
RESOURCE SUBSTITUTION WITH COMPONENTS
Optimizing Energy Consumption

Christian Bunse and Hagen Höpfner
International University in Germany, School of IT, Campus 3, 76646 Bruchsal, Germany

Keywords: Resource Awareness, Software Engineering, Adaptability, Mobile Systems.

Abstract: Software development for mobile systems is becoming increasingly complex. Beneath enhanced
functionality, resource scarcity of devices is a major reason. The relatively high energy requirements of such
systems are a limiting factor due to reduced operating times. Reducing energy consumption of mobile
devices in order to prolong their operation time has thus been an interesting research topic in past years.
Interestingly the focus has mostly been on hardware optimization, energy profiles, or techniques such as
“Micro-Energy Harvesting“. Only recently, the impact of software on energy consumption by optimizing
the use of resources has moved into the center of attention. Extensive wireless data transmissions, that are
expensive, slow, and energy intensive can - for example - be reduced if mobile clients locally cache
received data. Unfortunately, optimization at compile time is often inefficient since the optimal use of
existing resources cannot really be foreseen. This paper discusses and applies novel strategies that allow
systems to dynamically adapt at runtime. The focus is on resource substitution strategies that allow
achieving a certain Quality-of-Service while sticking to a given energy limit.

1 INTRODUCTION

Mobile and small embedded systems usually have
their own energy supply, an energy management
system, internal logic, (wireless) communication
interface, sensors and actors. Data is transmitted
between single devices and/or servers by means of
standardized communication protocols (e.g., ZigBee,
Bluetooth, W-LAN, etc.). While such devices
provide a growing range of functionality they are
typically characterized by a scarcity of resources.
The power/energy requirements of such systems are
a limiting factor. To increase the quality and user
acceptance it is therefore necessary to optimize the
energy consumption for provide improved uptimes.

Research in the area of mobile phones and ad-
hoc sensor networks has shown that especially
communication (i.e., (wirelessly) transmitting data)
is one of the largest cost factors (Domis 2006),
(Stark et al 2002) (Zhang et al 2005). This makes
communication an ideal candidate for optimizing a
system’s uptime. Energy optimization has to be
aware of the tradeoffs between performance, energy
consumption, and quality-of-service (QoS). In
contrast to hardware optimizations, software systems
are usually optimized at development time by

specifying their energy characteristics and by
adapting the implementation. However, this requires
individual adaptations of each system variant, and
often implies a negative impact on the performance
or QoS of such systems. The challenge is to explore
the relations among the various components and to
understand the tradeoffs between performance, QoS
and energy consumption (Zhang et al 2005). This
enables the development of systems that achieve an
optimal balance between performance, QoS, and
energy consumption by adapting themselves at
runtime (i.e., dynamic optimization).

Component-Based Software Development
(CBSD) (Szyperski 2002) aims at reducing the
complexity of software development and improving
a system’s maintenance by increasing reuse and
independence. CBSE allows focusing on changes at
the component level instead of changes at the
implementation level. Adaptability is managed in
terms of the creation/destruction of component
instances and their links (i.e., dynamic
reconfiguration or structural dynamism). But,
runtime component replacement is not sufficient
since the current state of a component is lost. Thus,
self-adaptability of components is needed allowing
updates at runtime while preserving the state.

28
Bunse C. and Höpfner H. (2008).
RESOURCE SUBSTITUTION WITH COMPONENTS - Optimizing Energy Consumption.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 28-35
DOI: 10.5220/0001879000280035
Copyright c© SciTePress

This paper describes the component-based
development of low-energy systems, based on the
MARMOT/KobrA approach (Atkinson et al 2001).
The central idea is the development of an energy-
management component (EMC) that serves as a
communication channel and makes use of resource
substitution strategies (Höpfner & Bunse 2007) to
improve energy consumption. The selection of
strategies is based on an energy cost model. Typical
strategies in this regard are caching, replication or
hoarding. In addition, the paper reports on first
findings obtained in a small series of case studies.
Results show that systems that make use of wireless
communication can profit from using the EMC. In
contrast, systems that make use of cable-based
communication do not show such significant
improvements. This supports the assumption that
wireless communication is a dominant factor
concerning energy consumption.

