
A COOPERATIVE AND DISTRIBUTED CONTENT
MANAGEMENT SYSTEM

C. Noviello, M. Mango Furnari and P. Acampa
Istituto di Cibernetica E. Caianiello, Via Campi Flegrei, 34, Pozzuoli, Italy

Keywords: Cooperative Content Mangement System, Information Grid, Cultural Heritage.

Abstract: In this paper the authors address some methodological and technical issues on managing collections of digital
documents published on the web by many different stakeholders. To cope with this kind of problems the
notions of document, cooperative knowledge community and content knowledge authority are introduced.
Then the architecture of a distributed and cooperative content management system is presented. A set of
methodologies and tools for organizing the documents space around the notion of contents community were
developed. Each content provider will publish a set of data model interpreters to collect, organize and publish
through a set of cooperative content management system nodes glued together by a web semantic oriented
middleware. These methodologies and software were deployed setting up a prototype to connect about 100
museums spread on the territory of Campania (Italy).

1 INTRODUCTION

Thanks to diffusion of low cost high-speed Internet
connections, institutions and organizations face in-
creasing demands to cooperate in sharing common
knowledge. Content delivery and sharing information
across the network is today possible using a variety
of technologies, such as distributed databases, service
oriented applications, and so forth. However, sharing
content technology is only one aspect of content man-
agement in cooperative and distributed settlements. In
fact, contents need to be created, managed, revised
and finally published. Contents may also to be ag-
gregated in collections, which in turn may be shared
among stakeholders. Modern Content Management
Systems (CMS) have a complete environment to sup-
port users in content production and publishing for
the web. Thanks to a powerful, complete and user-
friendly interface it is very simple to create, manage
and store contents. However, most CMSs have poor
support for cross systems interoperability and cooper-
ation over the network. They mainly focus the atten-
tion to the users interaction and documents usage.

Prerequisite to share documents in machine under-
standable way is the adoption of de facto standards for
content and metadata representations. Aside of this
standards, documents must provide both user and ma-
chine oriented representations, and play an active rule
in data sharing. In other words it would be of some

interest to explore the possibility to map the docu-
ment conceptual model on the object oriented pro-
gramming model exploiting some of its methodologi-
cal and technological features.

Furthermore, the current semantic oriented ex-
ploitation attempts are mainly oriented to cope with
the conceptualization of a single information source,
they use document semantic models as monolithic en-
tities providing little support to specify, store and ac-
cess them in a modular manner.

In this paper we address the problem of making
distributed document collection repositories mutually
interoperable.

The design methodologies described in this pa-
per are based on the hypothesis that it is yet neces-
sary to develop an adequate treatment for distributed
and heterogeneous document model interpretation to
promote information sharing on the semantic web.
Appropriate infrastructures for representing and man-
aging distributed document model interpreters have
also to be developed. To pursue these goals we in-
troduced the notion of knowledge stakeholders com-
munity that exchange modularized document model
interpretation together documents using a document
middleware. Experimental implementation and tools
were developed to check the adequacy of the pro-
posed methodologies; their deployment for the cul-
tural heritage promotion arena is also described.

The rest of the paper is organized as follows: in

140
Noviello C., Mango Furnari M. and Acampa P. (2008).
A COOPERATIVE AND DISTRIBUTED CONTENT MANAGEMENT SYSTEM.
In Proceedings of the Third International Conference on Software and Data Technologies - ISDM/ABF, pages 140-147
DOI: 10.5220/0001878501400147
Copyright c© SciTePress



section 2 the reference scenario is described. In sec-
tion 3 the architecture and the implementation of the
proposed Distributed Contents Management System
are given together a description of the document mod-
ular representation model structure is described. In
section 4 the implemented test bed is described and
the proposed architecture advantages are summarized.

