
ASPY
An Access-Logging Tool for JDBC Applications

A. Torrentı́-Román, L. Pascual-Miret, L. Irún-Briz, S. Beyer and F. D. Muñoz-Escoı́
Instituto Tecnológico de Informática, Univ. Politécnica de Valencia

Camino de Vera, s/n, 46022 Valencia, Spain

Keywords: Access Logging, JDBC, Performance Comparison, Application Debugging.

Abstract: When different developer teams collaborate in the design and implementation of a large and distributed
application, some care should be taken regarding the access to persistent data, since different components
might use their own transactions and they might collide quite often, generating undesired blocking intervals.
Additionally, when third-party libraries are used, they can provide unclear descriptions of their functionality
and programmers might mistakingly use some of their operations. An access logger can be useful in both
cases, registering the sentences actually sent to the database and the results of said sentences. Aspy is a tool
of this kind, developed as a JDBC-driver wrapper for Java applications. It is able to save in a file the list of
calls received by the JDBC driver, registering their parameters, starting time, completion time and either their
obtained results or their raised exceptions. With such information, it is easy to identify common errors in
database accesses and the set of transactions involved in blocking situations due to poor application design.
We discuss three different techniques that were used for implementing Aspy, comparing their pros and cons.

1 INTRODUCTION

Client-server distributed applications are commonly
built following a three-layer architecture. The bot-
tom layer is regularly implemented using a Database
management system (DBMS), on top of which a busi-
ness logic layer is developed. When a large client-
server application is designed, multiple components
may be identified in such an intermediate layer and
each of them may be developed by a different group of
programmers. Debugging such applications might be
difficult, especially when database accesses are del-
egated to third-party libraries/components. In such
cases, a tool which is able to record the actual sen-
tences being sent to the DBMS at run-time in a log,
together with the execution time of each sentence,
the connections where they initiated, and their results,
could be highly interesting. Many bugs and program
misbehaviors could be diagnosed using such tool.

To our knowledge, although some tools of this
kind might exist, none of them are able to work in-
dependently of the underlying DBMS being used, nor
in a completely transparent way. We proposeAspy,
a JDBC-driver wrapper that is able to work with all
DBMSs that provide a JDBC driver and that does not
require any modifications to the user-level applica-

tion in order to use it. Thus, the tool can be used by
any Java application that accesses a DBMS using the
JDBC interface, without requiring its recompilation
nor any special deployment action.

Since the functionality of this access logger can
be implemented using different approaches, we have
selected three of them in order to have some initial
prototypes. This work compares such approaches and
gives an initial performance comparison of those that
appeared better at design time.

The rest of this paper is structured as follows. Sec-
tion 2 describes the objetives and requirements of the
access-logging tool. Section 3 outlines the architec-
tural approaches that might be followed for building
the tool, discussing their pros and cons. Later, Section
4 describes the resulting tool, and Section 5 provides
the results of an initial performance comparison. Fi-
nally, Section 6 outlines the applicability of this log-
ger, Section 7 discusses further work, and Section 8
gives the paper conclusions.

2 REQUIREMENTS

As already commented above, the aim of our tool is
to log each one of the database accesses made by

104
Torrentí-Román A., Pascual-Miret L., Irún-Briz L., Beyer S. and D. Muñoz-Escoí F. (2008).
ASPY - An Access-Logging Tool for JDBC Applications.
In Proceedings of the Third International Conference on Software and Data Technologies - ISDM/ABF, pages 104-111
DOI: 10.5220/0001872801040111
Copyright c© SciTePress

a given application. Such logging is interesting for
diagnosing problems in the way a programmer has
structured each one of the application transactions, or
in how a set of concurrent transactions are involved
in livelocks or deadlocks. If such situations can be
analyzed afterwards, reading the appropriate logs, the
programmer will be able to rewrite his/her program
in order to fix the problems that have been detected.
To this end, different issues should be required from
this proposed tool: stable logging, efficiency, adapt-
ability, transparency and appropriate error/exception
reporting and management.

Stable Logging. All database accesses should be
logged in stable storage in order to allow an off-line
analysis of the program behavior. Although on-line
processing could also be made with some tools, and
is also available in our tool, some types of log pro-
cessing require a non-negligible time and logging in
secondary storage is needed in such cases.

