
TECHNICAL CLASSIFICATION OF RUNTIME ENVIRONMENTS
FOR MOBILE APPLICATIONS

Sören Blom, Matthias Book, Volker Gruhn, Ruslan Hrushchak and André Köhler
Applied Telematics/e-Business Group, Dept. of Computer Science

University of Leipzig, Klostergasse 3, 04109 Leipzig, Germany

Keywords: Mobility, Runtime Environments, Rich Internet Applications, Mobile Middleware.

Abstract: This paper surveys the current state and the future of runtime environments suitable for developing Rich
Internet Applications for mobile clients. We compare the main characteristics of established technologies and
promising new developments, and assess their future potential. Furthermore, we consider middleware products
that provide an additional support layer solving typical mobility problems such as distribution, connectivity,
performance, reliability, etc.

1 INTRODUCTION

Current developments as well as recent experiences
with mobile applications lead us to the assumption
that the future of application development lies in Rich
Internet Applications (RIA). The term “Internet ap-
plication” emphasizes the fact that future applications
will be based on highly distributed components and
will be characterized by the intensive use of commu-
nication networks. Software will be mashed up with
third-party components and services at runtime, cre-
ating completely new applications ad hoc. The term
“rich” refers to the fact that applications will support
complex interaction patterns and advanced graphical
user interface (GUI) capabilities. This is a lot more
than the majority of today’s web applications provide,
which are still mainly based on static HTML.

Furthermore, application usage scenarios are also
changing radically. Especially the e-commerce ap-
plications on mobile devices will become increas-
ingly important. But mobility causes some major
concerns for application developers: a wide variety
of devices to support, unstable network connections,
limited bandwidth, high latency, security issues and
many more challenges need to be considered.

Thus, manufacturers and resellers of mobile de-
vices must decide how strongly the application devel-
oper should be supported or restrained by the software
equipment pre-installed on the devices. They must
define which operating system and additional runtime
environment components should be installed on the
device, and how much influence the application devel-
oper should have on this configuration. On the other

hand, application developers must choose a suitable
technology for implementing their application that is
compatible with target devices, highly flexible, and
supports the development of state-of-the-art GUIs.

Considering this, an interesting question is which
runtime environments will be available in the fu-
ture for running mobile software clients, supporting
the “write once, run anywhere” paradigm, provid-
ing state-of-the-art GUIs and interaction capabilities,
as well as solving or masking known mobility prob-
lems (distribution, connectivity, performance, relia-
bility, and many more). In order to support this de-
cision process, this paper provides an overview of
current and future technologies positioned to address
these issues. In the following section, we identify dif-
ferent distribution patterns supported by different run-
time environments, and then discuss various runtime
environment technologies in detail (Sect. 2). After
summing up our findings, we discuss middleware ad-
dressing typical challenges found in the development
of mobile applications (Sect. 3). We conclude with an
evaluation of the presented technologies, and an out-
look on their future use (Sect. 4).

2 MOBILE RUNTIME
ENVIRONMENT
CLASSIFICATION

For the purpose of the following discussion, we define
a runtime environment as the set of components that
need to be present on a client in order to run appli-

153
Blom S., Book M., Gruhn V., Hrushchak R. and Köhler A. (2008).
TECHNICAL CLASSIFICATION OF RUNTIME ENVIRONMENTS FOR MOBILE APPLICATIONS.
In Proceedings of the Third International Conference on Software and Data Technologies - PL/DPS/KE, pages 153-158
DOI: 10.5220/0001879201530158
Copyright c© SciTePress



a
s
y
n
c
h
r.

c
o
m
m
.

s
y
n
c
h
r.
 

c
o
m
m
.Operating 

System

Runtime 
Environment

GUI Logic

GUI Definition

Back-end 
Services

Native Java ME
.NET 

Compact
AJAX

Adobe 

Flex

Open 

Laszlo

Microsoft 

Silverlight

OS

APIs

Java ME

Runtime

.NET Compact

Runtime

XHTML

Java

Script

XHTML MXML

Java

Script

Java

Script

LZX

LZX

XAML

.NET

HTML

Pages

XmlHttp

Request

Flash

Plugin

AJAX /

Flash /

Silverlight

Silverlight

Plugin

B
ro
w
s
e
r

CGI, PHP, 

.NET, or Java

CGI, PHP 

.NET, or 

Java

Java EE Java EE

CGI, PHP 

.NET, or 

Java

Fat Client Applications
Traditional 
Web Apps

Rich Internet Applications
C
li
e
n
t

S
e
rv
e
r

Figure 1: Mobile Runtime Environment Classification.

cations implemented using a certain technology. Fig-
ure 1 presents a classification of the major players in
the field of mobile runtime environments. As the fig-
ure shows, we can distinguish several classes of ap-
plications by the kind of runtime environment they
require. We will give a short overview of these classes
here, and then present the individual technologies in
the subsequent sections.

