
STORING SEMISTRUCTURED DATA INTO RELATIONAL
DATABASE USING REFERENCE RELATIONSHIP SCHEME

B. M. Monjurul Alom, Frans Henskens and Michael Hannaford
School of Electrical Engineering & Computer Science, University of Newcastle, Callaghan, NSW 2308, Australia

Keywords: XML, Reference Relationship, RDBMS, FCL, PT, CRT.

Abstract: The most dominant data format for data processing on the Internet is the semistructured data form termed
XML. XML data has no fixed schema; it evolved, and is self describing which results in management
difficulties compared to, for example, relational data. This paper presents a reference relationship scheme
that encompasses parent and child reference relations to store XML data in a relational view, and that
provides improved of storage performance. We present an analytical analysis that compares the scheme
with other standard methods of conversion from XML to relational forms. A relational to XML data
conversion algorithm that translates the relational data into original XML data form is also presented.

1 INTRODUCTION

Semistructured data is becoming more and more
prevalent for use in performing simple integration of
data from multiple sources (Abiteboul, Quass et al.
1996). By semistructured, we mean that although
the data may have some structure, this structure is
not as rigid, regular, or complete as the structure
required by traditional database management
systems (Abiteboul 1997). The emergence of XML
(Harold 2004), which is a data format for semi-
structured data, has increased the use of
semistructured data, assisted by the fact that attribute
names are stored with the data itself, making it self-
describing (Deutsch, Fernandez et al. 1999).

XML is the dominant data exchange format for
Internet-based business applications. It is also used
as the data format for automated tasks such as
information extraction, natural language processing,
and data mining (Senellart and Abiteboul 2007).
When in XML form, data is neither table-oriented as
in a relational database, nor is it strictly typed as in
an object database (Abiteboul 1997). Rather, XML
data comprises hierarchies that have no fixed
schema. While XML form supports Internet
transport and certain data processing tasks, it causes
issues for other common activities such as querying
and updating. Techniques exist for querying XML
data (e.g. Lorel (Abiteboul, Quass et al. 1996),
UnQL(Buneman, Davidson et al. 1996), XQuery
(Pal, Cseri et al. 2005), XML-QL(Deutsch,

Fernandez et al.), XPath(Harding, Li et al. 2003));
however these are more complicated to use and
often less efficient than queries on the equivalent
relational data using languages such as SQL. The
promising approach of building XML database
management systems above underlying Relational
Data Base Management Systems (RDBMS) is
described in (Florescu and Kossman, 1999;
Shanmugasadaram, Tufte et al., 1999;
Shanmugasadaram, Kiernan et al., 2001; Du, Amer
et al., 2004; Pal and Cseri, 2004; Balmin and
Papkonstatinou, 2005; Josifovskil, Fontoural et al.,
2005). These systems represent the data in relational
form for processing that works better in that form,
and similarly represents the same data in XML form
when that is more suitable. Techniques are required
to translate the data between forms when necessary,
alternately the data is stored in both forms
simultaneously. In the quest to achieve query
efficiency, three questions have arisen (Balmin and
Papakonstantinou 2005):

1. How can XML data be stored in an
equivalent RDBMS?

2. How is an XML query translated into an
equivalent SQL query?

3. How is the result of an SQL query
translated back into an XML result?

This paper addresses the issue of converting data
in XML form into an equivalent relational database
that preserves any parent/child or other relationships

118
M. Monjurul Alom B., Henskens F. and Hannaford M. (2008).
STORING SEMISTRUCTURED DATA INTO RELATIONAL DATABASE USING REFERENCE RELATIONSHIP SCHEME.
In Proceedings of the Third International Conference on Software and Data Technologies - ISDM/ABF, pages 118-126
DOI: 10.5220/0001875501180126
Copyright c© SciTePress

implicit in the XML hierarchy. We present a
reference relationship scheme in which the XML
data (including all element paths and attributes) are
stored in a more space-efficient way than is provided
by other existing schemes.

