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Abstract: Software development for mobile systems is becoming increasingly complex. Beneath enhanced 
functionality, resource scarcity of devices is a major reason. The relatively high energy requirements of such 
systems are a limiting factor due to reduced operating times. Reducing energy consumption of mobile 
devices in order to prolong their operation time has thus been an interesting research topic in past years. 
Interestingly the focus has mostly been on hardware optimization, energy profiles, or techniques such as 
“Micro-Energy Harvesting“. Only recently, the impact of software on energy consumption by optimizing 
the use of resources has moved into the center of attention.  Extensive wireless data transmissions, that are 
expensive, slow, and energy intensive can - for example - be reduced if mobile clients locally cache 
received data. Unfortunately, optimization at compile time is often inefficient since the optimal use of 
existing resources cannot really be foreseen. This paper discusses and applies novel strategies that allow 
systems to dynamically adapt at runtime. The focus is on resource substitution strategies that allow 
achieving a certain Quality-of-Service while sticking to a given energy limit. 

1 INTRODUCTION 

Mobile and small embedded systems usually have 
their own energy supply, an energy management 
system, internal logic, (wireless) communication 
interface, sensors and actors. Data is transmitted 
between single devices and/or servers by means of 
standardized communication protocols (e.g., ZigBee, 
Bluetooth, W-LAN, etc.). While such devices 
provide a growing range of functionality they are 
typically characterized by a scarcity of resources. 
The power/energy requirements of such systems are 
a limiting factor. To increase the quality and user 
acceptance it is therefore necessary to optimize the 
energy consumption for provide improved uptimes.  

Research in the area of mobile phones and ad-
hoc sensor networks has shown that especially 
communication (i.e., (wirelessly) transmitting data) 
is one of the largest cost factors (Domis 2006), 
(Stark et al 2002) (Zhang et al 2005). This makes 
communication an ideal candidate for optimizing a 
system’s uptime. Energy optimization has to be 
aware of the tradeoffs between performance, energy 
consumption, and quality-of-service (QoS). In 
contrast to hardware optimizations, software systems 
are usually optimized at development time by 

specifying their energy characteristics and by 
adapting the implementation. However, this requires 
individual adaptations of each system variant, and 
often implies a negative impact on the performance 
or QoS of such systems. The challenge is to explore 
the relations among the various components and to 
understand the tradeoffs between performance, QoS 
and energy consumption (Zhang et al 2005). This 
enables the development of systems that achieve an 
optimal balance between performance, QoS, and 
energy consumption by adapting themselves at 
runtime (i.e., dynamic optimization). 

Component-Based Software Development 
(CBSD) (Szyperski 2002) aims at reducing the 
complexity of software development and improving 
a system’s maintenance by increasing reuse and 
independence. CBSE allows focusing on changes at 
the component level instead of changes at the 
implementation level. Adaptability is managed in 
terms of the creation/destruction of component 
instances and their links (i.e., dynamic 
reconfiguration or structural dynamism). But, 
runtime component replacement is not sufficient 
since the current state of a component is lost. Thus, 
self-adaptability of components is needed allowing 
updates at runtime while preserving the state. 
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This paper describes the component-based 
development of low-energy systems, based on the 
MARMOT/KobrA approach (Atkinson et al 2001). 
The central idea is the development of an energy-
management component (EMC) that serves as a 
communication channel and makes use of resource 
substitution strategies (Höpfner & Bunse 2007) to 
improve energy consumption. The selection of 
strategies is based on an energy cost model. Typical 
strategies in this regard are caching, replication or 
hoarding. In addition, the paper reports on first 
findings obtained in a small series of case studies. 
Results show that systems that make use of wireless 
communication can profit from using the EMC. In 
contrast, systems that make use of cable-based 
communication do not show such significant 
improvements. This supports the assumption that 
wireless communication is a dominant factor 
concerning energy consumption. 

The remainder of this paper is organized as 
follows. Section 2 provides an overview on resource 
substitution strategies in mobile information 
systems. Section 3 introduces the MARMOT 
approach for the component-based development of 
such systems, while Section 4 discusses static and 
dynamic optimization approaches and provides some 
insights to the EMC. Section 5 presents preliminary 
evaluation results and Section 6 provides a short 
summary and some conclusions. 