2 KNOWLEDGE COMMUNITIES
AND CONTENT
MANAGEMENT SYSTEMS

A knowledge community is created aggregating a
group of information stakeholders that want to share
and reuse their information contents so to improve
their offer to their customers. On doing that they
want retain their operational autonomy and identity
without reducing the cooperation opportunities. To
pursue these goals they need an intermediate coordi-
nation organization (knowledge community authority)
in charge to register, syndicate and guarantee the in-
teroperability of their document repository schema.
Furthermore, the stakeholder managers would also
be interested to organize a set of related documents
into documents collections, according to some rela-
tionships. These collections should be built starting
from documents either directly managed or shared
with other participating stakeholders.

From the managers’ perspective each information
system should allow him to make available the man-
aged information both to the other participating con-
tent managers and to the knowledge community cus-
tomers just after registering it into the content knowl-
edge authority. No assumption about information
schema and attributes names’ schemata should be
taken, so the community could easily grow up and
evolve.

We developed a system architecture where docu-
ments play the role of elementary information build-
ing block. We assumed that at least three main kind
of information compose a document, they are: a) the
content, i.e., the information to which it refers; b)
the metadata, i.e., the information about the contents;
c) the relations, i.e., the collection of relationships
that could be instantiated among the documents. We
also assumed that contents could be themselves doc-
uments, and then we can map the conceptual knowl-
edge graphs into the document network relationships.
Furthermore, document collection can be defined as
graph that maps some instances of document rela-
tions, so we can associate a document to each collec-
tion. This recursive definition could be instantiated an

arbitrary number of times, although in practical cases
the recursion depth is not greater than three, i.e., doc-
ument, the recursion base case; the collections of doc-
uments; document repository, collections of collec-
tions; and a community i.e., a collection of document
repository.

From software point of view a document together
its components are represented as digital objects. The
digital object plays the role of handle to document
components that are encapsulated into digital objects.
To deploy this recursive definition process for the
knowledge entities we need software tools to ag-
gregate, both locally and remotely, the knowledge
sources.

We adopted a multi-tiers web architecture in
which the application server plays the central role of
business logic driver. Three main systems were iden-
tified: Document Repository System (DRS), that it is
in charge to store and organize the documents; the
Document Access System (DAS), to create friendly
and flexible user interfaces to discover and access
contents; and the Contents Authority Management
System (CAMS), that store and manage the document
model schema used by each participating nodes so to
facilitate the DRS semantic oriented interoperability.
These systems communicate among them exchanging
XML encoded messages according to well-defined
protocols.

One of the foreseen scenarios is sketched in Figure
1, where the community is built with three stakehold-
ers that manage heterogeneous information.

The end–user will interact with the knowledge
community through a conventional browser. DAS
is in charge for document access from the docu-
ment repositories community and for the composi-
tion process in order to delivery documents to the
end–users. Processing steps may be represented as

Figure 1: Heterogeneous data provider integration with Oc-
tapy based CMS.

A COOPERATIVE AND DISTRIBUTED CONTENT MANAGEMENT SYSTEM

141



sequence of transformations expressed, for example,
using the eXtensible Stylesheet Language Transfor-
mation (Mangano, 2005). To assemble a document
all its components and related ones must be fetched
from the community of document repositories. In or-
der to satisfy the partial instantiated document rela-
tionships the CAMS is invoked to filter, according to
the document repository schema, the repositories to
be involved on assembling the documents.

CAMS manages the document models expressed
in RDF/OWL (McGuinness D. and van Harmelen F.,
2003), since we don’t constrains managers to adopt
one common document model we associate to each
document model an “interpreter” that allow to remap,
for example, the values of metadata in some shared
knowledge space. These interpreters are used by
CMS nodes of the knowledge “community”, and de-
termines the pattern of interactions with other servers
(Mango Furnari M. et al., 2003).

Once the subset of the knowledge community
repository nodes is determined, each one is queried in
order to give back the related documents to be sent to
the DAS to complete the document assembling steps.
Next, the documents are assembled into HTML page
that will be directly sent to the browser.