The paper also addresses the issue of translation
of data from the RDBMS into equivalent XML
documents without loss of any information. In
particular, translations are achieved without loss of
attributes and element paths so that an XML
document can be translated into relational form, and
then back into XML form with the distinction
between element paths and attributes intact.

The remainder of this paper is organized as
follows: Related work is described in section 2. The
new parent child relationship structure is presented
in section 3. Analysis of storage requirements, the
translation algorithm for conversion from RDBMS
to XML form, and the estimated query time is
described in section 4. The paper concludes with a
discussion and final remarks in section 5.

2 RELATED WORK

The Object Exchange Model (OEM) defines a way
of representing XML data (Abiteboul 1997). An
instance of OEM can be thought of as a graph, with
objects as the vertices and element paths described
using labels on the edges. Each object has a unique
object identifier (oid). (Abiteboul 1997) also
addresses issues to do with querying and
reconstructing semistructured data. An RDBMS
may be used as a basis for storing and querying
XML data (Florescu and Kossman 1999). The XML
document is viewed as an ordered and labelled
directed graph. A node in the graph represents each
XML element; the node is labelled with the oid of
the XML element. Element-sub-element
relationships are represented by edges in the graph
and labelled by the name of the sub-element. The
order of sub-elements is defined by ordering
outgoing edges from nodes in the graph. Values
(e.g. Strings) in an XML document are represented
as leaves in the graph. All edges of the graph are
stored in a relational table called the edge table and
all the values (represented as leaves) are stored in
separate value tables. While the format assists in
performance of XML queries, this graphical form
does not differentiate between element paths and
attributes, or between element paths and references.
Therefore this form of representation is a
simplification, and some information may be lost.
As a consequence it may be impossible to exactly

reconstruct an original XML document from the
relational data form.

XQuery supports XML views of Relational Data
(Shanmugasadaram, Kiernan et al. 2001), providing
a general framework for processing arbitrarily
complex queries. The query language provides a
view composition mechanism that eliminates the
construction of all XML fragments, and an intensive
computation that reduces an XQuery query to SQL
for efficiency of RDBMS manipulation.

ShreX (Du, Amer et al. 2004) provides generic
(mapping-independent) functions for loading
shredded documents into relations and for
translating XML queries into SQL. In this approach,
the annotation processor parses an pre-annotated
XML schema, checks the validity of the mappings
and creates the corresponding relational schema.

Storing and querying XML data using de-
normalized relational databases is described in
(Balmin and Papakonstantinou 2005), which
elaborates a formal framework for XML schema-
driven decomposition that encompass de-normalized
tables and binary-coded XML fragments. The key
performance focus of this approach is the response
time for delivering the first results of a query. At
present this approach does not work on more
complex queries, because the schema model is based
on directed acyclic graphs (DAGs). It is expected
that the technique will be improved when it is
further developed to be based on arbitrary graphs.

XML data can be stably stored as a byte
sequence (BLOB) in columns of tables to support
the XML model (Pal, Cseri et al. 2004). This form
of storage introduces new challenges for query
processing. So-called ORDPATH is used to
preserve structural fidelity, and to allow insertion of
nodes anywhere in the XML tree without the need
for re-labelling existing nodes.

XISS/R is a system based on an extended pre-
order numbering scheme, which captures the nesting
structure of XML data and provides the opportunity
for storage and query processing that is independent
of the particular structure of the data (Harding, Li et
al. 2003). The system includes a web-based user
interface which enables stored documents to be
queried via a query language named Xpath. The
user interface utilizes the Xpath query engine, which
automatically translates Xpath queries into more
efficient SQL statements.

