
TYPED ABSTRACTIONS FOR CLIENT-SERVICE
INTERACTIONS IN OSGI

Sven De Labey and Eric Steegmans
University of Leuven, Department of Computer Science, 200A, Celestijnenlaan, B-3000 Leuven, Belgium

Keywords: Service-Oriented Computing, OSGi, Object-Oriented Programming, Language Extension.

Abstract: The Open Services Gateway initiative (OSGi) is a successful attempt to bridge the gap between Java and
Service Oriented Computing. OSGi provides an LDAP-based query language for fine-tuning service retrieval
and offers an eventing mechanism that signals changes to a service’s lifecyle to all clients depending on that
service. Nonetheless, a number of challenges remain unsolved. OSGi’s service query language, for instance,
bypasses important compile-time guarantees on the syntactical correctness of queries and the language works
only for properties that never change during the lifetime of a service. What programmers need, however, is a
statically type-checked, robust query language that takes into account dynamically evolving, volatile service
characteristics. A second problem is that the lifecycle management system requires programmers to write a
considerable amount of boilerplate logic for reacting to service events. This obfuscates the business logic,
which in turn decreases code comprehension and increases the odds for introducings bugs when implementing
client-service interactions.
This paper evaluates OSGi as a platform for programming client-service interactions in Java. After focus-
ing on a number of shortcomings of OSGi’s integrated service query language and its lifecycle management
system, we propose a solution based on a programming language extension. After the conceptual definition
of these new language concepts, we show how they can be transformed to regular Java code without losing
interoperability with the OSGi standard.

1 INTRODUCTION

Object-Oriented programming languages such as Java
are increasingly adopting the paradigm of Service-
Oriented Computing (Papazoglou, 2003). One of
the most popular SOA adopters is the Open Services
Gateway initiative (OSGi, 2006). OSGi technology
provides a service-oriented, component-based envi-
ronment and offers standardized ways to manage the
software lifecycle (Marples and Kriens, 2001). It sub-
scribes to thepublish-find-bindmodel by providing
a central service registrywhich is used by providers
to publish their services along with relevant meta-
data. Such registered services can then be retrieved
by clients by means of an LDAP-based search mech-
anism.

Next to providing functionality for dynamic ser-
vice registration and retrieval, OSGi also supportsdy-
namic reconfigurationof service architectures. Based
on an extension of the Event Listener pattern, the
OSGi middleware notifies service clients of impor-
tant lifecycle changes of the services they depend

on (OSGi, 2004). This is a key feature of OSGi
because service architectures are inherently dynamic
and volatile: services can be added, migrated, updated
and removed, but at least, clients are given a chance
to react to these events.

OSGI is a successful attempt to bridge the gap
between Object-Oriented Programming and Service-
Oriented Computing, but at the same time, it still
imposes a lot of responsibilities on the programmer
(Hall and Cervantes, 2004). Its integrated service
query language, for instance, is very weak and by-
passes compile-time guarantees on the syntactic cor-
rectness of a query. Also, the benefits of the lifecycle
notification system are overshadowed by the require-
ment to write a considerable amount of boilerplate
code, which bypasses compile-time guarantees in a
similar way.

In this paper, we evaluate the OSGi middleware as
a means for implementing client-service interactions
in Java-based service-oriented architectures. We iden-
tify a number of problems and we show how these
can be solved by ServiceJ, our Java extension that

157
De Labey S. and Steegmans E. (2008).
TYPED ABSTRACTIONS FOR CLIENT-SERVICE INTERACTIONS IN OSGI.
In Proceedings of the Third International Conference on Evaluation of Novel Approaches to Software Engineering, pages 157-166
DOI: 10.5220/0001766701570166
Copyright c© SciTePress



(1) increases the level of abstraction and (2) provides
compile-time guarantees on the correctness of service
queries. Next, we show that code for dealing with
lifecycle changes can be transparently injected dur-
ing the compilation from ServiceJ to Java, as such
freeing programmers from having to implement non-
functional boilerplate code.

This paper is structured as follows. Section 2 pro-
vides a comprehensive review of OSGi in the context
of client-service interactions. Based on problems de-
fined in that section, Section 3 proposes a Java exten-
sion, ServiceJ, that aims at solving the problems of
OSGi. The implementation of ServiceJ is described
in Section 4. Related work is presented in Section 5
and we conclude in Section 6.

2 EVALUATION OF
CLIENT-SERVICE
INTERACTIONS IN OSGI

OSGi is a dynamic module system for Java with built-
in support for dynamic reconfiguration of components
(called “bundles” in OSGi). Within the context of
this paper, the most interesting property of OSGi is
that it follows thepublish-find-bindmethodology of
Service-Oriented Computing. During the activation
of a bundle in an OSGi environment, the bundle gets
the opportunity (1) topublish its own services in the
registry and (2) tosearchthat registry for those ser-
vices on which the bundle itself depends. OSGi ex-
tends this dependency management mechanism by in-
cludingan eventing mechanismthat notifies bundles
of important changes to a service’s lifecycle. An of-
fice component depending on a printer service, for in-
stance, can create an event listener that notifies the
office component whenever a printer service is regis-
tered, modified, or unregistered.