The advantages of the whole proposed architec-
ture are: a) ease of deployment on Internet, high re-
liability and fault-tolerance, and efficient use of the
network infrastructures; b) flexibility and generality
as needed in order to evolve to meet future knowledge
stakeholder needs; c) scalability without fundamental
changes of resource name spaces.

Summarizing, to create a knowledge community
we need software systems and middleware having a
number of key features including:

• Support to semantic web technologies: it should
push semantic web technologies into CMS, allow-
ing interoperability with other systems. It should
use document models suitable for semantic ori-
ented interoperability.

• Extensible metadata management: the document
models should contain metadata to be used to ex-
press any type of digital collections membership,
parent-child or taxonomic relationships. More-
over, document repositories should be confor-
mant with metadata exchange protocols, such as
the Open Archive Initiative Protocol for Metadata
Harvesting (OAI-PMH, 2001).

• Multiple document representations: for each
managed document multiple representations it
should be available that must be adequate for user
and machine processing. Using the XML and
RDF widespread standards, documents could be

exchanged across different document repositories
even if they didn’t directly manage the model for
the transferred documents.

• Powerful component model: it should have a flex-
ible software component model in order to make
easy the development of content-oriented exten-
sions. Extensions that should be generic and not
tightly coupled with the documents models.

In order to check the feasibility of the previously
described architecture we designed and implemented
the Octapy3 software platform, in which attention
is payed to the necessary document repository func-
tionalities so it could participate into a knowledge
community. In the next section the Octapy3 design
choices and its main components are described.

3 THE OCTAPY3 DISTRIBUTED
AND COOPERATIVE CMS

The main Octapy3’ functionalities are oriented to sup-
port: a) documents management and aggregation over
the network; and b) an easy to use and fast process in
order to define new document types. The way how
to define document types has been one of the most
intriguing aspect coped with on designing the soft-
ware platform. In fact, we need to describe docu-
ment and its components in such a way to be easily
processed in order to produce software modules that
manage them as digital objects. We approached this
problem defining a document configuration language,
called Octapy3 Content Markup Language (OCML), see
Section 3.2. With this language we can define the
document structure, the persistency, the presentation,
and so on. These functionalities are built on top of a
component model that could be easily extended. In
Octapy3, contents play a central role since they are
active parts of interoperability settlement among dif-
ferent systems. Contents aren’t only implemented as
data but are also active software components that ex-
pose a well-defined API, that allow implementing dif-
ferent kind of end–user and machine oriented docu-
ments representations.

Octapy3 has been designed to bring functionali-
ties for content-based interoperability in order to cre-
ate knowledge communities of distributed contents
providers that share common knowledge. In Oc-
tapy3 the information sharing is achieved exchanging
documents, each document has multiple representa-
tions, the default one is called Octapy eXchange Format
(OXF), it is a serialization exposed by all digital ob-
ject through the IOctapyContent interface. OXF exports
both document contents and structures, i.e., the doc-

ICSOFT 2008 - International Conference on Software and Data Technologies

142



Figure 2: Heterogeneous data managed by Octapy based
CMSs

providers that share common knowledge. In Oc-
tapy3 the information sharing is achieved exchanging
documents, each document has multiple representa-
tions, the default one is called Octapy eXchange Format
(OXF), it is a serialization exposed by all digital ob-
ject through the IOctapyContent interface. OXF exports
both document contents and structures, i.e., the doc-
ument type definition. An OXF serialization allows
to implement and manage remote contents consider-
ing them as local contents, even in the case the CMS
doesn’t have, locally available, the definition of the
remote content type.

From an architecture point of view, Octapy3 have
been organized around three main application levels:

• Documents Definition Layer: it contains software
modules that add functionalities that simplify the
definition of new document types. In Octapy3
the document definition is carried out during the
configuration phase. To pursue this goal XML-
based language Octapy Configuration Markup Lan-
guage (OCML) was defined and used to specify
both application and presentation logic.