Document Type Descriptors (DTDs) may be
used as a tool in converting XML into Relational
database form (Shanmugasadaram, Krishnamurthy
et al. 2001). After the desired relational schema for
storing XML documents is defined, an XML

STORING SEMISTRUCTURED DATA INTO RELATIONAL DATABASE USING REFERENCE RELATIONSHIP
SCHEME

119

shredder object, that can accept an XML document
and shred it into rows, is used to populate the tables
of the generated relational schema. A reconstructed
XML view can be produced from the schema
(Shanmugasadaram, Krishnamurthy et al. 2001).
While this technique is less space efficient than
others, the reconstructed XML view is identical to
the original.
A mapping scheme between semistructured data
model and the relational data model, expressed in a
query language called STORED (Semistructured to
Relational Data) is described in (Deutsch, Fernandez
et al. 1999). When a semistructured data instance is
given, a STORED mapping can be generated
automatically using data-mining techniques. A
relational schema is chosen, then the STORED
mapping translates the semistructured data instance
into that schema. The mapping is always lossless:
parts of the semistructured data that do not fit the
schema are stored in an “overflow” graph. STORED
is more restrictive than other query languages for
semistructured data; it doesn’t have joins or regular
path expressions.

3 FRAMEWORK OF
REFERENCE RELATIONSHIP
SCHEME (XML TO RDBMS)

Well formed XML data (i.e. in which end tags match
start tags) may be used as source data for conversion
from XML into RDBMS form. In this new
reference relationship scheme, each distinct child
(sub element path) of the root path (from XML
Document) is represented by a separate relational
table called a parent table. Each XML document is
represented by a separate database. The root path
name used in the XML document becomes the name
of this database. The children (sub-element and
attributes) of the sub-element path (of the root
element) are assigned the name of the attributes (i.e.
the column name) in the parent table, and the content
of each distinct child (sub-element or attribute) is the
same as the content of each distinct tuple in the
parent table. If there is no sub-element Id in the
XML document, the presented method creates a
distinct Id for each tuple in the Relational Table. If
the distinct children (sub-element paths) of the root
path are represented by SE and the children (element
path and attributes) of SE are represented by ChlSE,
the relational schema of the parent table is
PTSchema (Id, all ChlSE).

If any ChlSE consists of sub-elements rather than
of direct values, the scheme creates a reference for
that particular attribute in the parent table, and a new
table (called the Child Reference table) using that
reference name is created for all types of (ChlSE)
children. The children (attributes, sub-element paths
and the descendants of ChlSE) of ChlSE form the
attributes in the Child Reference relation. In the
Child Reference relation there is a column named
‘Parent Id’ that is used to maintain the relationship
with the parent table (in which ‘Parent Id’ is the
primary key). An ancestor column (termed FCL) is
included in the child table to store information that
can later be used in reconstruction of the source
XML document. Hence the schema of the child
reference relation is CRTSchema(Parent Id, FCL
(Flag column), all children of ChlSE). If it is found
that any attribute in the child table has no direct
value (i.e. it consists of nested element(s)), the
scheme creates a pnull for that particular attribute
rather than creating a new table.

 During the reversion process from RDBMS
form to XML, this pnull attribute could become a
parent element of any attribute except parent Id.
Each parent relation can have at most one child
reference table or relation. To distinguish between
sub-element and attributes, the system creates an
attribute dictionary for all attributes in the XML
data. This dictionary records the name of the
attribute, its value, its parent Id and an parent/child
indicator. Thus the general schema for the attribute
dictionary is ADSchema(Parent Id, Name of
attribute, value of the attribute, Relation type). In
general, when XML data is converted to relational
data, there is no difference between attributes and
sub-elements because they are both stored as
attributes in the relational table. When it is necessary
to reconvert the relational data to XML, it is
necessary to distinguish between sub-elements and
attributes.

 The attribute dictionary is important in
achieving this distinction. A null value for Parent Id
in the attribute dictionary indicates the existence of
the attribute in the parent table rather than in the
child table, since the parent table has primary keys
but no Parent Ids. Thus it is not always necessary to
check the table type in the dictionary. The algorithm
is given in Figure 1. To understand the algorithm
the following data structures are necessary:

• PT: Parent Table.
• CRT: Represents the child reference table

of the corresponding parent table.

ICSOFT 2008 - International Conference on Software and Data Technologies

120

• null: It is used in both PT and Child Table,
for those attributes that have no nested
element path and no value in XML.