The remainder of this paper is organized as
follows. Section 2 provides an overview on resource
substitution strategies in mobile information
systems. Section 3 introduces the MARMOT
approach for the component-based development of
such systems, while Section 4 discusses static and
dynamic optimization approaches and provides some
insights to the EMC. Section 5 presents preliminary
evaluation results and Section 6 provides a short
summary and some conclusions.

2 RESOURCE SUBSTITIUTION
IN MOBILE INFORMATION
SYSTEMS

Mobile information systems are aimed at providing
important data in real time at almost every place and
anytime to assist decision makers (Gurun & Krintz
2003). In most cases mobile clients, like Java
enabled mobile phones, connect to static and
powerful information system servers. Unfortunately,
lightweight mobile clients suffer from various
limitations (reduced bandwidth, weak CPU, less
memory, limited energy supply, etc.) that can be
ease by a proper substitution strategy. We
researched the possibilities and benefits of resource
substitution for this application scenario.

The following subsections briefly describe the
relevant resources and how they can be substituted
by each other (see Höpfner & Bunse 2007) for more
details).

2.1 Resources and their Usage

The client/server scenario used in our work implies
that (1) mobile clients query data from a server, (2)
compute and display them, and (3) synchronize
changes with the server. Hence, data communication
is extensively used in the first and the third phase.
Another resource affected in both steps is the energy
supply. Wireless data communication is energy
intensive. Standard techniques for handling this
problem include replication, hoarding, and caching.
Replication stored explicitly defined data parts on
the mobile device, caches keep queried data
implicitly, and hoarding automatically extends
explicitly or implicitly received data by additional
data that might be useful for answering upcoming
requests without communications. Hence, reducing
data communication is done by storing data on the
mobile client by using the memory resource. The
CPU resource is not only used in the second phase
for the “normal” computation and visualisation of
the data but also necessary for supporting the local
data management. If, for example, data is cached in
a semantic manner (Ren & Dunham 2003) query
processing becomes more CPU intensive since
queries must be rewritten regarding the locally
available data. In fact, some of these algorithms are
known to be NP-hard. However, studies (Marwedel
2007) show that even complex calculations consume
less energy than memory accesses.

2.2 Substitutability

We discussed the most relevant resources and how
they are generally used in mobile information
systems in Subsection 2.1 and also mentioned that
extensive communications might be substituted by
memory usage. However, there are more possible
substitutes, such as:

 CPU vs. Communication
In order to reduce CPU usage one can
delegate complex calculations/conversions to
a server or use web services (Ion, Caracaş &
Höpfner 2007). So, communication is a
substitute for CPU usage. On the other hand,
reducing communication means either
transmitting compressed data, to specify
requested data more precisely or to maintain
local copies. Hence, communication might be
substituted by CPU usage.

 CPU vs. Memory
If certain computations are frequent the results
might be stored. In the database world this is

RESOURCE SUBSTITUTION WITH COMPONENTS - Optimizing Energy Consumption

29

called view materialization. In other words,
CPU usage is reduced by storing additional
data; memory substitutes CPU usage. Saving
memory can be done by compressing and
decompressing data.

 Memory vs. Communication
Caching, hoarding, or replications are well
known techniques of a resource substitution.
All create redundant data on the mobile
device, and this data have to be stored. In
order to substitute memory by communication
one can think about storing all information the
server only as it is supported by IMAP.

 Energy vs. CPU, Memory, Communication
The resource energy interacts with all other
resources. However, the intensity of energy
consumptions is different for each other
resource. Energy consumption associated
with wireless data transmission is not
negligible (Feeney & Nilsson 2001). Storing
data locally requires less energy than wireless
transmissions depending on data-size, storage
time, and other factors. CPU usage needs
comparatively less energy than memory
storage (Marwedel 2007).

