
GENERIC TRAITS IN STATICALLY TYPED LANGUAGES
How to do It?

Andreas Svendsen1,2 and Birger Mller-Pedersen2

1SINTEF, Oslo, Norway
2Department of Informatics, University of Oslo, Oslo, Norway

Keywords: Traits, statically typed languages, generics, templates, virtual types.

Abstract: Traits have been proposed as a code reuse mechanism for dynamically typed languages. The paper addresses
the issues that come up when introducing traits in statically typed languages, such as Java. These issues can be
resolved by introducing generic traits, but at some cost. The paper studies three different generic mechanisms:
Java Generics, Templates and Virtual Types, by implementing them all by a preprocessor to Java. The three
different approaches are tested by a number of examples. Based on this, the paper gives a first answer to which
of the three generic mechanisms that are most adequate.

1 INTRODUCTION

The development of complex programs requires a
good way of structuring source code. Modern object-
oriented languages are often based on classes as the
building blocks for code structure and for combined
classification/code-reuse through class based mecha-
nisms like inheritance. As demonstrated in (Ducasse
et al., 2006) these mechanisms, however, prove to be
inadequate in certain situations of code reuse, and
traits are proposed as a complementary mechanism
for structuring and reusing code.

A trait is defined as a collection of methods. A
class can be defined by a combination of inheritance,
variables and methods, traits and glue code to glue all
pieces together (see Figure 1). In addition a trait may
also be based upon other traits and thereby form a trait
hierarchy.

Traits have three important semantic rules ((Nier-

Figure 1: Class composition and flattening property.

strasz et al., ), (Ducasse et al., 2006)):

• Methods in a class take precedence over methods
in traits of the class, and methods in a trait take
precedence over methods in the traits of this trait.

• Flattening property: A method has equal semantic
properties whether it comes from a trait (including
traits being used by the trait) or is directly defined
in the class.

• The order of traits and trait methods is insignifi-
cant.

Flattening is the most important semantic rule for
traits. It tells us that we can remove all trait-specific
syntax and move every trait method directly into the
class without changing the semantics of the program
(illustrated in Figure 1). This makes traits ideal to be
handled by a preprocessor, and it does not call for a
major change to the Java language.

In case of large trait hierarchies, there may be
conflicts between methods from different traits. The
precedence rule is one solution, by introducing a new
method that excludes the ones in conflict. If this is
inadequate, i.e. if the functionality of one of the con-
flicting methods is needed, special operators for alias
and exclusion can be used so that the method is avail-
able.

Methods of a trait may need to access methods
that are not defined in the trait, and in order to guaran-
tee that these methods are present (either in the class
or in other traits used by the same class), these can be

39
Svendsen A. and Mller-Pedersen B. (2008).
GENERIC TRAITS IN STATICALLY TYPED LANGUAGES - How to do It?.
In Proceedings of the Third International Conference on Software and Data Technologies - PL/DPS/KE, pages 39-46
DOI: 10.5220/0001870700390046
Copyright c© SciTePress



Figure 2: Trait composition forming a trait hierarchy.

specified as required methods. A simple trait hierar-
chy is illustrated in Figure 2. In this case the methods
required from TraitA are defined in ClassC.

We have seen a general description of traits, and to
illustrate the concept of traits further, concrete syntax
in extended Java is given in the following code ex-
ample. The trait blockTtraitA from Figure 2 shows
how methods and dependencies can be expressed in a
trait.

trait TtraitA{
use {}
requires {

getVal();
setVal(Integer val);

}
void methodA(String a){...}
void methodB(){...}

}

Traits were originally proposed for dynamically
typed languages, such as Squeak, an open source
dialect of Smalltalk. Introducing traits in statically
typed languages raises some issues. There have been
some work on how to resolve these issues ((Nierstrasz
et al., ), (Reichhart, 2005)), even with generic mech-
anisms, such as type parameters. We shall look more
closely into and compare the application of three dif-
ferent generic mechanisms: Java Generics, Templates
and Virtual Types, and see how well these mecha-
nisms work in combination with traits in Java. For
each of these we shall also examine two different
strategies for implementation of traits.