Efficiency. The logging process should be as fast
as possible, in order to introduce a minimal delay in
the application being monitored. Although we intend
to use our tool in the development/testing/debugging
phases of a target application, it is not discardable to
use also the tool in already deployed applications.

Adaptability is needed because software compo-
nents evolve in a continuous way. New compiler ver-
sions or database versions can be raised in question of
months. If we can implement a logger that works for
every software application and for any DBMS, then
adaptation cost will be null and comparing those sys-
tems will be easy.

Transparencyallows to replace the real driver with
our tool without affecting the normal behavior of the
application being monitored. This is required when
we do not have enough resources to modify the ap-
plication to include the desired functionality. Thus,
ease of setup will ease the integration process. Trans-
parency may even be required, if we cannot modify
any source or the execution lines.

In the real world, a non-recommended way to pro-
gram is to hide the exceptions raised by other appli-
cation components, without appropriately managing
them. The main objective of this incorrect practice is
to provide a view of a non-faulty program but some-
times exceptions are non-predictable and they have
been caused by unexpected events, so they should be
reported. One example of this behavior is an applica-
tion that ignores such exceptions, leading to a transac-
tion rollback due to a constraint violation. Final user
can think that the transaction was successfully com-
mitted –in case of exceptions not being reported–, but
some operations caused a problem which should to
be shown. A way to handle this situation is needed,

which means that exceptions should be reported to-
gether with the problem that caused them. The way
to introduce this new functionality should be trans-
parent or at least leave the logic as simple as possible.
Our aim is to be able to report those exceptions that
were initially ignored by the user-level application or
library that directly accessed the database.

In the next section, we explain how to reach these
requirements comparing three different logging meth-
ods and showing their advantages and disadvantages.

3 LOGGING TECHNIQUES

In this section we make a qualitative comparison be-
tween three logging techniques: extending the con-
nector interface, usage of dynamic proxies, and As-
pect Oriented Programming (AOP).

3.1 Extending the Connector Interface

The first technique that is studied might be the sim-
plest one. We reach the main goal, by implement-
ing the main interfaces of the connector in different
classes with pointers to an instance of the real driver.
Then, we use the such extended driver instead of the
one provided by the vendor. Every method that wants
to be logged has to be rewritten, which implies a big
effort when the connector API is complex. Later, at
every rewritten method an invocation to the real driver
is needed, to leave the system unaltered. Such behav-
ior is outlined in the following pseudocode example:

void method(type value) {
take initial time
realDriver.method(value)
take final time
log(method, parameters,

final time, initial time, ...)
}

This technique is useful when we need to log a
few methods or do some specific operations for each
method, otherwise its cost is excessive and all the
methods of an interface have to be wrapped even if we
are only interested in a few. To accomplish the goal of
catching exceptions, code has to be surrounded with
try-catch blocks. Logging the method and the value
of the parameters that caused the exception is inter-
esting to reflect the problem in order to offer the best
description to the administrator. This practice is con-
sidered necessary and unavoidable when the software
is still in its debug phase. The overload introduced
by executing all the code of the wrapper between try-
catch blocks can be suppressed at deployment phase
if the software has been sufficiently tested.

ASPY - An Access-Logging Tool for JDBC Applications

105

To sum up, the main advantage of this approach
is that we can use a different logging functionality in
each one of the operations being monitored, since the
wrapping code needs be explicitly written for all op-
erations. On the other hand, its main problem con-
sists in the need of wrapping each one of the oper-
ations being provided in the wrapped interface, de-
manding some programming effort even for opera-
tions that were of no interest.

3.2 Dynamic Proxies

The weakness of the previous technique is corrected
with reflection. The main advantage of this technique
is that Java and other languages have an introspective
property, thus, the state at execution time can be re-
trieved. If we combine this with a generical point of
access (for instance, when an invocation takes place)
then we can access to all methods with one small
piece of code. One way to do that is using the dy-
namic proxy pattern, that wraps an instance of the
real driver. Then, the user is provided with a set of
proxies that implements the connector API. When an
invocation is received, the proxy will pass the oper-
ation to the real driver and log the required informa-
tion. Let’s simplify and show the pseudo-code of a
dynamic proxy:

RealDriver target

Object invoke(method, arguments) {
take initial time
method.invoke(target, arguments)
take final time
log(method, parameters,
final time, initial time, ...)