• Content Components Layer: one of the main
goals of Octapy3 is to abstract from the content
structure introducing a clear separation among ap-
plication layers. Starting from content descrip-
tion, Octapy3 generates specific software com-
ponents, called “content component”, that repre-
sent the managed contents. These components ex-
pose interfaces used, for example, to manage doc-
uments structure and documents relationships.

• Distributed and Cooperative Layer: Octapy is
designed to build communities of cooperating
knowledge node providers. Therefore, special at-
tention has been paid to support standards for in-
teroperability, such as XML for data representa-
tion, RDF/RDFS (Lassila O., 1998) for semantic
interoperability, Dublin Core metadata set (DC,
1995), Open Archive Initiative protocol (OAI-
PMH, 2001) for metadata exchange among hete-

reogeneous systems.

To achieve these goals we developed Oc-
tapy3 adopting the Component Architecture of
the Zope3/Plone software platform (von Weiter-
shausen P., 2007). On top of this architecture we
first developed the “content components” to imple-
ment the document type definition process, and next
the middleware to make location independent the doc-
ument process management.

In Octapy3 documents are implemented as
classes, more specifically the class OctapyContent im-
plements the document living only in each document
repository, i.e., locally. The classes RemoteObject and
OctapyProxy are used to manage, on a given repository
node, documents located in the rest of the knowledge
community nodes.

In the rest of this section we will describe the main
designed and implemented software components. We
start shortly summarizing the components that imple-
ment the “content component”. Next we focus on the
implementation of the distributed and interoperability
functionalities..

3.1 The Octapy3 content component

The Octapy3 platform is built using a Component Ar-
chitecture model mechanism, in particular for doc-
uments that are the community knowledge building
blocks. The Component Architecture make possi-
ble to abstract from the specific content schemata.
We developed a special Octapy3 component, called
“content components”, that it is in charge to auto-
matically generate software components starting from
document type description written using the OCML
language, see section 3.2 below. The software gener-
ation process is carried out using YODA (Yoda is Oc-
tapy Document Assembler) compiler that generates
both the archetype (von Weitershausen P., 2007) code
and the interfaces describing the document structure.
This interface is an enumeration of attributes for each
Content Type Description field and the corresponding
archetype class that implements this interface, called
“content component”.

A content component implements, see Figure 3,
at least two interfaces: the content type definition and
the IOctapyInterface. This interface is generic in the
sense that it is common to all content components
and exposes the method getContentInteface() and
returns the interface describing the document content
type, i.e. it allows searching for a specific data inter-
face.

Octapy3 allows also handling and managing con-
tent type extensions in a generic way. An adapter,
to the fixed interface IOctapyContent, could add the

Figure 2: Heterogeneous data managed by Octapy based
CMSs.

ument type definition. An OXF serialization allows
to implement and manage remote contents consider-
ing them as local contents, even in the case the CMS
doesn’t have, locally available, the definition of the
remote content type.

From an architecture point of view, Octapy3 have
been organized around three main application levels:

• Documents Definition Layer: it contains software
modules that add functionalities that simplify the
definition of new document types. In Octapy3
the document definition is carried out during the
configuration phase. To pursue this goal XML-
based language Octapy Configuration Markup Lan-
guage (OCML) was defined and used to specify
both application and presentation logic.

• Content Components Layer: one of the main
goals of Octapy3 is to abstract from the content
structure introducing a clear separation among ap-
plication layers. Starting from content descrip-
tion, Octapy3 generates specific software com-
ponents, called “content component”, that repre-
sent the managed contents. These components ex-
pose interfaces used, for example, to manage doc-
uments structure and documents relationships.