2 RESOURCE SUBSTITIUTION 
IN MOBILE INFORMATION 
SYSTEMS 

Mobile information systems are aimed at providing 
important data in real time at almost every place and 
anytime to assist decision makers (Gurun & Krintz 
2003). In most cases mobile clients, like Java 
enabled mobile phones, connect to static and 
powerful information system servers. Unfortunately, 
lightweight mobile clients suffer from various 
limitations (reduced bandwidth, weak CPU, less 
memory, limited energy supply, etc.) that can be 
ease by a proper substitution strategy. We 
researched the possibilities and benefits of resource 
substitution for this application scenario.  

The following subsections briefly describe the 
relevant resources and how they can be substituted 
by each other (see Höpfner & Bunse 2007) for more 
details). 

2.1 Resources and their Usage 

The client/server scenario used in our work implies 
that (1) mobile clients query data from a server, (2) 
compute and display them, and (3) synchronize 
changes with the server. Hence, data communication 
is extensively used in the first and the third phase. 
Another resource affected in both steps is the energy 
supply. Wireless data communication is energy 
intensive. Standard techniques for handling this 
problem include replication, hoarding, and caching. 
Replication stored explicitly defined data parts on 
the mobile device, caches keep queried data 
implicitly, and hoarding automatically extends 
explicitly or implicitly received data by additional 
data that might be useful for answering upcoming 
requests without communications. Hence, reducing 
data communication is done by storing data on the 
mobile client by using the memory resource. The 
CPU resource is not only used in the second phase 
for the “normal” computation and visualisation of 
the data but also necessary for supporting the local 
data management. If, for example, data is cached in 
a semantic manner (Ren & Dunham 2003) query 
processing becomes more CPU intensive since 
queries must be rewritten regarding the locally 
available data. In fact, some of these algorithms are 
known to be NP-hard. However, studies (Marwedel 
2007) show that even complex calculations consume 
less energy than memory accesses.  

2.2 Substitutability 

We discussed the most relevant resources and how 
they are generally used in mobile information 
systems in Subsection 2.1 and also mentioned that 
extensive communications might be substituted by 
memory usage. However, there are more possible 
substitutes, such as:  

 CPU vs. Communication 
In order to reduce CPU usage one can 
delegate complex calculations/conversions to 
a server or use web services (Ion, Caracaş & 
Höpfner 2007). So, communication is a 
substitute for CPU usage. On the other hand, 
reducing communication means either 
transmitting compressed data, to specify 
requested data more precisely or to maintain 
local copies. Hence, communication might be 
substituted by CPU usage. 

 CPU vs. Memory 
If certain computations are frequent the results 
might be stored. In the database world this is 
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called view materialization. In other words, 
CPU usage is reduced by storing additional 
data; memory substitutes CPU usage. Saving 
memory can be done by compressing and 
decompressing data.  

 Memory vs. Communication 
Caching, hoarding, or replications are well 
known techniques of a resource substitution. 
All create redundant data on the mobile 
device, and this data have to be stored. In 
order to substitute memory by communication 
one can think about storing all information the 
server only as it is supported by IMAP.  

 Energy vs. CPU, Memory, Communication 
The resource energy interacts with all other 
resources. However, the intensity of energy 
consumptions is different for each other 
resource.  Energy consumption associated 
with wireless data transmission is not 
negligible (Feeney & Nilsson 2001). Storing 
data locally requires less energy than wireless 
transmissions depending on data-size, storage 
time, and other factors. CPU usage needs 
comparatively less energy than memory 
storage (Marwedel 2007). 

In order to implement software for mobile 
devices that fits the user’s needs one has to consider 
the resources provided by the mobile device and the 
environmental infrastructure. So, the discussed 
substitutions are only some alternatives beside 
others. However, the examples illustrate the 
dynamics an implementation must support. 

3 COMPONENT ENGINEERING 

Reuse is a key success factor in industry today, and 
it can be seen as a major driving force in hardware 
and software development. Reuse is pushed forward 
mainly by the growing complexity of systems. This 
section introduces the MARMOT method (Bunse, 
2006) that facilitates reuse in embedded systems 
development. MARMOT is an extension to the 
KobrA method (Atkinson 2001), a component-based 
development framework for information systems. 
MARMOT adds diagram types (UML and 
electronics related), model relationships, verification 
mechanisms, and transformation rules to KobrA that 
are specifically adapted to embedded systems. 