This section provides a comprehensive review of
service interactions in OSGi. First, we explain and
evaluate how services can be registered along with
their metadata (Section 2.1). Then, we describe what
actions clients need to undertake before they can con-
sume these services (Section 2.2). Next, we evaluate
how clients are confronted with lifecycle changes that
occur at the services they depend on (Section 2.3). A
solution to the problems identified in this section is
proposed in further sections of this text.

2.1 Service Registration

A bundle uses the central service registry to register
the services it offers to other bundles. This registry

is accessed through a bundle’sbundle context, which
is configured by the OSGi runtime system on bundle
activation. During registration, theservice objectis
added to the registry, along with the relevant metadata
describing characteristics of that service. This meta-
data is represented as adictionary containing key-
value pairs.

Figure 1: Service Registration in OSGi.

Figure 1 shows how anOfficeComponent registers a
PrinterService (namedP1) along with a dictionary de-
scribing that the printer’s paper output expressed in
pages per minute equals 25 (ppm -> 25) and that it
provides color printing (color -> true). Listing
1 shows how this registration process can be pro-
grammed in OSGi by interacting with the bundle’s
BundleContext(represented bycontext).

1 //--1-- Specify metadata Properties
2 metadata = new Properties ();
3 metadata.put("ppm","25");
4 metadata.put("color","true");
5 //--2-- Register Service and Metadata
6 ServiceRegistration registration =
7 context.registerService(
8 PrinterServiceImpl.class.getName(),
9 printer,

10 metadata );

Listing 1: Registering services and metadata in OSGi.

Evaluation. Support for metadata is a major strength
of OSGi as it enables potential clients to fine-tune
their service selection strategy based on service-
specific characteristics. One major drawback, how-
ever, is that this query mechanism is poorly integrated
with Java, as there are nostatic guaranteeson the syn-
tactical correctness of the metadata. OSGi accepts
wrongly typed key-value pairs such as(ppm,-2) or
(ppm,true) even though these pairs do not make
sense. The Java compiler is unable to detect these
problems because metadata are added as strings.

A second problem is that clients mustknow the
names of the properties that were added during regis-
tration (such as “ppm”) as well as the domain of possi-
ble values for each property, but there is no standard-
ized way to retrieve this information.

2.2 Service Retrieval

Most bundles are providers and consumers at the
same time. Next to registering services, then, they

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

158



1 //--1-- Retrieving Services in OSGi
2 public PrinterService searchPrinterService(){
3 ServiceReference[] printerReferences;
4 try {
5 String serviceType = "(objectClass ="+ PrinterService.class.getName ()+")";
6 String serviceFilter="(&"+ serviceType +"(&(ppm >=25)(color=true)))";
7 references [] = context.getServiceReferences(null ,serviceFilter);
8 context.addServiceListener(this, serviceFilter);
9 return (PrinterService) context.getService (references [0]);

10 }
11 catch(InvalidSyntaxException ise){
12 return null; //exception is thrown when the query string contains errors
13 }
14 }
15 //--2-- Reacting to Service Lifecycle Changes in OSGi
16 public void serviceChanged(ServiceEvent event){
17 switch (event.getType ()) {
18 case ServiceEvent.REGISTERED :
19 this.printer = (FirstService)context.getService (event.getServiceReference());
20 break;
21 case ServiceEvent.MODIFIED:
22 this.printer = (FirstService) context.getService (event.getServiceReference());
23 break;
24 case ServiceEvent.UNREGISTERING:
25 //...remove reference and try to find another one
26 break;
27 }
28 }

Listing 2: Retrieving OSGi services (top) and reacting to changes to their lifecycle (bottom).

also need tofindservices in order to successfully exe-
cute their business operations. Service retrieval is car-
ried out by sendingLDAP-based queriesto the central
OSGi service registry. A typicalservice querycon-
tains two important pieces of information. First, the
service typeis used to specify what kind of service is
requested. The service registry needs this information
to search forconformingservices. A query likeob-
jectClass=PrinterService.class, for instance, triggers
the service registry to return references to those ser-
vices that specifiedPrinterService as one of their val-
ues for theobjectClass property (i.e. the LDAP prop-
erty representing the service type). Second, afilter
can be defined to further fine-tune service retrieval.
These filters relate to the metadata that was attached
to a service during registration, as discussed in Sec-
tion 2.1.

Figure 2: Service retrieval in OSGi.