• Distributed and Cooperative Layer: Octapy is
designed to build communities of cooperating
knowledge node providers. Therefore, special at-
tention has been paid to support standards for in-
teroperability, such as XML for data representa-
tion, RDF/RDFS (Lassila O., 1998) for semantic
interoperability, Dublin Core metadata set (DC,
1995), Open Archive Initiative protocol (OAI-
PMH, 2001) for metadata exchange among hete-
reogeneous systems.

To achieve these goals we developed Oc-
tapy3 adopting the Component Architecture of
the Zope3/Plone software platform (von Weiter-
shausen P., 2007). On top of this architecture we
first developed the “content components” to imple-
ment the document type definition process, and next
the middleware to make location independent the doc-

ument process management.
In Octapy3 documents are implemented as

classes, more specifically the class OctapyContent im-
plements the document living only in each document
repository, i.e., locally. The classes RemoteObject and
OctapyProxy are used to manage, on a given repository
node, documents located in the rest of the knowledge
community nodes.

In the rest of this section we will describe the main
designed and implemented software components. We
start shortly summarizing the components that imple-
ment the “content component”. Next we focus on the
implementation of the distributed and interoperability
functionalities..

3.1 The Octapy3 Content Component

The Octapy3 platform is built using a Component Ar-
chitecture model mechanism, in particular for doc-
uments that are the community knowledge building
blocks. The Component Architecture make possi-
ble to abstract from the specific content schemata.
We developed a special Octapy3 component, called
“content components”, that it is in charge to auto-
matically generate software components starting from
document type description written using the OCML
language, see section 3.2 below. The software gener-
ation process is carried out using YODA (Yoda is Oc-
tapy Document Assembler) compiler that generates
both the archetype (von Weitershausen P., 2007) code
and the interfaces describing the document structure.
This interface is an enumeration of attributes for each
Content Type Description field and the corresponding
archetype class that implements this interface, called
“content component”.

Figure 3: The Octapy component model.

A COOPERATIVE AND DISTRIBUTED CONTENT MANAGEMENT SYSTEM

143



A content component implements, see Figure 3,
at least two interfaces: the content type definition and
the IOctapyInterface. This interface is generic in the
sense that it is common to all content components
and exposes the method getContentInteface() and
returns the interface describing the document content
type, i.e. it allows searching for a specific data inter-
face.

Octapy3 allows also handling and managing con-
tent type extensions in a generic way. An adapter,
to the fixed interface IOctapyContent, could add the
required functionalities to the Octapy3 system. For
example, a presentation interfaces can be built us-
ing Browser Pages component that adapts the interface
IOctapyContent and accesses the content interface via
getContentInterface() method. Furthermore, it is
also possible to write extension module for a given
data schemata adapting only the generated content
component interfaces.

3.2 The Octapy3 Configuration
Mark-up Language

In order to extend, during the CMS configuration
phase, the types of the managed contents we defined
a specific document configuration language, called
OCML. It allows: to define new document types; to
choose documents storage methods for each docu-
ment or some of its parts; to assign some sort of se-
mantics to the document components associating spe-
cific interpreters; and to assign user presentation logic
for each content types.

OCML is a command–oriented language whose
syntax is inherited from XML. The commands are
represented as set of XML tags, called directives, and
are grouped in three main XML vocabulary identified
by the XML namespaces: data, storage and view. A
command interpreter may be associated to each direc-
tives in order to assign a specific operational semantic.

The data directives allow defining new content
types and express the parent-child relationship among
documents. A new content type is defined using
data:document directives, and the data:field direc-
tives associate to them a structure. Fields can be logi-
cally grouped using data:section directives. For ex-
ample, documents can be composed (nested) to form
hierarchical structures instantiating the containment
relation “is-composed-by” and the corresponding “is-
part-of”. A document could also contain other docu-
ments describing the containerish document type.

The storage directives associate a specific stor-
age mechanism to a document or to some of its parts.
For example, suppose that a structured document,
called ArtisticObject was defined, and that among its

fields there is one, called image, to which is asso-
ciated a jpeg digital picture. Then the document may
have database persistence for all its fields except for
the image field whose persistence could be in a local
filesystem.