• FCL: Flag Column used to store ancestor
information.

• Pnull: Is used for particular attributes in the
Child table which have nested sub elements
instead of direct values.

• SE: Sub element Path of root tag (from
XML document).

• ChlSE: Child of SE.
• Chl: Child.
• AttSE: Attribute of SE.
• Att : Attribute.
• NSE: Nested SE [If any ChlSE has Chl

(element path) which has also Chl (element
path) then Chl of ChlSE is called NSE].

• ChlNSE: Child of Nested SE.
• AttNSE: Attribute of Nested SE.
• RefAtt : Reference Attribute.

Algorithm XML_to_RDBMS()
Begin

Identify all the distinct SE from
original XML doc and create PT
according to each distinct SE;
Identify the distinct ChlSE and
AttSE from XML doc and create
separate column for each AttSE and
ChlSE in the PT;

If there is no Id in XML document
create a column in PT for id as a
primary key
 Begin

Store all the contents of each AttSE
and ChlSE to each tuple of the
corresponding column in PT;

End;
If (any AttSE and ChlSE) has no value
and no nested path
 Begin

Put a null to the corresponding
tuple of AttSE and ChlSE in PT;

 End;
If (any ChlSE) has NSE then
 Begin
 Put a reference CRT according to

its PT name to the tuple of that
ChlSE column and create a new table
according to that reference CRT
name;
Create distinct columns for all
the Chl and Att of NSE in the CRT;

 Create a FCL to keep information
of different ChlSE for which the
CRT is created;
Create a column to store the
parent Id from PT;

Put a pnull to the corresponding
tuple of specific column of any
NSE and ChlNSE (which has no direct
value);

 End; // if any ChlSE
 Create a dictionary for all

attributes from XML document (as
well as from PT and CRT), with
their names, values, Parent Id and
relation type;

 End. //main

Figure 1: Algorithm XML to RDBMS.

3.1 Explanation of the Translation
Scheme

The relational database FamilyInfo (comprising
Tables 1, 2 and 3) has been created from the XML
document shown in Figure 2. Personal (Table 1),
CRTpersonal (Table 2) and Attribute Dictionary
(Table 3) are the relations of the FamilyInfo
database. In the child reference table (Table 2) the
Parent Id is the same as the primary key in the
parent table (Table 1). In Table 1, S_S_NO (social
security number) is the primary key; in the child
reference table (Table 2) it is represented as a
Parent Id which provides the ability to connect with
the parent table as well as to enable re-creation of
the exact relationship between child and parent or
ancestor.

Figure 2: Example of XML Document with nested
elements.

The XML document depicted in Figure 2 shows that
Son and Daughter are two ChlSE that have no direct
values, rather they contain nested sub-elements of
type Personal (which does have children (address,

</FamilyInfo>
<Personal> <S_S_No =1, age=33 >
<address> Met st </address>
<Sex> Male <\sex>
<Son>
<Personal> <Sex=Male>
<address> Union St </address>
<S_S_No> 3 </S_S_No>
<Status>well </Status>
<Job>Nurse </Job>
</Personal>
</Son>
<Daughter> <Sex=Female>
<Personal>
<S_S_No>4</S_S_No>
<address> Nevil Av </address>
<Status> Disable <\Status>
</Personal>
</Daughter>
</Personal>
<Personal><S_S_N0=2, age=21 >
<Fname> Turner </Fname>
<Job> Teacher </Job>
<Address> Rax st </Address>
<Sex>Female </Sex>
</Personal>

</FamilyInfo>

STORING SEMISTRUCTURED DATA INTO RELATIONAL DATABASE USING REFERENCE RELATIONSHIP
SCHEME

121

S_S_NO, Status, Job)). This structure is expressed
in relational form as shown in tables 1 to 3. Table 1
includes columns for Son and Daughter; the
reference identifier CRTPersonal is inserted as the
value in that column for the first tuple. This value
identifies the name of the child reference relation as
CRTPersonal; the relation itself is shown in Table 2.

Table 1: Personal.

