
FINE-GRAINED PERFORMANCE EVALUATION AND
MONITORING USING ASPECTS

A Case Study on the Development of Data Mining Techniques

Fernando Berzal, Juan-Carlos Cubero and Aı́da Jiménez
Dept. Computer Science and A.I., University of Granada, Granada 18071, Spain

Keywords: Aspect-oriented programming, performance monitoring, data mining techniques.

Abstract: This paper illustrates how aspect-oriented programming techniques support the I/O performance evaluation
and monitoring of alternative data mining techniques. Without having to modify the source code of the system
under analysis, aspects provide an unintrusive mechanism to perform this kind of analysis, letting us probe a
system implementation so that we can identify potential bottlenecks.

1 INTRODUCTION

All programming methodologies provide some kind
of support for separation of concerns, which entails
breaking down a program into distinct parts that over-
lap in functionality as little as possible. The structured
and object-oriented programming paradigms resort to
procedures and classes, respectively, to encapsulate
concerns into single entities and thus achieve some
separation of concerns. However, some concerns
defy these forms of encapsulation and lead to tangled,
difficult-to-maintain code, since they cut across multi-
ple modules in a program. Aspect-oriented program-
ming overcomes this problem by enabling develop-
ers to express these cross-cutting concerns separately
(Kiczales et al., 1997).

In this paper, we employ aspect-oriented software
development techniques for solving a common prob-
lem programmers must face in the development of
complex systems; namely, the fine-grained evalua-
tion and monitoring of system performance. Since as-
pects provide an unintrusive way to tuck probes into
their system, developers do not have to tweak their
underlying system implementation for enabling sys-
tem monitoring. As keen observers, they can study
system performance without inadvertently introduc-
ing subtle errors nor degrading actual system perfor-
mance in a production environment (aspects can eas-
ily be removed once the performance evaluation has
been performed).

Our paper is organized as follows. Section 2 de-
scribes how cross-cutting concerns, or aspects, can
be specified using AspectJ. Section 3 describes how

aspects can be incorporated into a component-based
framework. Section 4 presents a case study on the
evaluation of the I/O performance of data mining
techniques. Finally, Section 5 concludes our paper
by summarizing the results of our study.

2 SPECIFYING CROSS-CUTTING
CONCERNS WITH ASPECTJ

The main idea behind AOP is to capture the struc-
ture of crosscutting concerns explicitly, since these
concerns are inherent to complex software systems
but their implementation using conventional program-
ming techniques leads to poorly-structured software.

Gregor Kiczales started and led the Xerox PARC
team that eventually developed AspectJ (Kiczales
et al., 2001), an aspect-oriented extension for the Java
programming language.

AspectJ encapsulates crosscutting concerns in
special classes, which are declared using theaspect
keyword:

public aspect TMinerAspect
{
// ... aspect implementation details ...

}

AspectJ aspects can alter the behavior of the base
code (the non-aspect part of a program) by apply-
ing advice (additional behavior) at various join points
specified by pointcuts. For those already familiar with
current relational database management systems, we

259Berzal F., Cubero J. and Jiménez A. (2008).
FINE-GRAINED PERFORMANCE EVALUATION AND MONITORING USING ASPECTS - A Case Study on the Development of Data Mining
Techniques.
In Proceedings of the Third International Conference on Software and Data Technologies - ISDM/ABF, pages 259-262
DOI: 10.5220/0001874902590262
Copyright c© SciTePress

could say that AspectJ provides for object-oriented
programs what triggers do for relational databases.

The complete details of the AspectJ language are
covered in several programming handbooks (Laddad,
2003) (Gradecki and Lesiecki, 2003).

3 INSTRUMENTING A
COMPONENT-BASED DATA
MINING FRAMEWORK

We will now proceed to describe how we can equip a
data mining framework written in Java with the nec-
essary instruments for measuring and recording the
number of I/O operations performed by a data mining
algorithm. Later, we will show some experimental
results we have obtained with the help of this instru-
mentation.

First of all, we must intercept component creation
calls. In a typical object-oriented framework, compo-
nent creation can be performed by directly invoking
the corresponding constructor or by resorting to the
reflection capabilities included within modern pro-
gramming platforms.

For example, the following AspectJ snippet inserts
the appropriate advice after every call to any construc-
tor of any of the subclasses of theClassifier class:

after() returning (TMinerComponent component)
: call(Classifier+.new(..)) {

addDynamicPort(component);
}

We can also deal with reflective object in-
stantiation by intercepting calls to the Java
Class.newInstance method:

after() returning (Object object)
: call(Object Class.newInstance()) {

if (object instanceof Classifier) {
addDynamicPort((TMinerComponent)object);

}
}

In both cases, we use AspectJafter()
returning advice in order to obtain a reference
to the newly created component. Using this refer-
ence, we can employ the infrastructure provided by
our data mining framework to attach a dynamic port
to such new component; i.e. a hook where we will
store the performance measurements our aspect will
perform.