Figure 2 shows how a color printer (depicted asP)
is requested that prints at least 25 pages per minute.

The variables used in the LDAP query (ppm andcolor)
refer to metadata entered by the service provider. The
code required for carrying out such a service retrieval
is shown in the top part of Listing 2 (lines 1–13). First
an LDAP-like query is specified, constraining the ser-
vice type (line 5) with the abovementioned Quality of
Service requirements (line 6). Then, the query is ex-
ecuted using the bundle’sBundleContext (line 7), and
a service object is returned (line 9). AnInvalidSyntax-
Exception may occur during this process (line 10–12)
when the query contains syntax violations or typing
errors.

Evaluation. To evaluate the expressive power of this
query mechanism, we consider three kinds ofservice
propertiesin which service clients may be interested:
(1) static, (2) dynamicand (3)derivedproperties:

• Static Service Properties.OSGi’s LDAP-based
query mechanism is ideally suited for static prop-
erties, as these properties never change. Metadata
such aspages per minutecan be registered along
with a PrinterService instance because this infor-
mation is assumed not to change during the life-
time of the printer.

• Dynamic Service Properties.Properties thatdo
change when a service is operational, introduce
major problems. The queue of aPrinterService,

TYPED ABSTRACTIONS FOR CLIENT-SERVICE INTERACTIONS IN OSGI

159



for instance, grows and shrinks as jobs arrive and
get processed. Obviously, these properties can-
not be added during registration, so OSGi’s meta-
data system does not support them. Consequently,
clients cannot impose constraints on dynamic ser-
vice properties when searching for suitable ser-
vices.

• Derived Service Properties.A third class of char-
acteristics comprises information that depends on
input provided by the client bundle. The cost for
printing a file, for instance, may be calculated by
combining the file’s page count with the candidate
service’s cost for printing one page. But the OSGi
metadata system does not support this. Conse-
quently, in their LDAP service queries, clients
cannot specify constraints on information that is
derivedfrom the metadata of a service.

A related shortcoming is that service selec-
tion cannot beoptimizedbased on service-specific
characteristics. It is impossible, for instance, to
select thePrinterService with theminimalcost for
printing a given file. Indeed,minimizing costsis a
functionand the application of functions or qual-
ity metrics to a set of candidate services is cur-
rently not supported by OSGi.

Next to shortcomings relating to dynamic and derived
properties, OSGi also lacks the benefits of astatically
typed, comprehensiblequery language (as shown on
lines 5–6 in Listing 2). Similar to the service regis-
tration process where syntactically incorrect metadata
could be added, it is possible to write inconsistent
or syntactically incorrect queries. These errors will
only be detected at runtime when the query is parsed.
Programmers using LDAP-based queries must there-
fore expect to catch anInvalidSyntaxException every
time they want to retrieve services (cfr lines 11–13
in Listing 2). This is in sharp contrast with regu-
lar method invocations, of which the Java compiler
provides strong guarantees about their syntactical cor-
rectness and the abscence of typing errors.

In summary, the OSGi query mechanism is ady-
namicallytyped query language that only deals with
staticservice characteristics. What we need, however,
is astaticallytyped query language that is able to deal
with dynamic, volatileservice properties.

2.3 Service Lifecycle Management

The primary challenge in OSGi environments is the
handling of inter-bundle dependencies (OSGi, 2004).
Such dependencies occur when the successful execu-
tion of a business method in one bundle depends on
the existence and proper working of one or more ser-
vices published byotherbundles. In this situation, it

is paramount that the depending bundle has a means
for tracking the lifecycle of those external services.
In OSGi, an event-notification mechanism referred to
as the Whiteboard pattern (OSGi, 2004) is integrated
so as to allow service clients (i.e. depending bundles)
to track the lifecycle of those services on which they
depend.

A bundle uses itsBundleContext to addlisteners
that notify the bundle of any changes to a service’s
lifecycle. To fine-tune this notification mechanism,
the bundle may attach an LDAP-basedevent filterto
this listener, similar to the queries that were used for
service retrieval. In that case, only changes to the life-
cycle of services satisfying the LDAP filter will be
signaled. An example is shown in Listing 2 on line 8.
This operation causes the bundle to be notified when-
ever a service satisfying theserviceFilter constraint is
registered, modified, or unregistered. The handling of
these events are programmed in theserviceChanged
method (lines 16–29).

Figure 3: Lifecycle changes to OSGi services.