The view directives associate one o more ways to
present documents to the end–users. It’s possible to
define which widget to use in order to display the doc-
ument field. Two directives can be used to cover this
operation: view:for, used to specify the widget to be
associated to a specific field; and view:fordata used
to specify the widget to be associated to a given field
type (e.g. Text, Image, etc).

OCML documents specification may also be split
on multiple files using the special directive <include
src=‘‘filename’’/>. More details on OCML can be
found in (Acampa P. and Noviello C. , 2007).

3.3 The Metadata Attribute of
Document Models

The content collection of fields of the application data
layer have, in general, no associated meaning, since
they are considered only containers for “values” and
used to store fixed data. This information is, in gen-
eral, interpreted as expressed by a pair of a name and
uninterpreted values. Nevertheless, in order to be se-
mantic oriented an interpreted value must be assigned
to a metadata name, i.e., it is necessary to make ex-
plicit both the domain from which the values are cho-
sen and the valuation function (interpreter) used to as-
sign a meaning. In a such semantic oriented scenario
it is possible to define ArtisticObject content type whose
fields oss and title are not only simply container for
lines of text, but it is also possible to associate mean-
ings that depend on the context. For example, the field
oss may be interpreted as the description of an Artistic
Object in one context and as picture caption in another
context, with a different formatting and typesetting.
This means that a document, or part of it, can have
special interpretation that must be correctly handled
by the software.

In OCML the metadata attribute of the directive
data:field has been introduced, whose values
can be used to specify which interpretation model
has to be associated to a field. For example, the
value: <data:field name="oss " type="Text"
metadata="{uiuse:description}"/> instructs the
presentation layer, where the field is used, that
the field oss must be interpreted as the Artistic
Object field description, and therefore it must be
correspondently processed.

The values of metadata attribute are transparent
to the data and other application layers: only com-

ICSOFT 2008 - International Conference on Software and Data Technologies

144



ponents that know how process it will use this infor-
mation.

The interpretation model is implemented anno-
tating the document component model attributes
and methods with tags. The YODA generated
content interfaces are annotated with the infor-
mation provided by the metadata attribute using
setTaggedValue() method. Extension modules can
access this information through metadata attribute us-
ing the getTaggedValue() method.

It is important to underline that interpretation
models are not only used to implement the presen-
tation logic, but that may be also used whenever it
is necessary to associate a special meaning to a field,
some sort of metadata cross-walk. For example, the
Octapy3 Dublin Core subsystem uses metadata at-
tribute to map fields name to the DC metadata set,
as shown in the following example:

...
<data:field name="descrizione_breve"

type="Text" metadata="{dc:title}"/>
<data:field name="autore_scheda"

type="Text" metadata="{dc:author}"/>
...

In the next section the Octapy3 test bed and the
experience gained operating it are shortly described
over a knowledge community of about 100 Octapy3
nodes.

3.4 Cooperation and Interoperability
Components

To make effective the cooperation and to share
documents across documents stakeholders, Octapy3
makes available different machines “understandable”
document representations. Some of them are oriented
to semantic web and are based on RDF/RDFS lan-
guage and derivatives; others are oriented to facilitate
the interoperability using standard protocol for meta-
data sharing, like the OAI-PMH protocol. Figure 4
shows the OAI Octapy subsystem components inter-
action, more information can be found in (Noviello,
2007).

In Octapy3 every containers implements the IOc-
tapyContainer interface and all remote contents (docu-
ments and/or aggregates) implements the IOctapyProxy
marker interface, i.e., those objects act as proxy for
remote contents. Documents and their aggregates can
be exported and/or aggregated in other CMS nodes
using the RemoteContainer class. A RemoteObject spe-
cial base class, called OctapyProxy, manages the con-
tent interface creation, starting from the information
provided by OXF serialization. All the document in-
terpretation models are properly added so presenta-

tion layer and other modules can correctly process
them.