Composition is a key activity in component-
based development with MARMOT. A system is 
viewed as a hierarchy of components, in which the 
parent/child relation-ship represents composition, 

i.e., a super-ordinate component is composed out of 
its contained sub-ordinate components. Another 
established principle is the separation of interface 
and implementation that supports independent 
component development, and allows versions of a 
component to be exchanged. Following those 
principles, each component can be described through 
a suite of models (e.g., UML diagrams) as if it was a 
system in its own right (see Figure 1). 

Figure 1: MARMOT Component Model. 

3.1 MARMOT Process Model 

The core principle of MARMOT is separation of 
concerns, with two basic development dimensions 
(Composition/Decomposition and Abstraction 
Concretization) that map to four basic activities 
(Decomposition, Embodiment, Composition, and 
Validation). These are depicted in Figure 2: 2 and 
described in the following list: 

• Decomposition. A development project starts 
above the top left-hand side box in Figure 2: 2. It 
represents the entire system to be built. Before 
the specification of the box, the concepts of the 
domain in which the system is supposed to 
operate must be determined comprising 
descriptions of all entities relevant in the 
domain such as standard hardware components 
that will appear on the right-hand side towards 
concretization. These implementation specific 
entities determine the way in which a system is 
divided into smaller parts. Decomposition 
determines the shapes of identified individual 
components in an abstract and logical way. 

• Embodiment. The systems, or its parts, are 
moved towards more concrete representations, 
mostly through reusing existing components (or 
custom development). There is no distinction 
between hard- and software components at this 
early phase since all components are treated in 
form of abstract models. 
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• Composition. The reused and implemented 
components are assembled according to the 
abstract model, and the subordinate boxes have 
to be coordinated with their respective super-
ordinate boxes according to the MARMOT 
component model. 

• Validation assesses to which extent the concrete 
composition of the embedded system 
corresponds to its abstract description. 

3.2 MARMOT Properties 

MARMOT follows the principles of encapsulation, 
modularity and unique identity, which lead to a 
number of obligatory properties: 
• Composability is the primary property and it can 

be applied recursively: components make up 
components, which make up components, etc. 

• Reusability is the second key property, 
separated into development for reuse, i.e., 
components are specified to be reusable, and 
development with reuse, dealing with the 
integration and adaptation of existing 
components in a new application. 

• Having unique identities requires that a 
component may be uniquely identifiable within 
its development and runtime environment. 

• Modularity/encapsulation refer to a 
component’s scoping property as an assembly 
of services (also true for a hardware 
component), and as an assembly of common 
data (true for hardware and software 
components). The software represents an 
abstraction of the hardware. 

• An additional important property is 
communication via interface contracts that 
becomes feasible in the embedded world 
through typical software abstractions. Here, 
additional hardware wrappers guarantee that the 
hardware communication protocol is translated 
into a component communication contract. 

4 OPTIMIZATION 

Research in the area of mobile- and small embedded 
systems (e.g., ad-hoc sensor networks) have shown 
that especially communication (i.e., wirelessly 
transmitting data) is one of the largest cost factors 
(Stark 2002, Zhang 2005). Therefore, we limit the 
focus of our approach towards optimizing a systems 
communication effort with respect to energy.  
MARMOT supports the optimization of energy 

consumption in two different ways: (1) Statically at  
development time (preferred means for optimizing 
“isolated” systems), and (2) dynamically  at runtime. 
Static optimization has already been evaluated by 
(Domis, 2006). Therefore, the focus of this paper is 
on the dynamic optimization aspects. 

Figure 2:  Development Dimensions. 

4.1 Static 

Static energy optimization in MARMOT is based on 
(Nieberg 2003), who follows a state-based approach 
by assigning a set S of all states s1,..., sk with  (k є Ν  
and 1≤ k) to all hardware component. This set is used 
to create a state transition matrix ST, whereby 
elements stij of ST specify the number of state 
transitions from state si to sj ( i, j є Ν, 1≤ i ≤k and 1 ≤  
j ≤  k). In addition each state si of S is combined with 
the power consumption Pi in this state, and each state 
transition stij becomes assigned to the energy 
consumption Eij for the transition. By knowing the 
time ti, in which the component is in state si, the 
energy consumption can be calculated by: 

Within MARMOT this approach is used to 
model the energy related properties of a component 
(i.e., hardware node with embedded software 
components). Therefore, the component model (see 
Figure 1) was adapted at the specification- and at the 
realization level (see Figure 3: ).  