Figure 3 shows a typical reaction to a lifecycle
change. On bundle activation, theOfficeComponent
searches for aPrinterService (1a)and asks itsBundle-
Context to create anEventListener along with an
LDAP event filter (1b–1c)such that theOfficeCom-
ponent is informed of any changes to the lifecycle of
thePrinterService. This service is unregistered unex-
pectedly, causing anunregistration eventto be sent
to all the interested event listeners(2), one of which
eventually delivers it to theOfficeComponent (3). The
latter now removes all references to this service. After
a while, a secondPrinterService, P2, joins the SOA.
Assuming that this new service satisfies the LDAP fil-
ter of the event listener, theOfficeComponent now re-
ceives a notification through itsEventListener (4–5).
It reacts to this event by binding itsprinter variable
to P2, the newPrinterService (6).

Evaluation. The first problem with this approach
is related to the limited expressive power of LDAP-

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

160



basedevent filters. These filters cannot prevent the
client bundle from receivingspurious events. An
example of such a spurious event is when multiple
PrinterService instances satisfy the event filter that
was attached to the event listener. In that case, all
changes to the lifecycle of these services will be sig-
naled,even when the bundle does not depend on all
of these services. In other words, the bundle is no-
tified about events occurring at totally unrelated ser-
vices that happen to satisfy the bundle’s LDAP event
filter. Bundles are thus forced to check whether the
event source is identical to the service they depend on
beforereacting to an event notification; and failure to
do so (such as our sample in Listing 2) may lead to
erroneous runtime behaviour that is extremely hard to
debug.

A second disadvantage is the lack of separation of
concerns between business logic and technical, non-
functional code. OSGi forces programmers to write
a considerable amount of boilerplate code for build-
ing and registering event handlers, and this must be
done for every service a bundle depends on. Ide-
ally, technical middleware interactions for handling
service registration, modification, and unregistration
are hidden for programmers, since dealing with these
non-functional concerns would firmly increase the
complexity of implementing the business logic. In
OSGi, however, these event notifications are mixed
with the business logic, and it is the responsibility of
the programmer to react on any problem that may oc-
cur when the client bundle interacts with an external
service.

Another problem that remains unsolved is what
should be done when a client bundle engages inmul-
tiple, consecutiveinteractions with a remote service.
Clients receiving a service unregistration event in the
middle of such a client-service transaction, cannot
transparentlyrestart their transaction by switching to
an alternative service endpoint. Rather, the unregis-
tration event would trigger a search for an alternative
service, and the transaction would then continue as
if nothing happened. In other words, the first part
of the transaction would be executed on the service
being unregistered, whereas the second part would
be executed on another, unrelated service. This lack
of support for bundling related client-service interac-
tions into a client-service transaction thus violates im-
portant properties such asatomicityandisolation.

Design Goals

In this paper, we focus on the realization of three
important design goals concerning the definition of
a programming language suitable for implementing

client-service interactions in volatile service architec-
tures:

• Typed Abstractions.Programmers must have the
same compile-time guarantees about the correct-
ness of service interactions as they have when pro-
gramming local object interactions. Among oth-
ers, this creates a need for a statically typed query
language.

• Expressiveness. Service architectures are dy-
namic and volatile by nature. Therefore, a service
query language must be able to take into account
dynamicandderivedservice properties.

• Transparency. The distributed nature of ser-
vices living in loosely coupled, unrelated bundles
makes it impossible for clients to be sure of the
availability of a service. It is paramount that such
volatility and availability problems are hidden for
programmers as much as possible, since failure to
do so obfuscates the business logic of the service-
oriented application. Changes to a service’s life-
cycle, as well as general availability problems and
other technical middleware issues must be trans-
parently dealt with by the programming model
and by its accompanying middleware.

In the next Section, we propose an extension to the
Java programming model that integrates specialized
support for implementing client-service interactions.
We show how these language concepts can be used
for the implementation of OSGi applications, and we
compare them to the original OSGi concepts.

3 TYPED ABSTRACTIONS FOR
OSGI

In this section, we show how the language concepts
introduced by our Java extension (called ServiceJ) can
be used as a statically checkable service query lan-
guage. We also show how the transformation from
ServiceJ to Java allows for the transparent injection
of code for dealing with lifecyle modification events
sent by external services. The overall goal of this ex-
tension is to exonerate programmers from having to
deal with the technical issues introduced by Service-
Oriented Computing, and to provide them with static
guarantees on the correctness of their client-service
interactions. Section 3.1 shows how OSGi service
retrieval is improved by our extension. Then, Sec-
tion 3.2 shows how lifecycle changes such as service
modification and service unregistration are transpar-
ently handled. Finally, Section 3.3 shows how Ser-
viceJ eases service registration in OSGi service archi-
tectures.

TYPED ABSTRACTIONS FOR CLIENT-SERVICE INTERACTIONS IN OSGI

161



3.1 Finding and Binding Services

ServiceJ introduces (1)type qualifiersto identify vari-
ables depending on services, and (2)declarative op-
erationsfor fine-tuning the set of candidate services
that can be assigned to a variable that depends on a
service. Both extensions are discussed below.