In order to implement software for mobile
devices that fits the user’s needs one has to consider
the resources provided by the mobile device and the
environmental infrastructure. So, the discussed
substitutions are only some alternatives beside
others. However, the examples illustrate the
dynamics an implementation must support.

3 COMPONENT ENGINEERING

Reuse is a key success factor in industry today, and
it can be seen as a major driving force in hardware
and software development. Reuse is pushed forward
mainly by the growing complexity of systems. This
section introduces the MARMOT method (Bunse,
2006) that facilitates reuse in embedded systems
development. MARMOT is an extension to the
KobrA method (Atkinson 2001), a component-based
development framework for information systems.
MARMOT adds diagram types (UML and
electronics related), model relationships, verification
mechanisms, and transformation rules to KobrA that
are specifically adapted to embedded systems.

Composition is a key activity in component-
based development with MARMOT. A system is
viewed as a hierarchy of components, in which the
parent/child relation-ship represents composition,

i.e., a super-ordinate component is composed out of
its contained sub-ordinate components. Another
established principle is the separation of interface
and implementation that supports independent
component development, and allows versions of a
component to be exchanged. Following those
principles, each component can be described through
a suite of models (e.g., UML diagrams) as if it was a
system in its own right (see Figure 1).

Figure 1: MARMOT Component Model.

3.1 MARMOT Process Model

The core principle of MARMOT is separation of
concerns, with two basic development dimensions
(Composition/Decomposition and Abstraction
Concretization) that map to four basic activities
(Decomposition, Embodiment, Composition, and
Validation). These are depicted in Figure 2: 2 and
described in the following list:

• Decomposition. A development project starts
above the top left-hand side box in Figure 2: 2. It
represents the entire system to be built. Before
the specification of the box, the concepts of the
domain in which the system is supposed to
operate must be determined comprising
descriptions of all entities relevant in the
domain such as standard hardware components
that will appear on the right-hand side towards
concretization. These implementation specific
entities determine the way in which a system is
divided into smaller parts. Decomposition
determines the shapes of identified individual
components in an abstract and logical way.

• Embodiment. The systems, or its parts, are
moved towards more concrete representations,
mostly through reusing existing components (or
custom development). There is no distinction
between hard- and software components at this
early phase since all components are treated in
form of abstract models.

ICSOFT 2008 - International Conference on Software and Data Technologies

30

• Composition. The reused and implemented
components are assembled according to the
abstract model, and the subordinate boxes have
to be coordinated with their respective super-
ordinate boxes according to the MARMOT
component model.

• Validation assesses to which extent the concrete
composition of the embedded system
corresponds to its abstract description.

3.2 MARMOT Properties

MARMOT follows the principles of encapsulation,
modularity and unique identity, which lead to a
number of obligatory properties:
• Composability is the primary property and it can

be applied recursively: components make up
components, which make up components, etc.

• Reusability is the second key property,
separated into development for reuse, i.e.,
components are specified to be reusable, and
development with reuse, dealing with the
integration and adaptation of existing
components in a new application.

• Having unique identities requires that a
component may be uniquely identifiable within
its development and runtime environment.

• Modularity/encapsulation refer to a
component’s scoping property as an assembly
of services (also true for a hardware
component), and as an assembly of common
data (true for hardware and software
components). The software represents an
abstraction of the hardware.

• An additional important property is
communication via interface contracts that
becomes feasible in the embedded world
through typical software abstractions. Here,
additional hardware wrappers guarantee that the
hardware communication protocol is translated
into a component communication contract.

4 OPTIMIZATION

Research in the area of mobile- and small embedded
systems (e.g., ad-hoc sensor networks) have shown
that especially communication (i.e., wirelessly
transmitting data) is one of the largest cost factors
(Stark 2002, Zhang 2005). Therefore, we limit the
focus of our approach towards optimizing a systems
communication effort with respect to energy.
MARMOT supports the optimization of energy

consumption in two different ways: (1) Statically at
development time (preferred means for optimizing
“isolated” systems), and (2) dynamically at runtime.
Static optimization has already been evaluated by
(Domis, 2006). Therefore, the focus of this paper is
on the dynamic optimization aspects.