Figure 4: The integration of a OAI data provider in a Octapy
based CMS.

4 THE MUSEO VIRTUALE TEST
BED

The aim of any ordinary museum visitor is some-
thing quite different from trying to find certain ob-
jects. In physical exhibitions, the cognitive museum
experience is often based on both thematic combina-
tion of exhibits and their contextual information. To
foster the museums cooperation software tools were
developed to aggregate, both locally and remotely, the
knowledge about cultural heritage goods. Using these
tools the knowledge stakeholders could organize vir-
tual exhibitions according to some physical or logical
criteria either in the case either the information is di-
rectly managed or shared with other stakeholders.

The information provider1 could also organize a
set of related documents, as document collections, ac-
cording to some relationships.

To assure the necessary museum manager ope-
rational autonomy, without reducing the cooperation
opportunities, we deployed a cooperation schema as
intermediate coordination organization that it is in
charge to register, syndicate and guarantee the qual-
ity of document contents.

From technical point of view the main goal pur-
sued with this test bed was to concretely verify the

1In this paper we assumed that museum manager means
the responsible, inside the museum organization, of the cul-
tural heritage goods information.

A COOPERATIVE AND DISTRIBUTED CONTENT MANAGEMENT SYSTEM

145



possibility to create knowledge cooperating commu-
nities. Where each participating museums could ex-
change its own managed knowledge so to improve
their institutional cooperation.

Figure 5: The organization of
campaniabeniculturali.it knowledge community.

Figure 6: The content integration of the cultural heritage
heterogeneous knowledge.

Currently more than 100 Octapy3 nodes, spread
over the geographic region of Campania, are orga-
nized in knowledge clouds, each cloud covers the ter-
ritories around the main cities of Campania, i.e. Ben-
evento, Salerno, Caserta and Avellino. The cultural
heritage knowledge offering is organized according
thematic topics, such as the first civilizations in Cam-
pania, the Roman civilization periods, the Gran Tour
period and so on.

From the museum managers’ perspective each in-
formation system allows him to make available the
managed artifacts’ information through the Octapy3
node, where no assumption about fixed attributes
names’ schemata is taken, so the application builder
can create new attributes, as needed just modifying
the associated document interpretation model without
changing the internal CMS schemata.

Since the software allows exchanging the contents
through the OAI-PMH then the circuit itself is in-
cluded in the Italian cultural heritage portal.

5 CONCLUSIONS

One of the most interesting technological aspects in-
vestigated and described in this paper was how to
improve the document repositories systems flexibility
to organize cultural heritage etherogeneous informa-
tion spread in many autonomous organizations. To
achieve this goal we developed, first of all, a doc-
ument markup language to describe both document
contents and then the corresponding software com-
ponents devoted to manage the document life cy-
cle. Next, we developed a middleware layer that
make transparent the document physical location into
a “knowledge community network” to easily share
document metadata. On doing so, each museum
document repositories may have different conceptual
schemas, and no assumption about a fixed attribute
names schemata are taken, so museum manager can
create new attributes as needed just modifying the as-
sociated OCML document type description without
change neither the internal software component nor
database schemata.

The information provider could also organize a set
of related document in document collections accord-
ing to some relationships defined using the document
container type with an arbitrary nesting level. With
this feature the museum manager could define collec-
tion of cultural heritage description that contain inside
other collections descriptions. Each digital document
could belong to multiple collections and have mul-
tiple relationships with other documents. This nest-
ing feature forms the document repository collection
graph, and allow to deliver more than one logical view
of a given digital documents asset.

Our work successfully showed that Octapy3 could
be used as document repository backend for dis-
tributed CMSs, together the central role played by the
cooperation middleware on deploying such kind of
systems. With this type of CMS we could overcome
some limitations suffered by the system described
in (Aiello A. et al., 2005), (Aiello A. et al., 2006).