Figure 4: The pool qualifier triggers transparent service
lookup based on the service type (PrinterService), and sup-
ports transparent service binding and service failover.

Type Qualifiers. ServiceJ introduces type qualifiers
to distinguish variables holding service references
from variables pointing to local objects. This differ-
entiation allows the ServiceJ-to-Java transformer to
inject additional operations for transparently dealing
with the typical challenges introduced by service ar-
chitectures. Currently, two type qualifiers are defined:

• The pool Qualifier. This type qualifier is used
to indicate that a variable depends on a service
published by another bundle. A declaration such
as “pool PrinterService printer” indicates that the
bundle depends on aPrinterService exported by
some other bundle. The advantage of signaling
this information, is that the ServiceJ-to-Java trans-
former caninject special middleware interactions
for initializing the variable. This exonerates pro-
grammers from interacting with the OSGi mid-
dleware so as to configure all their service de-
pendencies. Thepool qualifier causes the trans-
former (see Section 4 for details) to transpar-
ently inject operations for (1) service retrieval, (2)
non-deterministic service binding, and (3) service
failover. Because it installs a non-deterministic
service selection protocol, thepool qualifier is
typically used when all type-conforming services
in the architecture are assumed to beinterchange-
able.

• Thesequence Qualifier. Sometimes, certain ser-
vices are preferred above others based on service-
specific characteristics. In that case, adetermin-
istic service selection procedure is required. The
sequence qualifier, which is asubqualifierof the
pool qualifier, is used to decorate variables de-
pending on external services that require a deter-
ministic selection strategy driven bypreferences

that were specified by means of the declarativeor-
derby operation, which is explained below.

Example. Figure 4 depicts how a reference to a
PrinterService is decorated with thepool quali-
fier. It shows how the programmer is exonerated from
implementing interactions with the OSGi middleware
in order to obtain service references. Indeed, pro-
grammers simply declare their service variable with
a pool qualifier and start invoking operations with-
out initializing it. Initialization is now the responsi-
bility of the ServiceJ middleware, which selects an
appropriate service (P2) before invoking theprint
operation. ShouldP2 fail during this interaction, then
ServiceJ automatically injects another service into the
pool variable and reinvokes the operation.

Declarative Operations.Similar to the LDAP-based
query language provided by OSGi, ServiceJ incorpo-
rates specialized support for fine-tuning service se-
lection. In contrast with OSGi, however, these op-
erations are now fully integrated within the program-
ming languages in the form ofdeclarative operations.
In ServiceJ, queries no longer refer to untyped meta-
data, but instead, they directly relate to the opera-
tions that are exported by the service’s interface. In
stead of using an untyped property such as “ppm”,
for instance, queries in ServiceJ refer to apublic in-
spector methodsuch asgetPagesPerMinute(), which
is exported by thePrinterService interface. This pro-
vides better compile-time guarantees on the syntacti-
cal and conceptual correctness of queries. Currently,
two declarative operations are defined for fine-tuning
service selection:

• Thewhere Operation. This operation is used to
constraina set of candidate services according to
a number of business requirements and Quality
of Service constraints. Thus, thewhere opera-
tion can be used to replace OSGi’s untyped query
language. The service query from Listing 2, for
instance, can be translated using thewhere oper-
ation as follows:

pool PrinterService p
where p.getPPM()>=25 &&

p.supportsColor();

This enables the compiler to provide more guar-
antees on the correctness of the query when com-
pared to the string-based LDAP queries of OSGi.
But thewhere operation is also more expressive
than basic LDAP expressions. Indeed, by using
operations published in the service interface, our
query language can take into account the most
up-to-date information of a service, thus allowing
programmers to impose constraints ondynamic

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

162



and derived service properties, whereas OSGi’s
current query language can only take into account
static metadata information that was entered dur-
ing service registration. An additional benefit is
that thewhere operation is combined with the
pool qualifier, implying that these constrained
sets of candidate services still provide transparent
service selection, injection and fail-over.

• Theorderby Operation. This operation is used
to sort a set of candidate services according to
the preferences of a user. In thePrinterService
example, a programmer can use the orderby
operation to select the printer that minimizes the
cost for printing a given file. Such a query can be
implemented as follows:

sequence PrinterService p
orderby p.getCostFor(file);

p.print(myFile);

Note that this query necessitates the use of the
sequence qualifier because adeterministicser-
vice selection policy is requested. Detailed in-
formation about the use of type qualifiers and
their associated service selection strategies can be
found in our previous paper (De Labey, S. and
Steegmans, 2007).

Figure 5: Runtime view of constrained service set.

