implies that the subcomponents
have remotable types (or service types).

We use the MainWindow component (see visual
design in section 2) to illustrate some main
constructs of CompJava. Example I presents
schematically the code of the MainWindow
component.
Example I. Component MainWindow with
subcomponents MainWindowGUI, Discussion-
Window, LoginWindow and ConfirmLoginWindow,
component fragments, plugs and “wiring“

component MainWindow ofType MainWindowType {
//port eventIn provides MainWinEvent;
// port eventOut requires MainWinInput;
MainWindowGUIType m =

new MainWindowGUI(); *
DiscussionWindowType d =

new DiscussionWindow(); *
LoginWindowType l =

new LoginWindow(); *
ConfirmLoginWindowType cl =

new ConfirmLoginWindow(); *
plug<MainWin> pMainWin; **
plug<ConfirmLoginWin> pConfWin; **
plug<InnerEvent> pInnerEvent; **
attach This.eventIn to new MainWinEvent { ***

...
}

attach This.pInnerEvent to new InnerEvent { ***
...

}
connect This.pMainWin to m.mainWinIn;

connect m.loginOut to l.loginIn; *****
connect m.discOut to d.discIn; *****
connect m.mainEventOut to This.pInnerEvent;

connect This.pConfWin to cl.confIn; ****
connect cl.confLogEventOut to This.pInnerEvent;

connect d.discEventOut to This.pInnerEvent;

connect l.logEventOut to This.pInnerEvent; ****

}
At component initialization time, the

MainWindow creates the subcomponents
MainWindowGUI, DiscussionWindow,
LoginWindow and ConfirmLogin-Window (as
indicated by a *).

It declares the plugs pMainWin, pConfWin, and
pInnerEvent (as indicated by **). A plug is required
as intermediary to connect a port of a subcomponent
to a component fragment that implements the plugs
interface. A plug has an (interface) type; it is a kind
of a light-weight port for use within a component,
passing invocations from a subcomponent to a
component fragment or vice versa.

Further, MainWindow creates the component
fragment implementing the MainWinEvent interface
in the form of an anonymous class, attaching it to the
inside ot the eventIn port with the type
MainWinEvent of the component instance (denoted
by “This“), and the one implementing the
InnerEvent interface attaching it to the plug
pInnerEvent of type InnerEvent (as indicated by
***).
A component fragment implements an interface and
is either an anonymous class, an inner class (both as
defined by Java) or a method block (defined by
CompJava as a block containing only methods). An
attach-statement attaches the inside of a provided
port or a plug to a newly created component
fragment.

Further, MainWindow connects the ports of
subcomponents to plugs (as indicated by ****) or
among themselves (as indicated by *****) or with
the inside of a parent component port (not shown).

A connect-statement may connect a required port
of a subcomponent (instance), like loginOu of
MainWindowGUI m, to a provided port of a
subcomponent (instance), like loginIn of
LoginWindow l. The compiler checks all consistency
constraints. A connect-statement may also connect a
port of a subcomponent with the inside of a

VISUAL COMPOSITION OF COMPONENT SYSTEMS

135

matching port of the (parent) component or a
matching plug.

4 COMPOSING A CHAT
APPLICATION

This section describes the design of the chat client of
the running example. Apart from some coding
prototypes, the design was done as described in
section 2.3 by composing components from
subcomponents and component fragments,
specifying the component types with the port types,
the main responsibilities and the required wiring.
The CompJava Designer was still in a prototype
stage; so we had to simulate partially its work
constructing CompJava diagrams with other tools
and transforming them manually into code. A
current larger project is using the CompJava
Designer; first experiences are good.

4.1 Visual Design of Chat Application

The outmost component of the chat application has
the ChatApplType. We specify with the CompJava
Designer in a component type diagram that
ChatApplType defines no ports. In the sequel, we
describe the design process without referring to the
use of CompJava Designer.

We design the ChatAppl component (see Figure
3) to be composed from the service subcomponents
(more precisely: instances of them) with the type
ChatClientType and ChatServerType. When we
specify these two types, we design the basic working
mode of the system. We decide that the chat client
has only required ports, and correspondingly the
chat server only provided ports. Consequently, the
client polls the server for new messages and other
information from other clients.

Figure 3: Design of the ChatAppl component composed
from service components with ChatClientType and
ChatServerType.

The next decision is whether client and server
have each one port or two ports. It goes together

with the specification of the port interfaces. It may
be required to look deeper into the design of the
client and server component in order to make a
sound decision.
We have defined two ports: a port with the interface
ChatClientEvent that is used (seen from the client
side) to send off messages or requests entered by the
client user, and another port with the interface
PollingEventRequest which is used to poll for new
messages for the chats a user participates in, and
other information.

After specification of the types ChatClientType
and ChatServerType, we design the ChatAppl
component as Figure 3 shows, connecting the
matching ports of the ChatClientType and
ChatServerType.

4.2 Visual Design of Chat Client

The ChatClient collaborates remotely with the
ChatServer over a Web service. It invokes the
ChatClientEvent service for sending messages or
requests entered by the user, and the
PollingEventRequest service for polling for events
of other users and new messages of the chats a user
participates in.