Our investigation is based on a preprocessor. An
implementation directly in the language by means of a
compiler could be a better solution. (Quitslund, 2004)
has looked into the possibility of adding traits to Java
as a compiler, but generic mechanisms are not consid-
ered. We want to illustrate how well generic mecha-
nisms work with traits, and a preprocessor can give us
a good indication.

To give a better understanding of the issues, we
will first give an introduction to the issues with traits
and statically typed languages, by means of an exam-
ple. We will then discuss the need for generic traits
and the choices we have, before we give a brief re-
view of a possible implementation of generic traits in
Java. Test runs show that there are issues with some
of the generic mechanisms, which we will discuss be-
fore we conclude.

2 ISSUES WITH TRAITS IN
STATICALLY TYPED
LANGUAGES

In this section we introduce an example which will
be used to explain how traits are used, and the issues
that arise when we have traits in a statically typed lan-
guage. We shall then see how generic traits can re-
solve these issues.

2.1 Example

Imagine that we have two types of lists, a list of
Process objects and a list ofDictionary objects
(see Figure 3). A list as such is represented by the first
element (object of classProcess or Dictionary),
and each object of bothProcess and Dictionary
will have a reference to the next element in the list,
in addition to theProcess- andDictionary-specific
properties. In addition each object will have methods
to get and set both its properties and the reference to
the next object in the list. This example has been in-
spired by (Nierstrasz et al., ).

Assume that the classesProcess and
Dictionary have their separate superclasses
and therefore not any common superclass except
Object (given that we only have single inheritance).
Suppose we need some common functionality in
objects in these lists, e.g. methods for reversing the
list, copying the list and finding an element in the list.
Since the objects do not have any common superclass,
we cannot express the common functionality through
single inheritance, but have to duplicate the code in
each of the classesProcess andDictionary. Note
that this is just a subset of all the functionality we
would want in these kinds of lists, and it is used
solely to illustrate how traits work.

Figure 3:Process andDictionary linked lists.

ICSOFT 2008 - International Conference on Software and Data Technologies

40



The trait solution is to place all common func-
tionality in a trait, which then can be used by all
classes that need it. In this case both theProcess and
Dictionary objects need some common functional-
ity, and it will be a good choice to have their classes,
Process andDictionary, use the trait, TList, with
this functionality. This is illustrated in Figure 4.

Figure 4: Two classes use functionality in a trait.

2.2 Issues

ThecopyList method in the traitTList will need to
make a copy of every element in the list. This requires
instantiation of new elements (of the right class), in
which we are able to set values to variables and to set
the next references. We also need to extract these val-
ues from the existing elements in the list to be copied.
The methodcopyList will use the set/get methods
offered by the elements of the list themselves. These
methods are therefore listed as required methods by
the trait.

There will be just onecopyList method (in the
common trait), and it has to work for bothProcess
lists andDictionary lists. As an example, the re-
turn type ofcopyList should therefore obviously be
eitherProcess or Dictionary. In a statically typed
language, this type shall be specified in advance, but
that is not possible, because the trait may be used by
different list classes. We have similar problems with
the other two trait methods as well.

The following code example illustrates how the
copyList method would be for aProcess list. This
illustrates that we need a generic way of specifying
the return type (Process), the type of the variables
newList, oldElem, temp andnewElem, so the trait
methodcopyList can be used byDictionary as
well. Notice that we need to instantiate new objects of
typeProcess, which indicate that the solution has to
support instantiation of new objects of a generic type.