Example. Figure 5 shows how declarative opera-
tions are combined with type qualifiers so as to cre-
ate a higher level of abstraction for the program-
mers of client-service interactions. At the level of
the source code, no references to physical services,
nor any other interactions with the OSGi middleware
are found. The programmer only specifies the ser-
vice type (PrinterService) along with the relevant con-
straints that must be satisfied by the service (as an ar-
gument of thewhere operation). This is enough to
invoke theprint operation in Figure 5.

The middleware, then, uses this information to
query the OSGi service registry(1) to obtain a set of

candidate services(2). This set is filtered, retaining
only those services that satisfy the constraint that was
specified by the user in awhere clause. From this
constrained set, a service is non-deterministically se-
lected, and theprint operation is invoked on it(3).
This unexpectedly returns an error(4), triggering the
ServiceJ middleware to transparently select another
services from the constrained pool(5) before reinvok-
ing the operation on that new service endpoint.

3.2 Transparent Lifecycle Management

In Section 2.3, we have shown that lifecycle manage-
ment is a tedious task: programmers have to write
code for the registration of event listeners that yield
spurious notifications due to the limited expressive-
ness of OSGi’s LDAP-based event filtering expres-
sions. In ServiceJ, on the other hand, all events re-
lating to non-functional concerns such as service reg-
istration, modification and unregistration are handled
transparentlyby the middleware. Given a service in-
teraction such asprinter.print(myFile) in Figure 5, the
ServiceJ middleware transparently searches for a ser-
vice reference and injects it into theprinter variable.
Notifications about changes to this service’s lifecycle
are handled by the middleware. Service unregistra-
tion, for instance, is handled by releasing the service
reference, and by looking for an alternative service
that satisfies the constraints that where imposed on
thepool by means ofwhere or orderby clauses.

Service Sessions.One remaining challenge is the
execution of a complex business operation compris-
ing multiple interactionsbetween the client bundle
and an external service. For consistency reasons,
it is crucial that the pool variable is bound to the
same servicefor the entire operation. This calls for
a coarser-grained, transactional failover mechanism
that extends our basic failover strategy (as explained
in Section 3.1). ServiceJ supports these operations by
introducingsession{. . .} blocks to combine related
service interactions intosessions(De Labey, S. and
Steegmans, 2007). On entering a session block, the
runtime injects a service into the pool variable as de-
scribed in Section 3.1. From then on, the pool variable
is lockeduntil the session ends successfully, or until
the injected service becomes unreachable, e.g. due to
service unregistration. In the latter case, the runtime
abortsthe current session,unlocksthe pool variable,
injects another pool member, and then restarts the
entire session. By introducing these session-scoped
locks on pool variables, ServiceJ allows developers to
think of a session as anatomic, fault-tolerant interac-
tion with an external service.

TYPED ABSTRACTIONS FOR CLIENT-SERVICE INTERACTIONS IN OSGI

163



Example. Figure 6 shows an example of aservice
sessionwith a PrinterService. First, the file to be
printed is uploaded to the printer server, which re-
turns anid identifying the print job. Then, the client
does some extra processing, and finally it invokes the
print operation with theid as an argument. To illus-
trate the runtime behaviour of a client-service trans-
action encapsulated in a session block, we assume
that thePrinterService unregisters between these two
client-service interactions.

The runtime system first invokes theupload op-
eration onP1 (1), which returns andid and then un-
registers(2). Unregistration is signaled to the client
by means of anunregistration event. This event is
transparently handled by the runtime system, which
injects a new service into the pool variable (p) and
then restarts the entire service session. Theupload
operation is invoked on this new service, which re-
turns a newid (4), and eventually, theprint opera-
tion is invoked onP2 with the correctid (5).

Figure 6: Service sessions provide a basic transaction mech-
anism for complex client-service interactions.

3.3 Publishing Services

The main objective of the ServiceJ programming
model is to provide an appropriate programming lan-
guage for implementing client-service interactions,
but this programming model is also beneficial forser-
vice providerssince service registration is simplified
as well. In stead of registering untyped metadata in
dictionaries that bypass important compile-time guar-
antees, programmers may now implement inspector
methods to describe service characteristics. Rather
than adding key-value pairs like(ppm,25), for in-
stance, programmers now implement operations such
asgetPagesPerMinute() that are exported by the ser-
vice interface. The use of these inspector methods not
only allows service queries to take into accountdy-
namicandderivedproperties (see Section 3.1), but it
also solves the problem of managingchanging char-
acteristicsof services. Indeed, no unregistrations or

renewed registrations are required to update the char-
acteristics of a service object, since the metadata is
fully integrated inside that service object. This is dif-
ferent in OSGi, where an external dictionary contains
the metadata information. Changes to a service ob-
ject, then, must be reflected in the dictionary, and
this often requires unregistration and renewed regis-
tration, which both produce a large number of events.