}

Note that in this case we are extending each oper-
ation with code similar to that shown in Section 3.1
but now we are overloading a basic operation of a ba-
sic class, and thanks to the reflective characteristics of
the Java language, such extensions are applied to each
one of the operations in the RealDriver class (in this
example).

As we can see, this way of logging guarantees
a generic solution; i.e., we simply need to write a
common code that will be used in all operations be-
ing filtered. As a result, this demands less program-
ming effort. On the other hand, this may raise prob-
lems in those operations where we need specific be-
havior. The program logic might be more complex
than with the previous technique –note that reflec-
tion needs some supporting code that needs to be in-
cluded in all wrapped operations– and, as a result,
there is a loss of performance. When log time ar-
rives, most of the values need to be resolved at ex-

ecution time, introducing an overload that has to be
considered when high-performance systems are being
logged. So for some cases, a method that introduces
less impact should be used, such as a minimal wrap-
per constructed with the technique described in the
previous section.

3.3 Aspect Oriented Programming

The Aspect Object Programming (AOP) is an intu-
itive technique to identify parts of the software where
various concepts are being mixed, separating them
into different aspects that may be developed indepen-
dently. In Java there is an AOP framework called
AspectJ. One of the most important characteristics of
AspectJ is the fact that with aspects, new code –i.e.,
new functionality aspects– can be added to a com-
piled class or a bunch of classes, without needing their
source code. Therefore, the new functionality can be
inserted into the bytecode, only knowing which are
the methods of the files, which is easy when we are
using a public API with available interfaces. So, as-
suming that we have a basic knowledge of JDBC, we
can generate new classes with the needed function-
ality and that will lead us to the main goal: to wrap
JDBC. The way of doing that is setting some Point-
cuts and define which operations will be added when
the compiler finds such pointcuts. When the AspectJ
compiler detects a method that matches a pointcut it
adds new lines to the code. It is simple to make a rule
which includes all the methods that implement any in-
terface included in the JDBC API. Here is an example
of this process in pseudo-code:
around(): execution(* * java.sql.*){

take initial time
proceed()
take final time
log(method, parameters,

final time, initial time, ...)
}

This code is translated by the compiler. When an
execution of a method occurs, then we measure time,
proceed with the execution, and log the relevant in-
formation of the method, the time taken and any other
relevant system parameters. When exceptions need
to be caught, AOP is also a valid technique due its
generality (Lippert and Lopes, 2000). A pointcut can
be added to offer this functionality by specifying that
when an exception of the type thrown by a connector
interface occurs, a log of the method and parameters
that caused this exception and the cause, is needed.
Obviously, this introduces an overload, as in the first
wrapping technique, but two versions of the driver can
be easily made by suppressing the exception point-
cut. Thus, when the system needs a high performance,

ICSOFT 2008 - International Conference on Software and Data Technologies

106

the driver without catching exceptions should be used.
However, another version with exception logging can
be easily made by setting the appropriate pointcuts.
Anyway, logging exceptions is the best practice to de-
termine which is the real behavior of the application,
so administrators should take them into account.