Process copyList(){
Process newList = new Process();
newList.setValue(getValue());
Process oldElem = newList;
Process temp = getNext();
while (temp != null){

Process newElem = new Process();
newElem.setValue(temp.getValue());
oldElem.setNext(newElem);
oldElem = newElem;
temp = temp.getNext();

}
return newList;

}

To overcome this obstacle (Nierstrasz et al., ) and
(Reichhart, 2005) have suggested either to use inter-
faces as types instead of classes, to give traits types,
or even to use generic mechanisms. As they have
pointed out, some of these solutions have shortcom-
ings. One is the extra work for the programmer in
making new interfaces every time he or she wants a
method to accept an element of more than one type.
Another is that we cannot instantiate new objects from
an interface, so return types cannot be specified by
means of interfaces. These issues suggest that generic
mechanisms may be the most promising solution.

3 GENERIC TRAITS

The above discussion on the issues of traits in a stat-
ically typed langauge proves that we need a powerful
mechanism for expressing variability of trait methods.

The main aspects we want to vary in the trait
methods are types of the parameters, types of tem-
porary variables, and return types. Since we want to
vary types, the use of type parameters is an obvious
choice. This is a well known concept and is included
in Java1.5 and many other statically typed languages.
The three generic mechanisms we shall consider are
the following:

• Java Generics: Since we develop a solution for
Java, this is an obvious alternative.

• Templates: Replace type parameters by the ac-
tual type in the preprocessor. Similar to C++ tem-
plates.

• Virtual Types: Possibility to redefine the type of a
virtual type. This allows us to specify the type of
an element further when we have more informa-
tion about that element.

In the following we provide a brief description of
the three generic mechanisms and the differences be-
tween them.

3.1 Java Generics

Java Generics has been a part of the Java language
since version 1.5. The main purpose of Java Generics
is to offer type security by compile time and make

GENERIC TRAITS IN STATICALLY TYPED LANGUAGES - How to do It?

41



casts redundant (Mahmoud, 2004). Java Generics
was designed with the Collection classes in mind,
whereObject is used as the common type of ele-
ments in collections. To maintain backward compat-
ibility to older Java libraries, Java Generics was de-
signed and implemented by type erasure. This results
in equal runnable code for both traditional Java syn-
tax and Java with generics. The Java compiler ac-
complishes this by replacing the type parameters by
Object and inserting casts whenever necessary (Naf-
talin and Wadler, 2007).

Implementation by erasure gives some restrictions
(Bracha, 2004). Since we do not have any represen-
tation of the generic types on runtime, we cannot in-
stantiate new objects of type parameters, or make ar-
rays of type parameters. We shall see later that these
restrictions can be a problem if we extend traits with
Java Generics.

3.2 Templates

Templates (as found in C++)are similar to Java Gener-
ics both in syntax and w.r.t. the representation at run-
time. When using templates, type parameters will
be replaced by the actual types by a preprocessor.
Since this is done before we run the Java compiler,
we have more flexibility on how this replacement is
done. For instance we are able to instantiate new ob-
jects from type parameters, because type parameters
are replaced with actual types before the instantiation
is done.

One may question how well the semantics (or
lack) of C++-like templates conform with Java. How-
ever, we believe that templates can solve many of the
issues, and there this an viable alternative.

3.3 Virtual Types

The concepts of virtual types was introduced in the
language Beta as virtual patterns (Lehrmann Madsen
and Mller-Pedersen, 1989), and later considered for
Java (Thorup, 1997). The semantic rules of virtual
types are similar to the rules of virtual methods. A
virtual method is first defined as general as possible in
a general class, and can then in subclasses of this gen-
eral class be redefined when we have more informa-
tion about what functionality we need. The concept
of a virtual type is similar: We first define a general
type, and redefine it in subclasses to a more specific
type.

Since we do not have support for virtual types in
Java, we have to replace all virtual types with their
redefinition types during the flattening process. This
results in a mechanism which is practically similar to

templates. The main difference is how and when the
actual types are specified. This will be discussed fur-
ther in section 5.2.