At the specification level (i.e., the component 
interface) the externally visible behavior of a 
component is already modeled by an abstract state 
machine. Following (Nieberg 2003) an additional 
power state machine is created that specifies the 
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power consumption for single states and the duration 
of transitions.  It thus, depicts the externally visible 
energy consumption of a component. In addition the 
functional model, specifying the external visible 
operations of a component, is enhanced by an energy  
consumption attribute to specify the consumption of 
those operations that are not already covered by the 
power state machine. 

 
Figure 3: Energy Component Model (Domis 2006). 

At the realization level a UML timing diagram is 
created for every operation, modeling the 
operation’s control flow in relation to time. This 
allows (in cooperation with the specification 
models) to analyze the energy consumption of an 
operation and to manually optimize operations & 
control with a focus on communication routines 
(e.g., shortened communication cycles and 
messages, using sleep modes, reducing wake-up 
cycles, etc.).  

4.2 Dynamic 

In mobile systems, devices, services, environmental 
objects, and requirements are subject to change. 
Therefore, static optimization might not always be a 
suitable solution since the optimization of one 
property might have a negative impact onto other 
properties (e.g., improving energy consumption via 
communication optimization might deteriorate the 
system’s quality-of-service). To avoid this, a system 
should be able to adapt its operation to the current 
requirements and the available resources. 

Optimally, run-time adaptation requires that 
single components are analyzed at run-time (e.g., 
concerning their energy consumption) and are then 
dynamically exchanged. However, this would not 
only require implementation support (i.e., dynamic 
code exchange is not supported by Java), but also 
the provision of different component variants.  

When focussing on optimizing communication to 
reduce energy consumption, another solution is the 
development of a component (-wrapper) that is 
plugged into a system and that acts as a facilitator 
between the software and the hardware 
communication facilities (i.e., hardware wrapper).  

Such a component (-wrapper) can be developed 
or specified using the MARMOT approach and then 
be “easily” integrated into existing systems. This is 
supported by MARMOT’s inbuilt component reuse 
mechanisms that make use of conformance maps 
and wrappers (Atkinson 2001). The component then 
analyzes the communication requests to or from the 
system with the help of an internal (energy) cost 
model and then selects the “optimal” (substitution) 
concerning energy consumption.  

The central element of such a component is the 
cost model. Within in MARMOT such a model can 
be developed by following the static optimization 
approach (i.e., specifying energy properties of a 
(hardware) component) as discussed in Section 4.1 
whereby the model must be platform-specific. By 
having a platform specific power state machine as 
well as the energy-related costs for specific 
operations (functional and timing model) it is “easy” 
to calculate the differences between alternatives.   

Examples of substitution strategies are on a 
lower level the accumulation of data, the decision to 
let the server perform specific operations, etc. On a 
more advanced level caching (i.e., the operation of 
storing information in the user’s device after it has 
been sent from the server) and hoarding (i.e., the 
process of predicting the information that the user 
will request, for transferring it in advance to the 
client cache) might be used. As discussed in Section 
2, caching and hoarding seem to be beneficial for 
systems with high communication loads (e.g., 
mobile information systems).   

One obvious disadvantage of the substitution 
approach is that functionality has to exist at both the 
client and the server side (i.e., duplication). 
Therefore, substitution strategies, although in 
principle generally applicable, have to be specialized 
(refined) for a specific system. In addition, more 
memory space is required. However, first results 
(see Section 5) are quite promising. 

4.3 The EMC 

To dynamically adapt the energy consumption of 
mobile and embedded systems we developed a 
component, known as EMC (Energy Management 
Component), that manages the communication 
to/from the system and that therefore optimizes the 
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Figure 4: Architecture of the Energy Management Component. 

system’s energy consumption. In general, the EMC 
was developed by applying the MARMOT 
approach. On the one hand this eases reusing the 
EMC within different projects and also allowed to 
statically optimize the EMC regarding its own 
energy consumption. Technically, the EMC 
implements/realizes the resource substitution 
strategies outlined in section 4.2).   