4 AN EXAMPLE TOOL: ASPY

Aspy is the fruit of this study. It is based on AOP and
developed with AspectJ. Further optimization was
done reflecting the study of (Avgustinov et al., 2005).
AOP has been chosen for its benefits. On the one
hand, we have its generality which allows to log ev-
ery method included in the JDBC API. On the other
hand, the main aspect can be applied to any partic-
ular JDBC Driver of any DBMS, so specific func-
tionality can also be included. The gain is obvious,
we can maintain a generic Driver in an easy way and
we can develop a concrete Driver if we want to add
to our DBMS specific features to reach a project re-
quirement. We talked about different requirements
that should be reached by our software in Section
2. Let’s see how Aspy reaches them.Stable log-
ging: Aspy is a piece of software located between the
application and the DBMS. It logs into files all the
relevant information of this interaction, like method
and class names, parameters of the method, current
time, an identifier of the connection relative to the ob-
ject and the cost associated to the operation. Most
of the tests will find this information enough to reach
a satisfactory conclusion.Efficiency: AOP offers an
agreement between generality and efficiency and the
code can be optimized to the desired level with this
technique. So, as we will see in Section 5, its main
cost is derived from I/O access, so we have focused
our efforts in data manipulation and in I/O manage-
ment. Adaptability: AspectJ allows compiling the
same aspect to different drivers. The only require-
ment on the driver’s part is implementing the JDBC
API, so the resulting code will be generated for all
required methods. When the JDK changes its API,
the aspect will remain the same, because these oper-
ations are not dependent on a version or a concrete
API. Transparency: Aspy replaces the real driver, but
all the functionality is included in the code. So, in a
practical way, is like adding the log operations into
the original source code. There is no need of specify-
ing the real driver or to register both drivers, because
Aspy is an extended version of the original driver.Ex-
ception handling: One difference between Aspy and
p6spy, see Chapter 16 of (Shirazi, 2000), which is
a software implemented using the first technique de-

scribed in this paper, is exception reporting. As it was
mentioned above, including this behavior is like du-
plicating the code, and AspectJ offers a simple way
to log exceptions. The way to deal with this in As-
pectJ is as follows:. A pointcut is introduced in the
aspect, which inserts code when a method throws a
SQLException, so it will be inserted and caught at
most methods that implement the JDBC API. The
compiler will surround the methods that match with
the previous description with a try-catch block, gen-
erating extra code. So a way to enable/disable excep-
tion logging is provided in order to minimize the im-
pact due to reporting unexpected behavior. Enabling
it is specially useful if an application runs without re-
porting the throwing of exceptions to the user, which
is considered bad practice but often done.

4.1 Possible Configurations

Aspy can be configured to log only a few classes or
a few methods or not to log some specific classes or
methods. It is up to the administrator to choose which
are the relevant classes and methods of the systems
and which are not. Also, I/O parameters can be set
up, for instance, to use specific appenders to log or to
choose the way to receive the information.

4.2 Long-term Program Executions

Aspy was initially conceived to work while applica-
tions are in a debugging phase. However, there are
many applications of the software that need the re-
sult log to be taken while the application is running
and stable for months. Thus, the impact has to be
minimum and its results should be organized and op-
timized. To deal with that, Aspy can be configured to
generate multiple log files per days or per size. This
eases the task of analyzing the logs for the adminis-
trator, which can make a periodical report of the per-
formance of the application.

5 ASPY OVERLOAD

To measure the overload introduced by Aspy in the
system let’s compare which are the operations made
by it in a simple program. After that, we will see
which is the overload due to Aspy logic to determine
which are the methods to be logged and the data ma-
nipulation cost. Finally we will compare Aspy with
p6spy and analyze the results. We do not consider
a software made using reflection, as we consider re-
flection as a subset of AOP, because AOP uses all re-

ASPY - An Access-Logging Tool for JDBC Applications

107

flective functionality, improving it with extra tools to
obtain more flexibility and usability.

When an invocation of a method is made, Aspy
retrieves its parameters, measures the time before
and after the operation and obtains the connection to
which it belongs and the current time of the system.
After appending each variable, it proceeds to write in
the file or print to the console.

The following pseudocode could be an example
for that situation:

try {
obtain initial time
execute operation
obtain final time
obtain return value
obtain connection id associated
write in file (currentTime,
final - initial time, "className",
"methodName", parameters +
return value, connectionId)

}
catch (SQL Exception){

write in file (currentTime,
final - initial time, "className",
"methodName", parameters,
Exception launched, connectionId)

}

Equivalent Aspy pseudocode:
try {
obtain Signature
obtain methodName from Signature
obtain className from Signature
if (hasToBeLogged) {
obtain initial time
proceed with execution
obtain final time
obtain parameters from Signature
obtain connection id from hashMap
write in file (currentTime,
final - initial time, "className",
methodName, connectionId
parameters + return value)

}
}
catch (SQL Exception){
write in file (currentTime,
final - initial time,
className, methodName, parameters,
exception launched, connectionId)

}

Variables between ”” are obtained at compilation
time, so their cost is lower than obtaining them at ex-
ecution time.