S_S_

NO

addres

s

Sex Son Daug

hter

Fna

me

Job age

1 Met st Mal

e

CRTPe

rsonal

CRTPe

rsonal

null null 33

2 Rax st Fem

ale

null

null Tur

ner

Tea

cher

21

Table 2: CRTPersonal (Child Reference Table for
Personal).

S_S_

NO

Pare

nt_Id

Perso

nal

Statu

s

address Job Sex FCL

3 1 Pnull well Union

st

Nur

se

Male Son

4 1 Pnull Disa

ble

Nevil

Av

null Fem

ale

Daug

hter

Table 3: Attribute Dictionary.

Attribute Name Value Parent_Id Relation

Type

S_S_NO 1 Null PT

age 33 Null PT

Sex Male 1 CRT

Sex Female 1 CRT

S_S_No 2 Null PT

age 21 Null PT

The FCL column in Table 2 shows, respectively,
the SE Son and Daughter relationships with the
parent. When the RDBMS is converted back to an
XML document, this flag column plays an important
role in allowing retrieval of ancestor information.
As shown in Figure 2, the person having S_S_NO
#1 has no Fname, so a null is inserted for that
attribute of the corresponding tuple in Table 1. Also
Figure 2 shows that NSE Personal has no direct
value but has nested elements (address, S_S_NO,
Status, Job). Thus pnull is inserted in the Personal
column of Table 2, rather than creating a new
reference table. When the RDBMS is converted
back to an XML document, this NSE value of pnull
acts as parent for all other attributes except Parent

Id. Six tuples are created in the Attribute Dictionary
corresponding to the six attributes in Figure 2. As
shown in Table 3, six tuples and four columns are
created as the attribute dictionary.

 By way of comparison, consider Figure 3, an
XML document for which the single relational table
WorldPopulation Database is given in Table 4.
Since there are no attributes or nested element paths
in Figure 3, the WorldPopulation database is created
in a simple way without having any child relations
or attribute dictionary.

Figure 3: Example of XML Document.

Table 4: Info.

Zone S_S_N Name DOB Count State City

ASPC 1 David 5/11/69 AUS NSW Newc

AME 11 Raul 10/1/70 USA Dalas Dalas

EURO 21 Diana 7/2/74 UK Oxford Oxford

ASIA 17 Xu 1/1/60 China null null

3.2 Search Time Analysis of System

Let k be the total number of distinct parent tables, n
be the maximum number of tuples in a parent table,
p be the maximum number of tuples in a child table,
and m be the number of distinct child reference
tables. A binary search technique may be applied to
find a search key value in the parent and child
relations. The searching time to find the data in any

parent relation is Ω (
nk 2log*). When it is

<World Population>
 <Info>
 <Name> David </Name>
 <S_S_No> 1<S_S_No>
 <Zone> ASPC </Zone>
 <DOB>5/11/1969 </DOB>
 <Country> AUS </Country>
 <State> NSW </State>
 <City> Newcastle </City>
 </Info>
 <Info> <Name> Raul </Name>
 <S_S_No> 11<S_S_No>
 <Zone> AME </Zone>
 <DOB> 10/1/1970 </DOB>
 <Country> USA </Country>
 <State>Dalas</State>
 <City> Dalas </City>
 </Info>
 <Info> <Name> Diana </Name>
 <S_S_No> 21<S_S_No>
 <Zone> EURO </Zone>
 <DOB> 7/2/1974 </DOB>
 <Country> UK </Country>
 <State> Oxford </State>
 <City> Oxford </City>
 </Info>
 <Info> <Name> Xu </Name>
 <S_S_No> 17<S_S_No>

<Zone> ASIA </Zone>
 <DOB> 1/1/1960</DOB>
 <Country> China </Country>
 </Info>
 </World Population>

ICSOFT 2008 - International Conference on Software and Data Technologies

122

required to search both parent and child relations,

the required time is Ο (
nk 2log* +

pm 2log*).