4 IMPLEMENTATION

We have specified a number of goals concerning
the implementationof these new language concepts.
First, it is paramount that the resulting program is
OSGi-compliant. This is because OSGi provides sup-
port for other technical challenges outside the domain
of ServiceJ, such as installing, resolving and activat-
ing bundles, as well as wiring bundles together and
managing these compositions. Second, we want to
reuse the standard Java compiler and the Java Virtual
Machine, which requires ServiceJ applications to be
translated to OSGi-compliant Java applications as a
preprocessing step. This section focuses on how this
preprocessing step is realized.

Pre-transformation. Figure 7 shows how ServiceJ
code(1) is read by a lexer and a parser so as to create
a ServiceJ metamodel instance. During this process,
the semantically poor nodes of the abstract syntax
tree that was created by the ServiceJ parser are trans-
formed to semantically rich instances of metamodel
classes(2). This metamodel instance, then, is fed to
the ServiceJ-to-Java transformer, which is responsi-
ble for transforming the ServiceJ metamodel instance
into an equivalent Java metamodel instance(3).

Transformation. The input of the transformation is
a ServiceJ metamodel instance representing the Ser-
viceJ application. This metamodel is an extension of
Jnome (van Dooren, M. et al., 2007), our Java meta-
model. It introduces classes modeling the newly in-
troduced language concepts. Pool variables, for in-
stance, are modeled as aMemberVariable with an in-
stance of thePool metamodel class attached to it. Dur-
ing the transformation of thisMemberVariable, the
transformer will detect the presence of this qualifier,
and it will inject into the Java metamodel all neces-
sary OSGi interactions for initializing the pool vari-
able. Also, when a method is invoked on a pool vari-
able the transformer will detect that the target of the
method invocation refers to an instance of thePool
metamodel class. Figure 7 shows what actions are un-
dertaken in this situation: the transformer injects spe-

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

164



Figure 7: Transformation of ServiceJ code to compiled Java code.

cific OSGi interactions, such asservice discoveryand
service selection, and also makes the code more ro-
bust by injecting middleware support forservice fail-
overandservice transactions(4).

Post-transformation. After the equivalent Java
metamodel has been built by the ServiceJ-to-Java
transformer, a simple code writer(5) transforms the
Java metamodel instance to.javafiles (6). These files
can be compiled by the standard Java compiler, thus
finishing the compilation process(7).

While the compilation of ServiceJ programs is an ex-
tensive process, it is important to note that all this
is entirely shielded for developers. The transforma-
tion procedure is best seen as a black box consum-
ing ServiceJ source files and producing compiled Java
classes. Developer intervention is never required dur-
ing this process.

5 RELATED WORK

Our language concepts most closely resemble the
constructs that are introduced in object-oriented lan-
guages such as WebOz (Hadim and et al., 2000),
WebL (Kistler and Marais, 1998), and XL (Florescu
et al., 2003) to enable service failover. But those con-
cepts rely on hardwired service references, so they fail
to capture thevolatility of services in an OSGi archi-
tecture, and they cannot support dynamic service dis-
covery. These languages also lack support for defin-
ing constraints and selection policies, whereas our ex-
tension integrates that support by means of declarative
operations.

Jini (Sun, 2005) is a close competitor to OSGi,
since it also attempts to bring Service-Oriented Com-
puting to the world of object-oriented programming
(Huang and Walker, 2003). One drawback of Jini with
respect to OSGi, is that Jini’s query mechanism is
much weaker than OSGi’s LDAP-based queries. Jini
relies onentry objectsrepresenting theexact value

that a property must have, whereas OSGi allows pro-
grammers to use operators such as “<” and “>=” to
specify rangesof values, rather than a single value.
Moreover, Jini does not install an event notification
architecture, but instead relies on aleasingsystem
instead. Clients retrieving a Jini service are given a
lease representing the time they are allowed to use the
service. Leases must be renewed temporarily, which
also introduces a programming overhead.

Cervantes and Hall observed that OSGi does not
provide any support for managing service dependen-
cies apart from the basic event notification system in
(Hall and Cervantes, 2003) and (Cervantes and Hall,
2003). They propose to improve dependency manage-
ment based oninstance descriptors. Such instance
descriptors are XML files describing how a bundle
depends on external services. A<requires> tag is
introduced to specify theservice type, thecardinality
of the dependency, and thefilter condition. Program-
mers may also define thebind and unbind methods
that should be called when a service is to be bound or
unbound. One problem with this approach is that the
information to be specified isuntyped, even though it
directly refers to public methods provided by the bun-
dle. Also, the filter condition is now isolated in an
XML file, but it is still an LDAP-based query string,
which lacks support for dynamic and derived service
properties. Moreover, instance descriptors create a
strong dependency between a Java file and an XML
file, and they divide important decisions concerning
the business logic between these two files.