At its core the EMC defines a family of 
strategies, encapsulate each of these, and makes 
them interchangeable. This is nicely supported by 
the strategy pattern defined by (Gamma 1995).  The 
strategy pattern supports the development of 
software systems as a loosely coupled collection of 
inter-changeable parts.  The pattern decouples a 
strategy (algorithm) from its host, and encapsulates 
it into a separate class. It thus, supports the 
separation of an object and its behaviour by 
organizing them into two different classes. This 
allows switching to the strategy that is needed at a 
specific time. 

There are several advantages of applying the 
strategy pattern for an adaptable software system. 
First, since the system has to choose the “best” 
substitution strategy it is simpler to keep track of 
them by implementing each strategy by a separate 
class instead of ‘burying’ it in the body of a method. 
Having separate classes allows simply adding, 
removing, or changing any of the strategies. Second, 
the use of the strategy pattern also provides an 
alternative to sub-classing an object. When sub-
classing an object to change its behaviour, that 
behaviour is static. Changes therefore require the 
creation/instantiation of a different subclass and 

replacing that object with it. The strategy pattern 
allows switching the object's strategy, and it will 
immediately change how it behaves. Third, using the 
strategy pattern also eliminates the need for various 
conditional statements. When different strategies are 
implemented within one class, it is difficult to 
choose among them without resorting according to 
the conditional statements. The strategy pattern 
improves this situation since strategies are 
encapsulated as an object that is interchangeable at 
runtime. In the context of this paper we specified an 
Energy Management component (EMC) that makes 
use of strategy pattern variant, and that uses resource 
substitution strategies for optimizing energy 
consumption (see Figure 4: ).   

To select the most appropriate strategy the 
component has to ‘know’ the cost of operations. 
Therefore, a cost model is needed (see Section 4.2). 
Since these costs vary between target platforms the 
cost model entity provides a generic interface that 
has to be specialized prior to deployment.  

Selecting the ‘best’ strategy concerning energy 
consumption might have a negative impact on other 
quality attributes (e.g., performance, memory, etc.). 
Thus, the best possible optimization might not be 
desirable from the user’s point of view. The decision 
on suitable strategies cannot be made by the 
component on its own. Thus, the component has to 
be aware of user preferences. The EM component 
therefore provides a profile mechanism that allows 
users to specify their requirements concerning 
energy saving, performance, and quality-of-service. 
Furthermore, it allows to specify how the system 
should behave if the energy level gets low.  
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In addition to user profiling the EM component 
needs an interface to the underlying platform or 
hardware layer to monitor the actual battery status. 
In order to make the component deployable across 
different platforms the component uses a generic 
interface that is specialized according to the selected 
platform. In addition to monitoring battery levels 
this interface is also used to directly access hardware 
implemented energy saving procedures (e.g., 
reducing the transmitting power, graceful 
degradation, or dynamic voltage scaling). 

Since the EMC itself was developed with 
MARMOT two facts have to be noted. First, due to 
the method’s inbuilt reuse mechanisms the EMC can 
quickly and efficiently be adapted and reused within 
other projects systems (this is supported by the low 
reuse effort as reported in section 5.1.)  Second, the 
EMC itself was optimized, regarding its energy 
consumption, by using the static optimization 
mechanisms outlined in section 4.1. The reason was 
to avoid that achieved savings are wasted by the 
EMC’s own energy consumption. The results 
reported in section 5.1 support this assumption. 

5 EVALUATION 

Optimizing the communication behaviour is a 
promising means for reducing the energy 
consumption of mobile and embedded systems. The 
EMC component is based on the idea of resource 
substitution and can be plugged into other systems 
that have been developed using the MARMOT 
approach. In the following preliminary results of 
three, currently running, case studies are discussed. 

 Case studies were selected according to the used 
communication technology (e.g., ZigBee, Bluetooth 
and Cable-based). In addition, all case studies are 
micro-controller based. Systems that use an 
operating system (OS) do not allow to clearly 
investigating the energy relevant behaviour since it 
is not possible to differentiate between system and 
OS activities when measuring energy consumption.  

All measurements are performed and recorded 
automatically using a digital oscilloscope that has a 
PC-communication module. During measurement 
three different versions of a system have to undergo 
the same, pre-specified action sequence that is 
repeated until the battery level reached a critical 
value. Measurements focus on energy consumption. 
In order to obtain valid measurement results the case 
studies are performed several times (multiple battery 
cycles), resulting in an overall measurement time of 

several days. Measurements currently continue in 
order to further confirm the initial findings. 