The cost of a million of operations is:
Executing Example code:
145.577 seconds

With Aspy:
201.594 seconds

That means that most of the cost of logging is due
to I/O operations and to reflection methods and not
to adding a specific logic in order to determine which
are the methods that should or should not be logged.
Therefore, if the optimization is made by accumulat-
ing log lines and writing them by blocks will obtain a
significant performance improvement.

All the tests have been made with exception ad-
vice enabled so an extra overload is introduced, but
exceptions usually offer more information than state-
ment logs, so their relevance demands them to be re-
ported.

First test made with Aspy consists of a set of in-
structions simulating a high system load. This exam-
ple is equivalent to a system based on a three-layer
architecture, where the bottom layer is the Database
layer, so, all the operations are JDBC operations.
Considering a 100% of CPU use in a server with an
Intel(R) Pentium(R) 4 CPU 3.00GHz processor and
1024 KB of RAM and a PostgreSQL (Douglas and
Douglas, 2003) Database, when the number of op-
erations are increased progressively the overload is
shown at Figure 1. X axis is the number of JDBC
operations done and Y axis represents the time in sec-
onds to execute these operations.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

T
im

e
in

 s
ec

on
ds

JDBC Operations

program cost
with Aspy

with p6Spy

Figure 1: Aspy logging overload (intensive load).

For instance, for 280,000 JDBC operations, the
application needs 74.2 seconds and the cost of using
Aspy is 14.1 seconds. That means a 19% of overload.

A comparison with p6spy is also included, to jus-
tify the results. As we can see, initial overload is due
to program logic. One of the main lacks of generality
induced by Aspy is the use of reflection to retrieve the
log information. When the number of operations is
relative large, the impact introduced by Aspy is lower
per operation, due to buffering optimizations. So for
high-load applications where the use of CPU is also

ICSOFT 2008 - International Conference on Software and Data Technologies

108

very high, logging is an overload that should be con-
sidered if the system needs a very high performance,
and a 10% is relevant for the whole system. If the
high loads are non-continuous, the first technique for
logging is the best choice. The significant overload
is introduced when the load is equal to 1,500,000 op-
erations. Buffering techniques are needed after this
threshold, to achieve a good performance ratio. For
the AOP technique, a mixed approach has to be used.
One way to gain performance is by eliminating ex-
ecution time resolution of log values. Then a spe-
cific method for every JDBC operation is needed. We
lose generality in benefit of performance. This can
be done by generating logging code in an automatic
way for every method and recompiling the driver. So,
all the calls used to obtain pointcut state and its value
are suppressed, generating a code equivalent to that
shown in Section 3.1.

The second test is made by emulating a low-
medium load in an application or server. It consists
in doing a JDBC operation every 50ms in the same
server as in the previous test. This system is equiv-
alent to a user application connected to a database
or a server with a normal transaction load. Results
will show that overload in these systems is negligible,
specially when buffering techniques are being used.
Results are shown at Figure 2. X axis represents the
number of JDBC operations and the Y axis the impact
of the driver, expressed in percentage.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

P
er

ce
nt

ua
l o

ve
rh

ea
d

JDBC Operations

with Aspy
with p6Spy

Figure 2: Aspy logging overload (medium load).

So, for non-high loads, logging is an interesting
technique in every case, allowing to retrieve all the in-
formation generated by the system, so it can be used
to improve it and to detect possible bugs or consis-
tency errors. In next section we will describe the pos-
sible usages of logging in this kind of systems.

5.1 Buffering the Log Information

If Aspy is configured to write when the buffer reaches
100 lines, the overhead is 12% for high-workload ap-
plications, i.e., one-third lower than that shown in
the configuration without using buffers, allowing thus
continuous logging in a real world systems. This
means that this technique is useful, especially if the
factor is configured relative to the application where
the logger is being used. One of the troubles that a log
developer can find is knowing when the application is
going to finish the execution. One way to deal with
this situation is setting a thread hook, that runs when
the main method ends, and flushes the buffer. So it
is up to the administrator to achieve a good ratio of
number of items in the buffer, to obtain the maximum
performance.