4 IMPLEMENTATION OF
GENERIC TRAITS IN JAVA

To be able to compare the three generic mechanisms
and to illustrate the differences between them, we
have developed a preprocessor for Java with generic
traits. The preprocessor is divided into three parts:
Parsing, flattening and Java code generation.

To handle the parsing process and to automati-
cally generate an abstract syntax tree (AST), we used
AntLR (http://www.antlr.org/). We used an already
available grammar (Studman, 2005), and extended
this grammar with the necessary syntax for traits.

We found it convenient to develop a data structure
that models the trait hierarchy. This structure con-
tains functionality for getting information about the
traits and relations between them. This makes it eas-
ier to perform the flattening process, especially since
we want to do this in two ways.

The code generator is basically a pretty printer
which outputs standard Java code. It traverses the syn-
tax tree, but does not print any node that is part of the
annotated trait syntax.

4.1 Two Flattening Strategies

We have examined two strategies for flattening (see
Figure 5). The first one, which we have called Classic
Flattening, is the strategy described in (Ducasse et al.,
2006), (Nierstrasz et al., ), (Shärli et al., 2002) and
(Reichhart, 2005), and involves moving every method
of trait into the class that use the trai. This means
that the trait blocks will be redundant, and are thus
removed from the processed program.

The other strategy, which we have named Object
Flattening, is a fairly different approach. Instead of
moving every trait method into the class, we keep
the trait blocks (as objects) and make references from
the class to the trait block. To be able to keep the
trait block in traditional Java syntax, we convert the
traits into classes, and instantiate objects of these trait
classes in the classes that uses the trait. This instanti-
ation can be done hierarchically.

Every call of a trait method has to be updated to
call the method of the correct object (the instantiated
trait class). We search the syntax tree for every node
which contains a method call, and update the refer-
ence according to a table of references to trait objects.
A couple of problems raise in this process. To support

ICSOFT 2008 - International Conference on Software and Data Technologies

42



Figure 5: Two flattening strategies.

overloading of methods, we have to compare param-
eter types. This requires a static semantic check. We
also notice that the trait methods can be called from
other places than from within the classes which uses
them, and to cover this we have to either make the
preprocessor more sophisticated or to include a local
method in every class which contains a method call
to the right method. The first alternative is prefer-
able, because of the extra overhead an extra method
call creates. We will, however, not describe this any
further.

Note that when we want to use Java Generics with
Classic Flattening we might end up with a problem.
We want to maintain the generic mechanism, but not
the trait block which contains the type parameters.
This can be solved by moving every type parameter
from a trait hierarchy into the class which use the hi-
erarchy. We also have to move the definition of the
actual types to the instantiation of the class. It is also
possible to require the programmer to include every
type parameter in the class definition as well as in the
trait that the class uses. This can to some extent sim-
plify the processing.

4.2 Test Runs

To see how well the three generic mechanisms inte-
grate with traits, and to illustrate the differences be-
tween Classic Flattening and Object Flattening, we
have run the list example through the preprocessor.
The preprocessor supports six options for flattening:
(Java Generics, Templates, Virtual Types) x (Classic
Flattening, Object Flattening).

With these six options, we can see how each
generic mechanism performs with each flattening
strategy. Another list example based on the Collec-

tion classes and an arithmetic example have also been
processed. The test runs provide equal results w.r.t.
the problems and benefits of the generic mechanisms
and flattening strategies. This gives an indication of
which generic mechanism and flattening strategy are
preferable.

5 ISSUES WITH THE GENERIC
MECHANISMS

Since all three generic mechanisms allow us to spec-
ify a general type and later redefine this to a more spe-
cific type, some of the problems we saw in section 2.2
can be solved. However, there are some differences
between the generic mechanisms. For Templates and
Virtual Types the type parameters are bound by the
preprocessor, while for Java Generics this is done by
the Java compiler.

The test results show that Java Generics may not
be so well suited for this purpose as the other two
mechanisms.