ICSOFT 2008 - International Conference on Software and Data Technologies

146



Where a “cultural heritage knowledge community in-
frastructure” was build around the use of an ontology
to glue distributed document repositories. Reposito-
ries that didn’t gave good performances when used in
conjunction with a reasoning component. That was
especially true on increasing both the number of doc-
uments and CMS nodes.

We have plans to extend Octapy3 to manage
document schema and document exchange using
RDFS/RDF representations to actively pursue some
of the foreseen goals off semantic web technolo-
gies (Berners-Lee T., 1996), (Jena, 2004), (Horrocks
I., 2002) in a distributed settlement. For exam-
ple, we foresee the possibility to exploit pieces of
well-known and supported ontology fragments, like
ICOM-CIDOC (CIDOC, 1999). Fragment to be spe-
cialized for each different knowledge providers in or-
der to contain the computational complexity on using
ontologies in real cases.

ACKNOWLEDGEMENTS

Acknowledgments are expressed to all members of
Advanced Information System research group team of
Istituto di Cibernetica E. Caianiello that contributed to
the Octapy3 paltform, for their help, and fruitful dis-
cussions. Also to the staff members of the Soprinten-
denza ai Beni Archeologici delle Province di Napoli
e Caserta, Soprintendenza ai beni Artistici, Storici e
Demo Antropologici della Provincia di Napoli, So-
printenda ai Beni Architettonici ed Ambientali della
Provincia di Napoli, Archivio di Stato di Napoli,
a special gratitude must be expressed since without
their assistance the experimental activities and results
would not exist

REFERENCES

Acampa P. and Noviello C. (2007). Specifica ocml, tech-
nical sheet octapy cms. Technical report, Istituto di
CIbernetica.

Aiello A., M. Mango Furnari M., and Massarotti A. (2005).
A distributed multimedia information system for cul-
tural heritage identity preservation. Transaction on In-
ternet Research, pages 11–17.

Aiello A., M. Mango Furnari M., Massarotti A., Caputo V.,
B., and Barone V. (2006). An experimental ontology
server for an information grid environment. Int. Jour-
nal on Parallel Programming, pages 489–508.

Berners-Lee T. (1996). Www: Past, present, and future.
IEEE Computer, 29:69–77.

CIDOC (1999). Icom/cidoc documentation standard group,
revised definition of the cidoc conceptual reference

model
http://cidoc.ics.forth.gr/.

DC (1995). The dublin core metadata initiative
http://www.purl.org/dc/.

Horrocks I., T. (2002). Querying the semantic web: a for-
mal approach. In Horrocks, I. and Hendler J, edi-
tors, The 1st International Semantic Web Conference
- ISWC2002, volume 2342 of Lecture Notes in Com-
puter Science, pages 177–191. Springer Verlag.

Jena (2004). Jena-a semantic web framework for java
http://www.hpl.hp.com/seweb/. Technical report,
HP Labs Semantic Web Research.

Lassila O., R. S. (1998). Resource description framework
(rdf) model and syntax. Technical report, World Wide
Consortium Working Draft.

Mangano, S. (2005). XSLT Cookbook. O’Reilly, 2nd edi-
tion.

Mango Furnari M., Aiello A., Caputo V., and Barone V.
(2003). Ontology server protocol specification. Tech-
nical report, ICIB TR-12/03.

McGuinness D. and van Harmelen F. (2003). Owl web on-
tology language overview. Technical report, W3C.

Noviello, C. (2007). Il component-model di octapy 3, tech-
nical sheet octapy cms. Technical report, Istituto di
Cibernetica.

OAI-PMH (2001). Open archives initiative.

von Weitershausen P. (2007). Web Component Development
with Zope 3. Springer Verlag, New York, 2nd edition.

A COOPERATIVE AND DISTRIBUTED CONTENT MANAGEMENT SYSTEM

147