So, the overload introduced by an operation log-
ger should be considered by the final user or admin-
istrator in order to determine which is the level of log
needed, because certain types of operations are not
always required or they are not significant for some
specific tests.

6 APPLICABILITY

As we introduced in earlier sections, knowing which
are the real statements between a software application
and the DBMS is an interesting tool. It leads us into a
wide world of possible usages, which are very inter-
esting and can be applied in different phases of soft-
ware development. Furthermore, logging at this level
makes the result independent of the DBMS, increas-
ing the possibility to design common tests. In other
works, such as (Gould et al., 2004), queries are ana-
lyzed at compilation time. In some cases, this is in-
sufficient because most of the relevant parameters are
visible at execution time, where Aspy can be used.
As we discussed in Section 5, Aspy can replace the
real driver without harming the performance, so real-
time applications can be monitored even after the de-
bug phase. Some of the further described applications
of Aspy are being developed and some will be inter-
esting to develop in the future, but this set of usages
will increase the quality of the systems which use a
Database, increasing their security and their perfor-
mance.

1. Aspy can be used to detect incorrect configura-
tions of a Database. For instance, a common mis-
take is not to deactivate auto-commit when we
want to run a transaction. Then the application
is committing every correct sentence, generating
an incorrect state of the Database. Some DBMS

ASPY - An Access-Logging Tool for JDBC Applications

109

raise an exception when this happens but others,
like PostgreSQL (Douglas and Douglas, 2003) do
not detect this situation, and allow the change of
the isolation level without setting up to false the
auto-commit flag. With Aspy we can deal with
this situation and a modification of the code to
avoid it is minimal, just by adding one line to the
Driver when an Isolation Level change occurs.

2. Suspicious accesses to restricted tables can be de-
tected when the code of the application is not pro-
vided, see (Hu and Panda, 2003) for more infor-
mation. This is a very important utility for users
and enterprises that have bought a third-party ap-
plication/library and want to be sure about the
confidentiality of their data. As in the first case, a
simple modification can be made to directly avoid
these operations or allowing only a subset of per-
mitted ones.

3. Aspy generated logs can be the fed to an expert
system that makes suggestions on query optimiza-
tion to the programmer or on syntactic rules to the
DBMS administrator. Our efforts are going in this
way, by analyzing performance techniques shown
in SQL Performance Tuningto build optimizers
which can detect and suggest changes to improve
productivity. Note, however, that modern DBMSs
have very powerful query optimizers and that our
intent is simply to discourage the use of some sen-
tences that can not be adequately optimized by the
underlying DBMS.

4. Another kind of expert system, that might use
Aspy, can help the administrator to improve the
scheme, by suggesting indexes on the most ac-
cessed fields and tables. Due to the fact that all
the information can be logged, this system can be
made by identifying each field and table that was
referenced in the operation and generating statis-
tics with that information.

5. Cold replication can be made using the log file and
a program that reproduces the operations, to an-
other database. This is specially useful when het-
erogeneous systems, like different DBMS, want
to be compared. It is also needed for raising
DBMS at debug phase in order to detect imple-
mentation errors. It can be a fast alternative to
(Krishnamoorthy, 1999).

6. In order to detect bad practices, such as ignor-
ing exceptions by a deployed program, a logger
with exception reporting can be used. So final
users will detect forbidden accesses, failed con-
nections, rollback operations and other behaviors
produced when a communication with a database
takes place. As it was mentioned before, this in-

troduces an overload, so the decision should be
taken by the administrator in order to maintain a
good performance.

7 RELATED AND FURTHER
WORK

As mentioned earlier in this paper, p6spy is a good ap-
proach to the main goal, but its installation requires a
more intrusive procedure and updating the whole tool
represents an expensive cost of development. Some
similar tools, like LOG4PLSQL (The LOG4PLSQL
project team, 2002), are also interesting but, when us-
ing LOG4PLSQL, the deployment is a hard process
due to modifications that should take place at DBMS
side. When comparing with Oracle Log Buffers, see
(Oracle Backup and Recovery, 2008), we can con-
clude that obtaining this information at DBMS level is
a hard and expert process, and a specific knowledge of
the DBMS and the version is required (to access to the
committed and uncommitted operations). However,
one main lack appears when using LOG4PLSQL and
Oracle buffers, due to obtaining operation informa-
tion at this level is less expressive than at top level,
therefore, some relevant data will be lost (such as
JDBC methods, parameters names, and their values)
and it can be insufficient to feed the developer at the
debug phase of the application.