5.1 Java Generics

One of the purposes of Java Generics is to make
casts redundant. As mentioned, Java Generics was
designed with the Collection classes in mind, where
Object is used as the common type of elements in
collections. This becomes more flexible with Java
Generics. However, Java Generics may not be so
well suited for making traits more general. Our test
runs indicate a couple of problems with traits and Java
Generics:

• Unable to make new objects and arrays according
to a type parameter.

• Necessary to add casts after the flattening process.

The first problem is encountered in thecopyList
method (see section 2.2), which needs to instantiate
new objects according to a type parameter.

To illustrate the second problem, the need to add
casts after the flattening process, we can look at a flat-
tenedProcess class below.

class Process <T> {
Process next;
int priority;

// [..] get and set methods
// [..] copyList and find

T reverseList(){
T temp = this; //missing cast
T prev = null;

GENERIC TRAITS IN STATICALLY TYPED LANGUAGES - How to do It?

43



T next = null;
while(temp != null){
next = temp.getNext(); //missing casts
temp.setnext(prev); //missing casts
prev = temp;
temp = next;

}
return prev;

}
}

ThereverseList method generates errors when
compiled by the Java compiler. Casts between the
typeT and the typeProcess are missing. The correct
reverseList method with the necessary casts added
is shown below.

T reverseList(){
T temp = (T) this;
T prev = null;
T next = null;
while(temp != null){

next = (T) ((Process) temp).getNext();
((Process) temp).setnext((Process) prev);
prev = temp;
temp = next;

}
return prev;

}

A more sophisticated preprocessor can resolve
some of these issues. Casts can be automatically
added by the preprocessor, and methods with special
expressions (newExpr) that are based on type param-
eters can have the type parameters automatically re-
solved and copied to the respective class. However,
this requires the preprocessor to perform semantic
checks of the program, and it requires a complex im-
plementation of the preprocessor. By resolving the
type parameters and copying the methods into the
class we obtain a template-like mechanism, and this
indicates that Templates may be a better mechanism
for this purpose.

5.2 Templates vs. Virtual Types

Since there is no support for either Templates or Vir-
tual Types in Java, we have to translate the generic
trait syntax into plain Java. By binding the type pa-
rameters (template parameters) and virtual types in
the preprocessor we also get some extra flexibility.
Since the preprocessor substitutes the types during
flattening, we do not have the same issues as with
Java Generics. This is illustrated in the following
reverseList method below, which is generated with
Templates-alternative.

Process reverseList(){
Process temp = this;
Process prev = null;

Process next = null;
while(temp != null){
next = temp.getNext();
temp.setnext(prev);
prev = temp;
temp = next;

}
return prev;

}

Since the use of both Templates and Virtual Types
implies type substitution by the preprocessor, the two
generic mechanisms may seem similar. However,
there are some differences:

• Semantic Difference. A Template type parameter
can have any type as actual type, even any prim-
itive type. A virtual type has to be redefined to a
subtype of the original (virtual) type.

• Different Binding. Templates keep the bindings
at all levels of the trait hierarchy, while for vir-
tual types the outermost binding has effect for
all uses of the virtual type in the trait hierarchy.
This is illustrated in Figure 6. The type parame-
ter (or virtual type)T is bound toObject, Number
andInteger. If T is a template parameter, these
bindings have affect on the different uses ofT.
If T is a virtual type, the outermost binding (T =
Integer) will affect all uses ofT in the trait hier-
archy.

Figure 6: Type binding for Templates and Virtual Types.

ICSOFT 2008 - International Conference on Software and Data Technologies

44



For a Template type parameter we have to specify
an actual type at each trait level, even if the type is
equal to the binding at the previous level. For Virtual
Types we only redefine the virtual type if the actual
type is not equal to the previous actual type.