Our approach of introducing type qualifiers and
qualifier inference is based on the approach followed
in Javari (Tschantz and Ernst, 2005). We have
proven the type soundness of this language extension
in a way similar to the Java extension presented in
(Pratikakis et al., 2004). For more information about
the formal development of ServiceJ, we refer to (De
Labey, S. et al., 2006) and (De Labey, S. and Steeg-
mans, 2007).

TYPED ABSTRACTIONS FOR CLIENT-SERVICE INTERACTIONS IN OSGI

165



6 CONLUSIONS & FUTURE
WORK

The Open Services Gateway Initiative is a success-
ful attempt to bridge the gap between object-oriented
programming and service-oriented computing, but a
number of challenges remain unsolved. In this pa-
per, we have focused on problems stemming from the
limited expressiveness, comprehensibility and static
guarantees that the OSGi’s LDAP-based query lan-
guage provides. We have also shown that the lifecy-
cle management system requires too much program-
mer intervention and that it too often signals spurious
events.

To solve these problems, we propose an integra-
tion of ServiceJ language concepts into the OSGi
programming model. First,type qualifiersallow the
ServiceJ-to-Java transformer to inject additional in-
structions for transparently handling service failures
and lifecycle changes. Second,declarative opera-
tionsallow programmers to fine-tune service selection
in a type-safe way. Third, programmers can demar-
cate client-service transactions usingsession blocks,
leaving the complex management of such transactions
entirely to the ServiceJ middleware.

Future Work. A proper event-notification system
should also support the notification offunctional
events. These are events that directly relate to the
business logic of an application (e.g. an event sig-
naling that a file is successfully printed). We plan to
extend ServiceJ’s programming model so as to inte-
grate language support for working with this second
class of events.

REFERENCES

Cervantes, H. and Hall, R. (2003). Automating Service De-
pendency Management in a Service-Oriented Compo-
nent Model. InProceedings of the 6th Workshop on
Foundations of Software Engineering and Component
Based Software Engineering, pages 379–382.

De Labey, S. and Steegmans, E. (2007). ServiceJ. A Type
System Extension for Programming Web Service In-
teractions. InProceedings of the Fifth International
Conference on Web Services (ICWS07).

De Labey, S., van Dooren, M., and Steegmans, E. (2006).
ServiceJ: Service-Oriented Programming in Java.
Technical Report KULeuven, CW451, June 2006.

Florescu, D., Gruenhagen, A., and Kossmann, D. (2003).
XL: A Platform for Web Services. InProceedings of
the First Conference on Innovative Data Systems Re-
search.

Hadim, M. and et al. (2000). Service Combinators for Web

Computing in Distributed Oz. InConference on Par-
allel and Distributed Processing Techniques and Appl.

Hall, R. and Cervantes, H. (2003). Gravity: support-
ing dynamically available services in client-side ap-
plications. SIGSOFT Software Engineering Notes,
28(5):379–382.

Hall, R. and Cervantes, H. (2004). Challenges in building
service-oriented applications for OSGi.Communica-
tions Magazine, IEEE, 42(5):144–149.

Huang, Y. and Walker, D. (2003). Extensions to Web Ser-
vice Techniques for Integrating Jini into a Service-
Oriented Architecture for the Grid. InProceedings of
the International Conference on Computational Sci-
ence.

Kistler, T. and Marais, H. (1998). WebL - A Programming
Language for the Web. In7th Intl. Conference on the
World Wide Web.

Marples, D. and Kriens, P. (2001). The open service gate-
way initiative: An introductory overview.IEEE Com-
munications Magazine, 39(12).

OSGi (2004). Listeners considered harm-
ful: The whiteboard pattern. In
www.osgi.org/documents/osgitechnology/.

OSGi (2006).Open Services Gateway Initiative Specifica-
tion v4.0.1 – http://www.osgi.org.

Papazoglou, M. (2003). Service Oriented Computing: Con-
cepts, Characteristics and Directions. InProceedings
of the 4th International Conference on Web Informa-
tion Systems Engineering.

Pratikakis, P., Spacco, J., and Hicks, M. (2004). Transpar-
ent Proxies for Java Futures. InOOPSLA ’04: Pro-
ceedings of the 19th annual ACM SIGPLAN confer-
ence on Object-oriented programming, systems, lan-
guages, and applications, pages 206–223, New York,
NY, USA. ACM.

Sun (2005). The Jini Architecture Specification and API
Archive – http://www.jini.org.

Tschantz, M. S. and Ernst, M. D. (2005). Javari: Adding
reference immutability to Java. InObject-Oriented
Programming Systems, Languages, and Applications
(OOPSLA 2005), pages 211–230, San Diego, CA,
USA.

van Dooren, M., Vanderkimpen, K., and De Labey, S.
(2007). The Jnome and Chameleon Metamodels for
OOP.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

166