The ChatClient component has the
ChatClientType which defines its ports. It has a non-
distributed implementation, i.e. it is composed from
subcomponents allocated on the same network node.
Each of its subcomponents is designed only for local
collaboration, which allows using the more efficient
reference semantics. This is expressed visually by
the property non-distributed of the ChatClient
component and by the property non-remotable of its
subcomponent types. Both properties are the default
in a CompJava diagram.

The ChatClient (see Figure 4) displays a main
window with sub-windows and a conference
window for each chat or conference, and it organizes
sending and receiving messages and events to and
from the server. It is composed from window-related
subcomponents with types MainWindowType and
ChatWindowController-Type, and from messaging-
related subcomponents with types EventHandler
Type, EventQueueType and PollingHandlerType.

A component of MainWindowType displays the
main window. As described, it receives new
information about events from other clients via the
provided MainWinEvent port, and it sends off
information about events from its user generated in
own threads via the required MainWinInput port. A
component of ChatWindowControllerType displays
the chat windows and may create and delete them,

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

136

receiving and sending off new chat messages and
user events via the ChatWinEvent res. ChatWinInput
port.

A component of EventHandlerType receives
(from the windows) chat messages via its provided
ChatWinInput port and user events via the same and
the MainWinInput port, both in the form of operation
invocations originating from different window
threads. After adding mainly some administrative
information, EventHandlerType sends user messages
and events to the chat server via the required
ChatClientEvent port.

A component of PollingHandlerType has an own
thread; it polls for messages and events from the
chat server via the required PollingEventRequest
port and stores them in the EventQueue.
EventHandlerType fetches the incoming messages
and events via the eventIn port from the
EventQueueType in an own thread and passes them
after removing some administration information to
the respective window. The thread is in a wait-state
when the EventQueue is empty. EventQueueType
provides each a port for storing and fetching
messages and events.

Figure 4: ChatClient composed from MainWindow,
EventHandler, ChatWindowController, Event- Queue, and
PollingHandler.

The PollingHandler, EventQueue, and
EventHandler components are composed from Java
code in the form of component fragments, whereas
MainWindow and ChatWindowController are
composed from subcomponents and component
fragments.

4.3 Visual Design of Dynamic
Component Architectures

The ChatWindowController is a medium to low level
component with a dynamic component architecture. It
is composed from two component fragments and a
variable number of subcomponents. It displays a chat
window for each chat, creating res. deleting chat
windows dynamically upon a corresponding user
interaction or upon receiving a corresponding user
event. It is composed from a variable number of
subcomponents of ChatWindowType, realized by a
ChatWindowType array, and from two component
fragments that serve as a kind of filter between the
ports of ChatWindowController and those of
ChatWindowType.

CompJava allows for dynamic architectures
which require a creation and connection of
components not only at component initialization
time, but also dynamically during the execution of
methods (see (H.A.Schmid, 2007) for details). It
allows declaring an array of component type, like that
of ChatWindowType, and creating or deleting
subcomponent instances dynamically. It allows
declaring port arrays (not shown in the example) and
plug arrays. Each plug of the plug array
pWinControl of type WinControl is connected with
the winEventIn port of the corresponding
ChatWindowType instance, and each winEventOut
port is connected to the plug pWinEvent of type
WinEvent.

The component fragment on top of Figure 5
implements the operations defined by the
ChatWinEvent interface, which are invoked via the
eventIn port. It passes via the pWinControl plug new
messages to the subcomponents of
ChatWindowType, and opens and closes an instance
of them when a user requires in the MainWindow. It
implements a simple administration of
ChatWindowType’d component instances in order to
reuse a closed instance when a new one is to be
opened.

The subcomponent of ChatWindowType contains
a chat window built with the Swing library that
displays the messages, and allows to type in new
messages and to close a chat by the owner.

The component fragment on bottom of Figure 5,
implements the WinEvent operations invoked from
the winEventOut port of the ChatWindowType
subcomponents via the pWinEvent plug. The
interface WinEvent defines two operations, one
passing a new message entered in a chat window of
ChatWindowType, and the other one removing a
chat window when a chat is closed by the owner.
Note that the CompJava Designer can generate for

VISUAL COMPOSITION OF COMPONENT SYSTEMS

137

the dynamic creation of subcomponents and the
connection of their ports only code samples but not
the code. The reason is that the creation may be done
at run-time e.g. in the methods of component
fragments.

5 RELATED WORK

Component Languages. CompJava is based on and
improves on local component language concepts
from ArchJava (J. Aldrich et al, 2002), ComponentJ
(J.C.Seco and L.Caires, 2000) and ACOEL
(V.C.Sreedhar, 2002). A version of ArchJava (J.
Aldrich et al, 2003) extends the syntax of connect
patterns and expressions, so that a user may realize
remote collaborations among components with user-
defined connector types. But this is quite complex
and may have the consequence that either structural
distribution problems are detected only at run-time,
or that a component may type-check correctly with
one kind of connector but not with another one.