Our efforts are focused on developing solutions
that use the log generated by Aspy to reach the ap-
plications presented in Section 6. Some need a bigger
effort than others, but most of them have a common
approach, which can be implemented as a log line an-
alyzer. Depending on every case, analysis can be done
off-line or on-line but its goal is to provide advices to
improve software quality and correctness.

We are planning to employ Aspy as the central
component of a larger system, which provides support
for database query analyzer modules. Analyzer mod-
ules can be either static or dynamic. Static modules
process the Aspy log output offline, whereas dynamic
modules are employed at run-time.

In order to support simple programming of ana-
lyzer modules, we intend to define a query language
providing basic primitives for log processing. Fur-
thermore, we will investigate the possibility of pro-
viding a graphic user interface that allows the con-
struction of analyzers.

Finally, we plan to define an API that allows the
interception and filtering of database accesses at run
time. Such an interface could be used, for example,
for security purposes.

ICSOFT 2008 - International Conference on Software and Data Technologies

110

8 CONCLUSIONS

Monitoring at this level, between the application and
the DBMS, is a well-known practice. It is less in-
trusive than logging the whole program and provides
enough information for debugging and optimization
purposes, depending on the software phase in which
the logging takes place. Impact minimization ef-
forts are a justified action when long-term logging is
needed. The use of AspectJ provides generic use for
each DBMS and changes to the code are minimal if
a special functionality is required. This property of
Aspy is not incompatible with efficiency as we have
shown in this paper. Considering the goals of our
study, Aspy is a practical tool for logging and con-
trolling the operations made by an application, espe-
cially when we do not have its source code, as it is the
case with most third-party software. In other cases,
where debugging is needed or a persistence layer is
used, such as Hibernate (Bauer and King, 2006) or
(Bloom, 2006), precise information of the operations
is required, so with this kind of software the program-
mer can obtain a precise view of the real interaction
and act in consequence; for instance, by creating new
indexes over the database fields which are often ac-
cessed. So, after a first phase of analysis of the system
requirements, a logger tool can be used to improve the
software quality, in order to build better applications.

ACKNOWLEDGEMENTS

This work has been partially funded by EU FEDER,
MEC and IMPIVA under grants TIN2006-14738-C02
and IMIDIC/2007/68.

REFERENCES

Avgustinov, P. et al. (2005). Optimising AspectJ.SIGPLAN
Not., 40(6):117–128.

Bauer, C. and King, G. (2006).Java Persistence with Hi-
bernate. Manning Publications Co., Greenwich, CT,
USA.

Bloom, R. (2006). Debugging JDBC with a logging driver.
Java Developer’s Journal.

Douglas, K. and Douglas, S. (2003).PostgreSQL. New
Riders Publishing, Thousand Oaks, CA, USA.

Gould, C., Su, Z., and Devanbu, P. (2004). Static checking
of dynamically generated queries in database applica-
tions. InICSE ’04, pages 645–654, Washington, DC,
USA. IEEE-CS Press.

Hu, Y. and Panda, B. (2003). Identification of malicious
transactions in database systems. InIDEAS03, Hong
Kong, SAR, pages 329–335. IEEE.

Krishnamoorthy, G. (1999). Heterogeneous query process-
ing through SQL table functions. InICDE 1999, page
366, Washington, DC, USA. IEEE-CS Press.

Lippert, M. and Lopes, C. V. (2000). A study on excep-
tion detection and handling using aspect-oriented pro-
gramming. InICSE ’00, pages 418–427, New York,
NY, USA. ACM.

Oracle Backup and Recovery (2008). Oracle online docu-
mentation. URL:http://www.oracle.com.

Shirazi, J. (2000).Java: Performance Tuning. O’Reilly &
Associates, Inc., Sebastopol, CA, USA.

The LOG4PLSQL project team (2002). Log 4 pl/sql. Ac-
cessible in URL:http://log4plsql.sourceforge.net/.

ASPY - An Access-Logging Tool for JDBC Applications

111