For instance, we might be interested in counting
how many times our data mining algorithm has to read
its training data. We could do it just by using a counter
that is reset when we start the classifier training phase
(when we call itsbuild method) and is incremented

each time we access a dataset while we are building
the classifier (i.e. when weopen it):

// Reset counter before classifier construction
before():

call (void Classifier+.build()) {
// ... reset counter ...

}

// Dataset scan: Increment counter
before(Dataset ds):

call (void Dataset+.open()) && target(ds) {
// ... counter++ ...

}

We can easily evaluate the I/O performance of
any algorithm just by using aspects written as above.
Our aspect-oriented performance evaluation approach
provides three main benefits with respect to more in-
trusive techniques we could have used:

• First, using our approach, we do not need to mod-
ify the source code of the algorithm under test (in
fact, we do not even need to have access to its
source code).

• Second, since we do not touch the code of the
underlying system, we do not inadvertently intro-
duce subtle bugs in its implementation (nor in the
measurement code itself, since it is automatically
woven by the AspectJ compiler).

• Third, the experimenter can easily adjust the mea-
surements she wants to obtain, just by tweaking
the aspect code to add as many dynamic ports to
her components. This would be extremely hard to
do if she had to fine-tune the underlying system
source code. Moreover, our data mining frame-
work is designed so that measurements attached
to a component via its dynamic ports are automat-
ically analyzed by the framework reporting capa-
bilities, requiring no additional effort on her part.

4 EXPERIMENTAL RESULTS

In Data Mining applications, CPU time is not the only
relevant factor to be considered when evaluating com-
peting alternatives. A more in-depth analysis of the
performance of those alternatives is usually needed
to evaluate their scalability, i.e. their ability to cope
with ever increasing data volumes. We will now illus-
trate the kind of results we can easily obtain using our
aspect-oriented performance evaluation approach.

We have used thirteen different datasets taken
from the UCI Machine Learning Repository (Blake
and Merz, 1998) for the construction of different
kinds of classifiers:

ICSOFT 2008 - International Conference on Software and Data Technologies

260

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

ART C4.5 CN2-STAR CN2-DL RIPPER Naive Bayes

I/
O

 o
p

er
a

ti
o

n
s

(r
ec

o
rd

s)

audiology

car

chess

hayesroth

lenses

lungcancer

mushroom

nursery

soybean

splice

tictactoe

titanic

vote

Figure 1: I/O cost for different algorithms in terms of the
number of records fetched during the training process.

• An associative classifier, ART, whose acronym
stands forAssociation Rule Tree (Berzal et al.,
2004).

• A well-known algorithm for the construction of
decision trees: Quinlan’s C4.5 (Quinlan, 1993), a
derivative from ID3 (Quinlan, 1986).

• Two variants of CN2, a rule learner (Clark and
Boswell, 1991) (Fürnkranz and Widmer, 1994).

• A decision list learner called RIPPER (Cohen,
1995), and

• A simple Bayesian classifier, Naive Bayes, to be
used as a point of reference since its construc-
tion requires just a single sequential scan over the
whole training dataset (its I/O cost is optimal).

Figures 1 through 3 illustrate the I/O costs associ-
ated to each learning algorithm we have tested.

If we evaluated these different algorithms just by
measuring the CPU time required to build the classi-
fiers for the UCI datasets, we could draw the wrong
conclusions with respect to which methods might be
better suited for real-world databases. The actual
number of I/O operations might be a better indicator
of real-world performance (see Figure 1).

Associative classifiers, such as ART, internally
use efficient association rule mining techniques to
build classification models. When working with rela-
tively small datasets, such as those from the UCI, this
introduces a significant overhead that could make us
think they are not suitable for real-world scenarios.

In fact, ART requires more CPU time than the tra-
ditional C4.5 decision tree learner. This is due, among
other things, to the fact that ART searches in a larger
solution space than C4.5: it looks for multi-variate
splits while C4.5 is just a greedy algorithm that looks
for the best single variable that can be used to split the
training set at each node of the decision tree.

1

10

100

1000

10000

100000

1000000

ART C4.5 CN2-STAR CN2-DL RIPPER Naive Bayes

I/
O

 o
p

er
a

ti
o

n
s

(s
ca

n
s)

audiology

car

chess

hayesroth

lenses

lungcancer

mushroom

nursery

soybean

splice

tictactoe

titanic

vote

Figure 2: Number of times a dataset is sequentially scanned
during classifier construction. It should be noted that the
scanned dataset is only a fraction of the whole training
dataset once the classification model has been partially
built.

As other decision list and rule inducers, ART con-
straints the rule size to efficiently bound its search
space. However, ART can be an order of magnitude
faster than CN2 or RIPPER just because of its search
strategy. Where previous rule inducers discover one
rule at a time, ART directly looks for sets of rules,
thus reducing the number of database scans it must
perform to evaluate candidate solutions (see Figure
2). These differences could be dramatically exacer-
bated when the training dataset does not fit into main
memory, a typical situation in data mining scenarios.