Attribute search time is Ο (j
2log); where j is the

total number of attributes in the attribute dictionary.
It is required to sort data before attempting a binary
search, and the required sort time is

Ο (nn 2log* + pp 2log*).

4 ANALYSIS OF STORAGE
SPACE, RECONSTRUCTION
OF XML AND QUERYING THE
DATABASE

Analysis of storage capacity for different methods,
the translation algorithm for conversion from
RDBMS to XML form, and the estimated query time
are presented in section 4.1, 4.2 and 4.3 respectively.

4.1 Analysis of Storage Capacity for
Different Methods

Let K be the total number of distinct parent tables, n
be the maximum number of tuples in a parent table,
X be the number of attributes, and Y be the average
required bytes for each attribute in the parent table.
Since each tuple requires YX * bytes, for n tuples
and K distinct tables the memory requirement would
be = YXnK *** bytes.

Let p be the maximum number of tuples in a child
table, M be the number of distinct child reference
tables, S be the number of attributes and T be the
average required bytes for attributes in the child
table. For child tables, then, the required memory
would be = TSpM *** bytes. Similarly the
required memory for the Attribute dictionary is

VUr ** ; where r is the number of tuples, U is the
number of attributes, and V is the average number of
bytes required for each attribute. Hence the total
required memory of the scheme presented in this
paper is given by:

PCRRS = [YXnK *** + TSpM *** + VUr **] (1)

According to the mapping scheme in (Florescu
and Kossman 1999) the memory requirements are as
follows: Total number of tuples

NT = ∑ =

n

i
childofno

1
)__((2)

Where n=no_of_oid from graph; each tuple
requires (at least):

NTS = []∑ tableedgeinattrno ____(*

])___[attributeeachrequiredbytes (3)

The total required memory (using equations [2] &
[3]) is at least, but probably (it only includes the
edge table, and some memory is required for other
tables) greater than:

 MAPS = *NT NTS (4)

According to the OEM method (Abiteboul 1997),
if the graph is represented as a linked list where each
node consist of three fields (such as Object Id,
Contents of each Object, edge name), then the total
required memory is:

OEMS = *)([∑ N)](EnodeB (5)

N is the total number of nodes or children in the
OEM graph, BEnode is the required bytes to represent
those nodes or children. According to the general
technique in (Shanmugasadaram, Krishnamurthy et
al. 2001) the required memory is GENS , calculated
as the sum of the required memory for the DTD
graph and for corresponding Relational table.
Therefore:

GENS = *)([∑ DTDN)](EnodeB +[*)(AttN

*)(AttB)(NRT] (6)

Where NDTD is the total number of nodes in DTD
graph, BEnode is the required bytes to represent each
node, NAtt is the number of attributes in the relational
table, BAtt is the required bytes for each attribute,
TNR is the total number of tuples in the relational
table.

According to the memory requirement analysis in
equations (1), (4), (5) & (6), the graphical
representation of different methods is presented in
Figure 4. The storage comparison is analysed by
considering millions of element paths and attributes.
We see from Figure 4 that the scheme presented in
this paper is more space efficient than the other
standard methods. A tabular form of the storage
analysis is presented in Table 5.

STORING SEMISTRUCTURED DATA INTO RELATIONAL DATABASE USING REFERENCE RELATIONSHIP
SCHEME

123

Figure 4: Storage Comparison analysis.

Table 5: Required Memory Using Different Methods.

Paths &

Attribute(

Million)

OEM

Method

(MB)

Mapping

Scheme

(MB)

General

Technique

(MB)

Our

Proposed

Scheme (MB)

1 6.31 10 7.05 4.63

20 126.2 200 141 92.6

30 189.3 300 211.5 138.9

60 378.6 600 423 277.8

120 757.2 1200 846 555.6

240 1514.4 2400 1692 1111.2

260 1640.6 2600 1833 1203.8

300 1893 3000 2115 1389

320 2019.2 3200 2256 1481.6

350 2208.5 3500 2467.5 1620.5

4.2 Reconstructing XML from RDBMS

To reconstruct an XML document from its RDBMS
representation, the following issues are considered:

 All attributes from the parent relational table are
sub-elements or attributes in the XML
document.