Figure 5: CompJava component diagram for
ChatWindowController composed from an array of
ChatWindow subcomponents, component fragments and
plugs.

Component Models. The new generation of
component languages connects required and
provided ports; it does not require or allow the
handling of component references like classical

component models: CORBA (K.Seetharaman,
1998), Enterprise JavaBeans (Sun Microsystems,
2001), Corba Component Model, DCOM (C.
Szyperski, 1997) and Dotnet. (W. Emmerich, 2002)
gives an overview on distributed component
technologies and their software engineering
implications. KOALA, a component technology for
resource-constrained environments like TVs (R.van
Ommering et al, 2000) is a local technology though
distribution via middleware may be embedded in it.

Connectors and Architecture Description
Languages (ADL). ADLs describe primarily local
systems as the ADL classification framework shows;
it does not have any distribution-related item as an
architecture modeling feature (N.Medvidovic and
R.P.Taylor). But e.g. (N. .Medvidovic et al, 1999)
uses connectors to encapsulate middleware and
provide remote access among components
(E.Dashofy et al, 1999).

The ADL classification framework distinguishes
connectors that are modeled explicitly as first class
entities, and implicitly modeled ones. CompJava has
the latter ones, parameterized by the interface type.

6 CONCLUSIONS

The graphical editor CompJava Designer allows a
seamless visual design and implementation of the
composition of relatively complex component
systems. It uses CompJava diagrams, an extension of
UML 2 component diagrams, which have proven
very valuable in order to visualize the compositional
structure of components for a better understanding
and communication. The transformation of a
CompJava component diagram into the CompJava
language is straightforward and precisely defined for
static architectures.

The CompJava Designer is based on the
component language CompJava, which pushes
composition of components a further step by
introducing component fragments that may
participate via plugs in the composition process. It
generates automatically the CompJava and Java
code.

The CompJava Designer and CompJava
component diagrams have proven their value and
practical applicability in relatively complex projects,
one being a chat application (M. Klenk, 2002),
another one an Internet component framework for
card games with dynamically attachable new games.
The CompJava Designer has been made available
recently; our first experiences are very encouraging.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

138

ACKNOWLEDGEMENTS

Our thanks go to Michael Klenk for the design,
implementation, and test of the chat application; to
Tobias Seckinger and Reiner Weinhold for
cooperating in the development of the CompJava
Designer; and to the Ministerium für Wissenschaft
und Forschung, Baden-Württemberg, for a partial
project support.

REFERENCES

J. Aldrich, C. Chambers, D. Notkin, 2002. Connecting
Software Architecture to Implementation. Procs ICSE.

J. Aldrich, C. Chambers, D. Notkin 2002. Architectural
Reasoning in ArchJava. Procs ECCOP, Springer
LNCS.

J. Aldrich, V.Sazawal, C. Chambers, D. Notkin, 2003.
Language Support for Connector Abstractions. Procs
ECCOP, Springer LNCS.

Special section on CORBA, 1998. Communications of the
ACM. Vol.41, No10.

E.Dashofy, N.Medvidovic, R.P.Taylor, 1999. Using Off-
The-Shelf Middlewareto Implement Connectors in
Distributed Software Architectures. ICSE’99.

Sun Microsystems, 2001. Enterprise JavaBeans
Specification Version 2.0. www.java.sun.com.

W. Emmerich, 2002. Distributed Component Technologies
and their Software Engineering Implications. Procs.
ICSE.

M. Klenk, 2006. Entwurf einer Chatapplikation mit der
Komponentensprache CompJava. Diploma Thesis,
Faculty for Informatics, University of Applied
Sciences Konstanz.

R. Monson-Haefel, 2001. Enterprise JavaBeans, O'Reilly,
Sebastopol.

N. .Medvidovic, D.S.Rosenblum, R.P.Taylor, 1999. A
Language and Environment for Architecture-Based
Software Development and Evolution.

N.Medvidovic, R.P.Taylor. A Classification and
Comparison Framework for Software Architecture
Description Languages.

R.van Ommering, F.van der Linden, J.Kramer, J.Magee,
2000. The KOALA Component Model for Consumer
Electronics Software. IEEE Computer.

 R.van Ommering, 2002. Building Product Populations
with Software Component.

J.C.Seco, L.Caires, 2000. A Basic Model of Typed
Components. Proc. ECOOP, Springer LNCS.

K.Seetharaman, 1998. The CORBA Connection.
H.A.Schmid, M.Pfeifer, 2007: Engineering a Component

Language: CompJava. Selected Papers from ICSOFT
2006 Springer Lecture Notes.

V.C.Sreedhar, 2002. Mixin’ Up Components. Procs ICSE.
C. Szyperski, 1997: Component Software, Beyond Object-

Oriented Programming. Addison-Wesley.
OMG, 2007. Unified Modeling Language Specifications

2.1.1 UML component diagrams. www.uml.org

VISUAL COMPOSITION OF COMPONENT SYSTEMS

139