ART I/O performance is bound by the resulting
classifier complexity, as decision tree learners. Since
ART search strategy is designed to lead to compact
classifiers, the final number of dataset scans required
by ART is even smaller that the number of scans re-
quired by our efficient RainForest-like implementa-
tion of C4.5 (Gehrke et al., 2000). Our decision tree
learner performs two dataset scans at each internal
node of the decision tree: one to collect the statis-
tics which are necessary to evaluate alternative splits,
another to branch the tree. Decision list and rule in-
ducers, on their hand, perform one dataset scan for
each formulated hypothesis, which creates a large I/O
bottleneck when datasets do not to fit into main mem-
ory.

We have also measured the number of disk pages
read by each algorithm for different page sizes, as
shown in Figure 3. This quantity can serve as a strong
indicator of the algorithms scalability. C4.5 follows
a recursive top-down strategy which fragments the
training dataset into disjunct subsets, hence the non-
linearity is shown in Figure 3. On the other hand,
since ART, CN2, and RIPPER are iterative algo-
rithms, the number of disk pages read by any of those
algorithms proportionally decrease with the page size.

FINE-GRAINED PERFORMANCE EVALUATION AND MONITORING USING ASPECTS - A Case Study on the
Development of Data Mining Techniques

261

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

1 2 4 8 16 32 64 128 256 512 1024

Page size

I/
O

 o
p

er
a

ti
o

n
s

(p
a

g
es

)

ART

C4.5

CN2 - STAR

CN2 - DL

RIPPER

Naive Bayes

Figure 3: Number of disk pages read by each algorithm for
different page sizes. The page size indicates the number of
training examples each page contains.

However, while ART I/O cost is bound by the clas-
sifier complexity, CN2 and RIPPER performance is
determined by the search space they explore.

In summary, ART classifiers exhibit excellent
scalability properties, which make them suitable for
data mining problems. They provide a well-behaved
alternative to decision tree learners where rule and de-
cision list inducers do not work in practice.

5 CONCLUSIONS

In this paper, we have shown how AspectJ, an aspect-
oriented extension for the Java programming lan-
guage, can be used in real-world applications to pro-
vide fine-grained performance evaluation and moni-
toring capabilities. This unintrusive technique avoids
the inadvertent insertion of bugs into the system under
evaluation. It also frees developers from the burden
of introducing scattered code to do their performance
evaluation and monitoring work.

Finally, we have described how our proposed ap-
proach can be employed for evaluating the I/O cost
associated to some data mining techniques. In our ex-
periments, we have witnessed how associative clas-
sifiers such as ART possess good scalability proper-
ties. In fact, the efficient association rule mining algo-
rithms underlying ART make it orders of magnitude
more efficient than alternative rule and decision list
inducers, whose I/O requirements heavily constrain
their use in real-world situations unless sampling is
employed. Moreover, we have confirmed that the ad-
ditional cost required by ART, when compared to de-
cision tree learners such as C4.5, is reasonable if we
take into account the desirable properties of the clas-
sification models it helps us obtain, thus making of
associative classifiers a viable alternative to standard

decision tree learners, the most common classifiers in
data mining tools nowadays.

ACKNOWLEDGEMENTS

Work partially supported by research project
TIN2006-07262.

REFERENCES

Berzal, F., Cubero, J. C., Sánchez, D., and Serrano, J. M.
(2004). ART: A hybrid classification model.Machine
Learning, 54(1):67–92.

Blake, C. and Merz, C. (1998). UCI repository
of machine learning databases. Available at
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Clark, P. and Boswell, R. (1991). Rule induction with CN2:
Some recent improvements. InEWSL, pages 151–163.

Cohen, W. W. (1995). Fast effective rule induction. In
Prieditis, A. and Russell, S., editors,Proc. of the
12th International Conference on Machine Learning,
pages 115–123, Tahoe City, CA. Morgan Kaufmann.

Fürnkranz, J. and Widmer, G. (1994). Incremental reduced
error pruning. InICML, pages 70–77.

Gehrke, J., Ramakrishnan, R., and Ganti, V. (2000). Rain-
forest - a framework for fast decision tree construc-
tion of large datasets.Data Mining and Knowledge
Discovery, 4(2/3):127–162.

Gradecki, J. D. and Lesiecki, N. (2003).Mastering AspectJ:
Aspect-Oriented Programming in Java. Wiley.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., and Griswold, W. G. (2001). Getting started with
aspectj.Communications of the ACM, 44(10):59–65.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C. V., Loingtier, J.-M., and Irwin, J. (1997).
Aspect-oriented programming. InECOOP’97: 11th
European Conference on Object-Oriented Program-
ming, LNCS 1241, pages 220–242.

Laddad, R. (2003).AspectJ in Action: Practical Aspect-
Oriented Programming. Manning Publications.

Quinlan, J. R. (1986). Induction of decision trees.Machine
Learning, 1(1):81–106.

Quinlan, J. R. (1993).C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann.

ICSOFT 2008 - International Conference on Software and Data Technologies

262