Figure 2: Development Dimensions.

4.1 Static

Static energy optimization in MARMOT is based on
(Nieberg 2003), who follows a state-based approach
by assigning a set S of all states s1,..., sk with (k є Ν
and 1≤ k) to all hardware component. This set is used
to create a state transition matrix ST, whereby
elements stij of ST specify the number of state
transitions from state si to sj (i, j є Ν, 1≤ i ≤k and 1 ≤
j ≤ k). In addition each state si of S is combined with
the power consumption Pi in this state, and each state
transition stij becomes assigned to the energy
consumption Eij for the transition. By knowing the
time ti, in which the component is in state si, the
energy consumption can be calculated by:

Within MARMOT this approach is used to
model the energy related properties of a component
(i.e., hardware node with embedded software
components). Therefore, the component model (see
Figure 1) was adapted at the specification- and at the
realization level (see Figure 3:).

At the specification level (i.e., the component
interface) the externally visible behavior of a
component is already modeled by an abstract state
machine. Following (Nieberg 2003) an additional
power state machine is created that specifies the

RESOURCE SUBSTITUTION WITH COMPONENTS - Optimizing Energy Consumption

31

power consumption for single states and the duration
of transitions. It thus, depicts the externally visible
energy consumption of a component. In addition the
functional model, specifying the external visible
operations of a component, is enhanced by an energy
consumption attribute to specify the consumption of
those operations that are not already covered by the
power state machine.

Figure 3: Energy Component Model (Domis 2006).

At the realization level a UML timing diagram is
created for every operation, modeling the
operation’s control flow in relation to time. This
allows (in cooperation with the specification
models) to analyze the energy consumption of an
operation and to manually optimize operations &
control with a focus on communication routines
(e.g., shortened communication cycles and
messages, using sleep modes, reducing wake-up
cycles, etc.).

4.2 Dynamic

In mobile systems, devices, services, environmental
objects, and requirements are subject to change.
Therefore, static optimization might not always be a
suitable solution since the optimization of one
property might have a negative impact onto other
properties (e.g., improving energy consumption via
communication optimization might deteriorate the
system’s quality-of-service). To avoid this, a system
should be able to adapt its operation to the current
requirements and the available resources.

Optimally, run-time adaptation requires that
single components are analyzed at run-time (e.g.,
concerning their energy consumption) and are then
dynamically exchanged. However, this would not
only require implementation support (i.e., dynamic
code exchange is not supported by Java), but also
the provision of different component variants.

When focussing on optimizing communication to
reduce energy consumption, another solution is the
development of a component (-wrapper) that is
plugged into a system and that acts as a facilitator
between the software and the hardware
communication facilities (i.e., hardware wrapper).

Such a component (-wrapper) can be developed
or specified using the MARMOT approach and then
be “easily” integrated into existing systems. This is
supported by MARMOT’s inbuilt component reuse
mechanisms that make use of conformance maps
and wrappers (Atkinson 2001). The component then
analyzes the communication requests to or from the
system with the help of an internal (energy) cost
model and then selects the “optimal” (substitution)
concerning energy consumption.

The central element of such a component is the
cost model. Within in MARMOT such a model can
be developed by following the static optimization
approach (i.e., specifying energy properties of a
(hardware) component) as discussed in Section 4.1
whereby the model must be platform-specific. By
having a platform specific power state machine as
well as the energy-related costs for specific
operations (functional and timing model) it is “easy”
to calculate the differences between alternatives.

Examples of substitution strategies are on a
lower level the accumulation of data, the decision to
let the server perform specific operations, etc. On a
more advanced level caching (i.e., the operation of
storing information in the user’s device after it has
been sent from the server) and hoarding (i.e., the
process of predicting the information that the user
will request, for transferring it in advance to the
client cache) might be used. As discussed in Section
2, caching and hoarding seem to be beneficial for
systems with high communication loads (e.g.,
mobile information systems).