Since we redefine virtual types outwards in the hi-
erarchy, one should be careful about the names of vir-
tual, in order to avoid redefining a not-intended virtual
type. Assume for instance that a traitA uses two other
traitsB andC, which both defines a virtual typeT. Trait
A needs to redefine theT from B, but wants to keepT
from C as it is. We are unable to express this with
Virtual Types without changing the name ofT in ei-
therB or C. Since Templates redefine type parameters
inwards the hierarchy this is not an issue. However,
with a strict naming policy we can avoid these issues
with Virtual Types.

Since templates can bind a type parameter to any
type, including primitive types, we will get a type
safety issue. Since our solution is based on a prepro-
cessor that generates Java code, static semantic errors
will be handled by the Java compiler. However, if we
want to implement generic traits into the language,
this may be a large issue that requires extensive static
semantic checking. Virtual Types may therefore be a
better solution if we want to integrate generic traits
into Java.

Redefinition of Virtual Types is restricted to sub-
types of the original virtual type. This imposes that
the original virtual type has to be general enough, and
this may limit the usability of Virtual Types. How-
ever, since every type in Java is a subtype ofObject,
this is a viable alternative.

5.3 Classic Flattening vs. Object
Flattening

Our test results indicate that Classic Flattening works
without any problems with both Templates and Vir-
tual Types. Some issues arise when we want to use
Classic Flattening together with Java Generics, since
the trait blocks are removed by the preprocessor. Ob-
ject Flattening addresses this concern by keeping the
trait blocks by converting them to classes.

Since the trait blocks are maintained, high level
programming concepts can be applied, e.g. reflec-
tion. More advanced flattening can be the result since
we have more information about the traits available at
runtime.

However, there are some difficulties with Object
Flattening:

• More complex than Classic Flattening.

• Different semantics for the keywords ’this’ and
’super’.

• More overhead due to extra references.

Object Flattening does not remove the trait blocks
and does not copy the methods into the classes that
use the traits. This requires an update of method calls
since we want them to call methods of the objects cor-
responding to the trait blocks. This leads to a more
complex preprocessor that generates more complex
Java code. Another factor is more overhead since the
method cannot be looked up locally when Java per-
forms the method call. These issues are illustrated in
Figure 5 where we have to refer to different objects,
NewClassC (Classic Flattening) andNewTrait (Ob-
ject Flattening) objects, when we need to perform a
call to m.

Since trait methods by Object Flattening is con-
tained in a trait block object, the keywords ’this’ and
’super’ do not refer to the class that uses the trait, but
refer to the trait block object instead. This may re-
quire a rewrite of source code or an even more com-
plex implementation of the preprocessor.

6 CONCLUSIONS

We have developed a preprocessor for generic traits in
Java in order to compare three approaches to generic
traits and two strategies for flattening. One of the
main concerns with generic traits is that they should
be easy to use and implement. Our test results indi-
cate the following:

• Java Generics, as it is today, is not sufficient to
make traits more general. In other languages, for
instance C#, where generics is not implemented
by erasure, the conclusion may be different.

• Templates and Virtual Types solve the issues in-
troduced by static typing. Virtual Types probably
conforms better to Java semantics than Templates
do.

• Classic Flattening is both easier to use and to im-
plement than Object Flattening. However, there
are some advantages with Object Flattening, i.e.
easier integration into Java since trait blocks are
not removed, but this area requires more research.

Our results are based on a preprocessor that gen-
erates Java code that can be compiled by a Java com-
piler. This does not require any changes of the JVM,
and is one of the advantages with traits. However, a
real implementation of generic traits in Java may still
be a better approach.

Virtual Types implemented with traits in Java is
probably one of the best approaches and is an area
that requires more investigation.

GENERIC TRAITS IN STATICALLY TYPED LANGUAGES - How to do It?

45



7 RELATED WORK

(Reichhart, 2005) describe an implementation of
traits in C#. The difficulties and possible solutions
of typing and parameterizing traits are shown. By
presenting a simple prototype, the possibilities and
difficulties of integrating traits in statically typed lan-
guages are discussed.