 The content of each tuple from the parent table
is enclosed within a sub-element bracketed by
start and end tags.

 The existence of an entry in the attribute
dictionary indicates that this an attribute rather
than an element path in the XML document.

 Any attribute with a null value in a tuple can be
excluded in a subelement for that tuple. For
example, in Table 1 the first tuple has null for
the Job attribute, indicating that there is no Job
element path specified for the corresponding
XML element.

 If more than one attribute has pnull in the
corresponding tuple of a child reference table,
the last attribute with value pnull (according to
left to right ordering) is the parent element for
all those attributes (except parent_Id) in the
XML document. The contents of the Flag

column from the child reference table indicates
the ancestor element for all attributes and sub-
elements of tuples. The corresponding
algorithm is given in Figure 5.

Algorithm RDBMS_to_XML ()
Begin

Identify all distinct PT name as a
SE in XML document;
Store all the attributes (except
the attributes in Dictionary) of
the PT as the ChlSE and store the
contents of tuple from PT to the
content of ChlSE ;

For (each attribute name in Attribute
Dictionary as a PT type)

Begin
Set as a AttSE and store their
values, in XML document
according to Parent_Id;

 End;
For (Any reference CRT existing) to the
value of any particular attribute of PT
Begin

Search the corresponding CRT
relation to collect all the
attributes from CRT (except the
attributes in Dictionary) and set
them as ChlNSE or NSE;
Store the value of the attributes
of each tuple in CRT as the content
of ChlNSE or NSE;

 For (each attribute name in Attribute
Dictionary as a CT type)

 Begin
Set as a AttNSE or AttchlNSE and
store their values, in XML
document according to Parent_Id;

 End;
For ((each pnull) value of the
attribute in CRT)

 Begin
Store as a parent among all
NSE/attributes;

 End;
For (each tuple of FCL)

 Begin
Set as a grandparent among all
the NSE/attributes

 End;
End; // For any Refer CRT
End. // For Main

Figure 5: Converting RDBMS to XML.

4.3 Querying the Database

In section 3.2, estimated times were calculated by
using search time analysis for millions of tuples in
the parent and (CRT) child relations.

ICSOFT 2008 - International Conference on Software and Data Technologies

124

In Figure 6 the estimated search time is shown for
examples where the search data is found in the PT.
Figure 7 shows the estimated searching time when it
is necessary to search both the PT and child relation
table. (Josifovskil, Fontoura et al. 2005) presents
results of querying an XML stream; the evaluation
time (XMark Query) is given in Figure 8 and
includes the parsing times for both XSQ (one of the
most complete XML stream processing systems,
written in C++) and TurboXPath (also a path
processor, written in Java). Although parsing in
Java is slower that parsing in C++, TurboXPath is
still much faster than XSQ.

Figure 6: Estimated Searching time only in PT.

Figure 7: Estimated Querying time in PT & CRT.

Figure 8: Evaluation time (XMark Query).

The results shown in Figure 6 and Figure 7 make it
clear that the required time increases when the
number of tuples increases and/or the file size
increases. File size depends on both the number of
tuples in the relational database and the number of
paths in the source XML document. This is
consistent with the experimental results obtained by
(Josifovskil, Fontoura et al. 2005).

5 CONCLUSIONS

XML is a convenient, semistructured data format for
information exchange and some data processing
tasks. Other activities, particularly searching and
sorting of data, are better supported if the data is
represented in a more structured form, such as that
used by relational databases. This paper presents a
translation scheme that converts XML data into the
relational table form that supports efficient pursuit of
such other activities. The new technique is
significant because it provides more efficient use of
storage capacity than other similar schemes, while
also supporting highly accurate transition from
relational back to XML form when required.
Algorithms are presented for conversion from XML
to relational form, and for reconstruction of the
original XML form from its relational
representation. The latter conversion is significant
because it uses an attribute dictionary to support
accurate definition of element paths and attributes.