One obvious disadvantage of the substitution
approach is that functionality has to exist at both the
client and the server side (i.e., duplication).
Therefore, substitution strategies, although in
principle generally applicable, have to be specialized
(refined) for a specific system. In addition, more
memory space is required. However, first results
(see Section 5) are quite promising.

4.3 The EMC

To dynamically adapt the energy consumption of
mobile and embedded systems we developed a
component, known as EMC (Energy Management
Component), that manages the communication
to/from the system and that therefore optimizes the

ICSOFT 2008 - International Conference on Software and Data Technologies

32

Figure 4: Architecture of the Energy Management Component.

system’s energy consumption. In general, the EMC
was developed by applying the MARMOT
approach. On the one hand this eases reusing the
EMC within different projects and also allowed to
statically optimize the EMC regarding its own
energy consumption. Technically, the EMC
implements/realizes the resource substitution
strategies outlined in section 4.2).

At its core the EMC defines a family of
strategies, encapsulate each of these, and makes
them interchangeable. This is nicely supported by
the strategy pattern defined by (Gamma 1995). The
strategy pattern supports the development of
software systems as a loosely coupled collection of
inter-changeable parts. The pattern decouples a
strategy (algorithm) from its host, and encapsulates
it into a separate class. It thus, supports the
separation of an object and its behaviour by
organizing them into two different classes. This
allows switching to the strategy that is needed at a
specific time.

There are several advantages of applying the
strategy pattern for an adaptable software system.
First, since the system has to choose the “best”
substitution strategy it is simpler to keep track of
them by implementing each strategy by a separate
class instead of ‘burying’ it in the body of a method.
Having separate classes allows simply adding,
removing, or changing any of the strategies. Second,
the use of the strategy pattern also provides an
alternative to sub-classing an object. When sub-
classing an object to change its behaviour, that
behaviour is static. Changes therefore require the
creation/instantiation of a different subclass and

replacing that object with it. The strategy pattern
allows switching the object's strategy, and it will
immediately change how it behaves. Third, using the
strategy pattern also eliminates the need for various
conditional statements. When different strategies are
implemented within one class, it is difficult to
choose among them without resorting according to
the conditional statements. The strategy pattern
improves this situation since strategies are
encapsulated as an object that is interchangeable at
runtime. In the context of this paper we specified an
Energy Management component (EMC) that makes
use of strategy pattern variant, and that uses resource
substitution strategies for optimizing energy
consumption (see Figure 4:).

To select the most appropriate strategy the
component has to ‘know’ the cost of operations.
Therefore, a cost model is needed (see Section 4.2).
Since these costs vary between target platforms the
cost model entity provides a generic interface that
has to be specialized prior to deployment.

Selecting the ‘best’ strategy concerning energy
consumption might have a negative impact on other
quality attributes (e.g., performance, memory, etc.).
Thus, the best possible optimization might not be
desirable from the user’s point of view. The decision
on suitable strategies cannot be made by the
component on its own. Thus, the component has to
be aware of user preferences. The EM component
therefore provides a profile mechanism that allows
users to specify their requirements concerning
energy saving, performance, and quality-of-service.
Furthermore, it allows to specify how the system
should behave if the energy level gets low.

RESOURCE SUBSTITUTION WITH COMPONENTS - Optimizing Energy Consumption

33

In addition to user profiling the EM component
needs an interface to the underlying platform or
hardware layer to monitor the actual battery status.
In order to make the component deployable across
different platforms the component uses a generic
interface that is specialized according to the selected
platform. In addition to monitoring battery levels
this interface is also used to directly access hardware
implemented energy saving procedures (e.g.,
reducing the transmitting power, graceful
degradation, or dynamic voltage scaling).