(Nierstrasz et al., ) realize that traits can offer clear
benefits for statically typed languages. The issues of
integrating traits into such languages are summarized.
Traits are examined in the context of the languages
Java, C# and C++.

An implementation of traits as a native concept
of a programming language (Fortress) is described
by (Allen et al., 2007). The Fortress Programming
Language is a general-purpose, statically typed pro-
gramming language. There are two basic concepts
in Fortress: object and trait. Much of the type sys-
tem is based on trait types, and every trait extends the
Object trait. Static parameters include type parame-
ters.

8 FUTURE WORK

Generic traits with virtual types as a language concept
in Java is an area that requires more investigation.

An implementation of the preprocessor based on
NextGen http://japan.cs.rice.edu/nextgen/, which is a
version of Java that supports runtime representation
of generic types, would be an interesting approach to
the problems with Java Generics.

We have seen that Object Flattening has many is-
sues and is more complex than Classic Flattening.
However, a more sophisticated implementation of the
preprocessor with Object Flattening may give some
benefits, since we keep the trait blocks after flatten-
ing.

By using the representation of generic traits pre-
sented in this article, a study of how large impact
generic traits will have on the Java library should be
initiated.

ACKNOWLEDGEMENTS

The work reported in this paper has been done within
the context of the SWAT project and funded by The
Research Council of Norway, grant no. 167172/V30.
It is based on a master thesis by Andreas Svendsen.

REFERENCES

Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen,
J.-W., Ryu, S., Steele Jr., G. L., and Tobin-Hochstadt,
S. (2007). The Fortress Language Specification.
http://research.sun.com/projects/plrg/fortress.pdf.

Bracha, G. (2004). Generics in the Java Programming
Language. http://java.sun.com/j2se/1.5/pdf/generics-
tutorial.pdf.

Ducasse, S., Nierstrasz, O., Schrli, N., Wuyts, R., and
Black, A. P. (2006). Traits: A Mechanism for Fine-
grained Reuse.ACM Transactions on Programming
Languages and Systems (TOPLAS), 28(2):331–388.

Lehrmann Madsen, O. and Mller-Pedersen, B. (1989). Vir-
tual Classes - A Powerful Mechanism in Object-
Oriented Programming. InOOPSLA ’89: Conference
Proceedings on Object-Oriented Programming Sys-
tems, Languages and Applications, pages 397–406,
New York, NY, USA. ACM.

Mahmoud, Q. H. (2004). Using and Pro-
gramming Generics in J2SE 5.0. http://
java.sun.com/developer/technicalArticles/J2SE/
generics/.

Naftalin, M. and Wadler, P. (2007).Java Generics and Col-
lections. O’Reilly Media.

Nierstrasz, O., Ducasse, S., Reichhart, S., and Schrli, N.
Adding Traits to (Statically Typed) Languages. Tech-
nical Report IAM-05-006.

Quitslund, P. J. (2004). Java Traits - Improving Opportu-
nities for Reuse. Technical Report CSE-04-005, OGI
School of Science & Engineering, Beaverton, Oregon,
USA.

Reichhart, S. (2005). Traits in CSharp. http://
www.iam.unibe.ch/s̃cg/Archive/Projects/Reic05a.pdf.

Shärli, N., Ducasse, S., Nierstrasz, O., and Black, A.
(2002). Traits: Composable Units of Behavior. Tech-
nical report.

Studman, M. (2005). Java 5 (aka 1.5) grammar. http://
www.antlr.org/grammar/1090713067533/index.html.

Thorup, K. K. (1997). Genericity in Java with Virtual
Types. In ECOOP’97 - European Conference on
Object-Oriented Programming, volume 1241, pages
444–471. Springer Verlag.

ICSOFT 2008 - International Conference on Software and Data Technologies

46