Analysis of query performance on the relational
form of the XML data suggests that the
representation scheme scales well, providing for
efficient data processing of both small and large
documents.

REFERENCES

Abiteboul, S., 1997. Querying Semistructured Data. ICDT,
The International Conference on Database Theory.
Delphi, Greece.

Abiteboul, S., I. Manolescu, et al., 2006. A Framework for
Distributed XML Data Management. EDBT, Springer-
Verlag Berlin Heidelberg.

Abiteboul, S., D. Quass, et al., 1996. The Lorel Query
Language for Semistructured Data.
ftp://db.stanford.edu//pub/papers/lorel96.ps.

Abiteboul, S. and P. Senellart., 2006. Querying and
Updating Probabilistic Information in XML. The
Conference on Extending Database Technology.
Munich, Germany.

Balmin, A. and Y. Papakonstantinou., 2005. A Storing and
Querying XML Data using Denormalized Relational
Databases. The journal on Very Large Databases
(VLDB) 14: 30-49.

Buneman, P., S. Davidson, et al., 1996. A query language
and optimization techniques for unstructured data.
Inernational Conference on Management of Data
(SIGMOD). San Diego, USA.

Chen, Y., S. Davidson, et al., 2003. RRXS: Redundancy
reducing XML storage in relations. The 29th
International Conference on Very Large Databases
(VLDB). Berlin, Germany.

STORING SEMISTRUCTURED DATA INTO RELATIONAL DATABASE USING REFERENCE RELATIONSHIP
SCHEME

125

Deutsch, A., M. Fernandez, et al. XML-QL: A Query
Language for XML. http://www.w3.org/TR/NOTE-
xml-ql.

Deutsch, A., M. Fernandez, et al., 1999. Storing
Semistructured Data with STORED. International
Conference on Management of Data (SIGMOD).
Pennsylvania, USA.

Du, F., S. Amer, et al., 2004. ShreX: Managing XML
Documents in Relational Databases The 30th
International Conference on Very Large Databases
(VLDB). Toronto, Canada,

Florescu, D. and D. Kossman., 1999. Storing and
Querying XML Data using an RDMBS. The IEEE
Data Engineering Bulletin 22(3)(): 27-34.

Halverson, A., V. Josifovski, et al., 2004. ROX: Relational
Over XML. The 30th International Conference on
Very Large Databases. Toronto, Canada.

Harding, P. J., Q. Li, et al., 2003. XISS/R: XML Indexing
and Storage System Using RDBMS. The 29th
International Conference on Very Large Databases
(VLDB). Berlin, Germany.

Harold, E. R., 2004. The XML Bible, Hungry Minds.
Josifovskil, V., M. Fontoura, et al., 2005. Querying XML

Streams. The journal on Very Large Databases
(VLDB) 14: 197-210.

Pal, S., I. Cseri, et al., 2005. XQuery Implementation in
Relational Database System. The 31st International
Conference on Very Large Databases. Trondheim,
Norway.

Pal, S., I. Cseri, et al., 2004. Indexing XML data Stored in
a Relational Database. The 30th International
Conference on Very Large Databases. Toronto,
Canada.

Senellart, P. and S. Abiteboul., 2007. On the Complexity
of Managing Probabilistic XML Data. The 27th
Iinternational Conference on Principles of Database
Systems. Beijing, China.

Shanmugasadaram, J., J. Kiernan, et al., 2001. Querying
XML Views of Relational Data. The 27th
International Conference on Very Large Databases
(VLDB). Roma, Italy.

Shanmugasadaram, J., R. Krishnamurthy, et al., 2001. A
General Technique for Querying XML Documents
using a Relational Database System. The journal
(SIGMOD) 30(3): 20-26.

Shanmugasadaram, J., K. Tufte, et al., 1999. Relational
Databases for Querying XML Documents: Limitations
and Opportunities. The 25th International Conference
on Very Large Databases(VLDB). Edinburg, Scotland.

ICSOFT 2008 - International Conference on Software and Data Technologies

126