Since the EMC itself was developed with
MARMOT two facts have to be noted. First, due to
the method’s inbuilt reuse mechanisms the EMC can
quickly and efficiently be adapted and reused within
other projects systems (this is supported by the low
reuse effort as reported in section 5.1.) Second, the
EMC itself was optimized, regarding its energy
consumption, by using the static optimization
mechanisms outlined in section 4.1. The reason was
to avoid that achieved savings are wasted by the
EMC’s own energy consumption. The results
reported in section 5.1 support this assumption.

5 EVALUATION

Optimizing the communication behaviour is a
promising means for reducing the energy
consumption of mobile and embedded systems. The
EMC component is based on the idea of resource
substitution and can be plugged into other systems
that have been developed using the MARMOT
approach. In the following preliminary results of
three, currently running, case studies are discussed.

 Case studies were selected according to the used
communication technology (e.g., ZigBee, Bluetooth
and Cable-based). In addition, all case studies are
micro-controller based. Systems that use an
operating system (OS) do not allow to clearly
investigating the energy relevant behaviour since it
is not possible to differentiate between system and
OS activities when measuring energy consumption.

All measurements are performed and recorded
automatically using a digital oscilloscope that has a
PC-communication module. During measurement
three different versions of a system have to undergo
the same, pre-specified action sequence that is
repeated until the battery level reached a critical
value. Measurements focus on energy consumption.
In order to obtain valid measurement results the case
studies are performed several times (multiple battery
cycles), resulting in an overall measurement time of

several days. Measurements currently continue in
order to further confirm the initial findings.

5.1 Case Studies

As a first step towards evaluating the effected of
using the EMC three case-studies were defined:
• A wireless sensor network that consists out of a

controller, router- and end-nodes. Each node has
a set of sensors and communicates with the
other nodes using the ZigBee protocol. The
system supports the surveillance of animals
(i.e., cattle). Nodes integrated in a collar,
measure life data (temperature, pulse …) and
provide these together with localization
information to the controller. The controller can
then monitor movement, identify escaped, ill, or
dead animals, can issue alarm calls, and create
movement profiles (optimal land utilization).

• A fork-lifter system for handling transport
within a warehouse. The system consists of a
vehicle and a central control unit (i.e., a PC).
The fork lifter is able to independently navigate
through the warehouse and solve transportation
tasks. The central control unit communicates
with the vehicle via Bluetooth, provides new
tasks, monitors its actual state and position,
provides roadmaps and routes, and offers a
manual control of all vehicle functions.

• A mirror control system, part of a larger door
control unit, allows movement of a car mirror
horizontally and vertically into the desired
position whereby movement is indicated on a
small LCD panel. Cars supporting driver
profiles can store the mirror position and recall
as soon as the profile is activated. Furthermore,
the system provides a defreeze/defog function
with a humidity sensor and a heater.

5.2 Initial Results and Discussion

Initial measurement within the case-studies shows
that the EMC-related optimization results are close
to those that can be obtained by static optimization.
However, the perceived QoS is higher for dynamic
optimization and the effort for integrating the EMC
into a system is significantly lower than the required
effort for static optimization. On average the
adaptation and integration of the EMC required 10h.
One reason for this is the use of MARMOT and its
inbuilt reuse mechanisms. Interestingly, static
optimization required nearly double this effort.

ICSOFT 2008 - International Conference on Software and Data Technologies

34

 One finding is that using the EMC seems to be
more effective when using the EMC within systems
that make use of wireless communication (e.g.,
ZigBee/Bluetooth). Here the uptime was extended
from ~13 to ~110 hours. Systems that make use of
cable-based communication (e.g., UART) showed
less significant results (i.e., uptime extension from
10 to 13 hours). This, indirectly, confirms that
wireless communication is one of the largest cost
factors regarding energy consumption.

Results reveal that the curves, formed by
measurement-data, show some of the typical
characteristics of battery-powered systems. If the
energy consumption passes a maximum value they
seem to suddenly lose their capacity, while, after
phases with minimum energy consumption that
follow short high-energy consumption phases they
seem to re-charge themselves. This effect is known
as Recovery Effect and depends on the charge
history, age, and environment temperature of the
battery. In addition, batteries are known to
discharge themselves based on the environmental
temperature and the actual use. Although, these
effects make measurement and forecasts quite
difficult, they did not have an impact onto the results
of the case studies since every run used fresh
batteries and followed the same scenario.