5.1 Case Studies 

As a first step towards evaluating the effected of 
using the EMC three case-studies were defined: 
• A wireless sensor network that consists out of a 

controller, router- and end-nodes. Each node has 
a set of sensors and communicates with the 
other nodes using the ZigBee protocol. The 
system supports the surveillance of animals 
(i.e., cattle). Nodes integrated in a collar, 
measure life data (temperature, pulse …) and 
provide these together with localization 
information to the controller.  The controller can 
then monitor movement, identify escaped, ill, or 
dead animals, can issue alarm calls, and create 
movement profiles (optimal land utilization).  

• A fork-lifter system for handling transport 
within a warehouse. The system consists of a 
vehicle and a central control unit (i.e., a PC). 
The fork lifter is able to independently navigate 
through the warehouse and solve transportation 
tasks. The central control unit communicates 
with the vehicle via Bluetooth, provides new 
tasks, monitors its actual state and position, 
provides roadmaps and routes, and offers a 
manual control of all vehicle functions.     

• A mirror control system, part of a larger door 
control unit, allows movement of a car mirror 
horizontally and vertically into the desired 
position whereby movement is indicated on a 
small LCD panel. Cars supporting driver 
profiles can store the mirror position and recall 
as soon as the profile is activated. Furthermore, 
the system provides a defreeze/defog function 
with a humidity sensor and a heater.  

5.2 Initial Results and Discussion 

Initial measurement within the case-studies shows 
that the EMC-related optimization results are close 
to those that can be obtained by static optimization. 
However, the perceived QoS is higher for dynamic 
optimization and the effort for integrating the EMC 
into a system is significantly lower than the required 
effort for static optimization. On average the 
adaptation and integration of the EMC required 10h. 
One reason for this is the use of MARMOT and its 
inbuilt reuse mechanisms. Interestingly, static 
optimization required nearly double this effort. 
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 One finding is that using the EMC seems to be 
more effective when using the EMC within systems 
that make use of wireless communication (e.g., 
ZigBee/Bluetooth). Here the uptime was extended 
from ~13 to ~110 hours. Systems that make use of 
cable-based communication (e.g., UART) showed 
less significant results (i.e., uptime extension from 
10 to 13 hours). This, indirectly, confirms that 
wireless communication is one of the largest cost 
factors regarding energy consumption.  

Results reveal that the curves, formed by 
measurement-data, show some of the typical 
characteristics of battery-powered systems. If the 
energy consumption passes a maximum value they 
seem to suddenly lose their capacity, while, after 
phases with minimum energy consumption that 
follow short high-energy consumption phases they 
seem to re-charge themselves. This effect is known 
as Recovery Effect and depends on the charge 
history, age, and environment temperature of the 
battery.  In addition, batteries are known to 
discharge themselves based on the environmental 
temperature and the actual use. Although, these 
effects make measurement and forecasts quite 
difficult, they did not have an impact onto the results 
of the case studies since every run used fresh 
batteries and followed the same scenario. 

6 SUMMARY & CONCLUSIONS 

Given the rising importance of mobile and small 
embedded devices, energy consumption becomes 
increasingly important. Currents estimates by 
EUROSTATS predict that in 2020 10-35 percent 
(depending on which devices are taken into account) 
of the global energy consumption is consumed by 
computers and that this value will likely rise. 
Therefore, means have to be found to save energy. 

The focus of this paper is on resource 
substitution as a means for energy saving. Based on 
general substitution strategies (Höpfner & Bunse, 
2007) we presented a general energy management 
component (EMC) that can be plugged into 
component based systems developed with 
MARMOT. The component acts as a mediator 
between system and communication facilities. All 
communication requests are analyzed concerning 
energy related cost and substitution strategies are 
used for optimization. Preliminary case-study results 
indicate that wireless communication is the major 
cost factor concerning energy consumption and that 
by using the EMC it is possible to significantly 

extend the uptime and to decrease the energy 
consumption of mobile & small embedded systems. 

Our initial results are based on micro-controller 
systems. To systematically evaluate the effects of 
strategies such as caching or hoarding we currently 
prepare a case study for mobile information systems 
running on a PDA or Smartphone.   
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