6 SUMMARY & CONCLUSIONS

Given the rising importance of mobile and small
embedded devices, energy consumption becomes
increasingly important. Currents estimates by
EUROSTATS predict that in 2020 10-35 percent
(depending on which devices are taken into account)
of the global energy consumption is consumed by
computers and that this value will likely rise.
Therefore, means have to be found to save energy.

The focus of this paper is on resource
substitution as a means for energy saving. Based on
general substitution strategies (Höpfner & Bunse,
2007) we presented a general energy management
component (EMC) that can be plugged into
component based systems developed with
MARMOT. The component acts as a mediator
between system and communication facilities. All
communication requests are analyzed concerning
energy related cost and substitution strategies are
used for optimization. Preliminary case-study results
indicate that wireless communication is the major
cost factor concerning energy consumption and that
by using the EMC it is possible to significantly

extend the uptime and to decrease the energy
consumption of mobile & small embedded systems.

Our initial results are based on micro-controller
systems. To systematically evaluate the effects of
strategies such as caching or hoarding we currently
prepare a case study for mobile information systems
running on a PDA or Smartphone.

REFERENCES

Atkinson, C., Bayer, J., Bunse, C., et al (2001).
Component-Based Product-Line Engineering with
UML. Addison-Wesley, UK.

Bunse, C. (2006) Developing µController-Systems with
UML. A MARMOT Case Study‘. Technical Report
111.06/E, Fraunhofer IESE, Germany.

Domis, D.J. (2006), Component-based Energy-Modeling
for Ambient Intelligence Systems, in German. Master
Thesis, Technical University Kaiserslautern.

Gurun, S. & Krintz, C. (2003), Addressing the energy
crisis in mobile computing with developing power
aware software, Technical Report 2003-15, University
of California, Santa Barbara.

Feeney, L. M. & Nilsson, M. (2001), Investigating the
energy consumption of a wireless network interface in
an ad hoc networking environment, IEEE Conference
on Computer Communications, Anchorage, USA.

Gamma, E., Helm, R., Johnson, R.E. (1995), Design
Patterns. Elements of Reusable Object-Oriented
Software, Addison-Wesley Longman.

Höpfner, H. & Bunse, C. (2007). Resource Substitution for
the Realization of Mobile Information Systems. 2nd
International Conference on Software and Data
Technologies, Barcelona, Spain. pp. 283-289.

Ion, I., Caracaş, A. & Höpfner, H. (2007).
MTrainSchedule: Combining Web Services and Data
Caching on Mobile Devices, Datenbank-Spektrum
5(21), 51-53.

Marwedel, P. (2007), Embedded System Design, Springer.
Nieberg, T., Dulman, S., Havinga, P., van Hoesel, L.,

Wu, J. (2003), Ambient Intelligence. Impact on
Embedded System Design Ambient Intelligence:
Collaborative Algorithms for Communication in
Wireless Sensor Networks. Kluwer.

Ren, Q. & Dunham, M. H. (2003), Semantic caching and
query processing, Transactions on Knowledge and
Data Engineering 15(1), 192–210.

Stark, W., Wang, H., Worthen, A. Lafortune, S. Teneketzis,
D. (2002), Low-energy wireless communication network
design. IEEE Wireless Communications, Vol 9(4), pp.
60-72.

Szyperski, C. (2002), Component Software. Beyond
Object-Oriented Programming, Addison-Wesley.

Zhang, Y., Teng, X., Yu, H., Hu, H. (2005), The Energy
Cost Model of Clustering Wireless Sensor Network
Architecture. In Wu, Chen, Guo, Bu (Eds.): Embedded
Software and Systems. Springer Verlag, pp 374-380.

RESOURCE SUBSTITUTION WITH COMPONENTS - Optimizing Energy Consumption

35