Fat client applications are applications that are
first downloaded and installed on the client device.
The application then runs locally on the device. The
client is capable of some processing and potentially
even limited persistent storage. Installed applications
may be implemented directly on the device’s operat-
ing system as native applications, or on a generic run-
time environment such as Java ME or .NET Compact.
From a technical point of view, they are bound to a
certain technology and put a fixed memory footprint
on the client, but do not need a permanent network
connection.

In contrast, web-based applications do not require
any downloads, but can be accessed just like a web
site. They form a special class of web applications
insofar as they need to take into account the limita-
tions that are unique to mobile devices, such as small
screen size.

Recently, these technologies have been adapted
with the aim to provide a richer, more responsive user
experience that is similar to desktop-based applica-
tions. These Rich Internet Applications (RIAs) are
based on technologies that provide (at least simulated)
asynchronous client/server communication, improved

usability and portability. They are characterized by
the following aspects (Duhl, 2003):

1. RIAs are executed within a particular runtime en-
vironment, i.e. a software infrastructure required
for the execution of the application that may of-
fer base services such as GUI rendering, security,
data and communications management.

2. The layout of user interfaces in RIAs is described
using declarative languages, while the functional-
ity of the interface (i.e. the interaction with the
user) is implemented in a scripting language.

3. The RIA’s business logic and back-end services
are typically implemented remotely on a central
server. This way, clients only need to handle
immediate user interaction, but can refer to the
server for all heavyweight processing and data
management.

Besides the bare AJAX technology, the major
players on the RIA market are currently Adobe with
Flash and Flex, Microsoft with Silverlight and Open-
Laszlo Systems with a product that generates code for
a number of these technologies.

2.1 Native Applications

Technically, the most straightforward way of devel-
oping a mobile application is by implementing it di-
rectly on the basis of the device’s operating system
(OS). Major products in this area are PalmOS, which
still has a significant market share in the PDA market;

ICSOFT 2008 - International Conference on Software and Data Technologies

154



Windows CE, which is targeted to a number of em-
bedded device classes as diverse as PDAs, automotive
terminals and smart phones; and Symbian OS, which
has had a strong focus on telephony features from its
conception and comes in different “series” targeting
different handset classes. The LiMo Foundation, a
consortium of device manufacturers and network op-
erators, has recently begun efforts to deploy Linux-
based operating systems on mobile phones (LiMo,
2007). Last but not least, Google has announced the
Open Handset Alliance, an industry consortium of
more than 30 mobile technology companies who col-
laborate on the development of Android, an open and
comprehensive platform for mobile devices (Google,
2007a). Android will deliver a complete stack of soft-
ware for mobile devices: an operating system, mid-
dleware and key mobile applications. The Android
Software Development Kit (SDK) is open source; an
early version is already available.

Native applications are executable without the
need for a particular runtime environment, and poten-
tially run faster as they can directly access native fea-
tures of the device through the application program-
ming interface (API) of the operating system. On the
downside, this direct access to internals of the device
and operating system also elevates the security risks
for both the device and the application.

Since native applications need to be compiled for
a particular OS, they are typically not as portable as
applications built for a more generic runtime environ-
ment. In particular, different mobile OS may use dif-
ferent paradigms to achieve similar tasks such as dis-
play control, file management, multi-threading etc.,
some of which may even be entirely unsupported on
other devices. However, more recent OS develop-
ments such as Android or LiMo may ameliorate this
issue somewhat, as they specifically aim to provide
the flexibility for making applications available across
a wide spectrum of devices.

2.2 Java Platform, Micro Edition /
Microsoft .NET Compact
Framework

The Java Platform, Micro Edition (Java ME) as a
runtime environment tailored to the special features
and restrictions of mobile devices. Microsoft’s .NET
Compact framework, a subset of the full .NET frame-
work also geared specifically to mobile devices, has
a very similar aim. Since both solutions are concep-
tually related, we will focus on Java ME in the fol-
lowing discussion. Our conclusions, however, can be
generalized for either framework.

Due to the power and memory limitations of

mobile devices, Java ME provides only the essen-
tial libraries and virtual machine capabilities (Helal,
2002a; Helal, 2002b). Applications developed using
this technology are deployed as so-called MIDlets,
which require (like all Java-based programs) a Java
Virtual Machine (JVM, or just VM) as their runtime
environment.

While Java ME benefits from its relationship to the
desktop and server editions of the Java platform and
thus technically allows the reuse of code fragments
and developer skills, its portability is characterized
by the challenge of striking a balance between cater-
ing to the lowest common denominator of all mobile
devices, or tapping the potential of different device
classes’ features. This is not necessarily a fault of the
VM, but a consequence of the diverse range of capa-
bilities (such as display resolution and input modes)
offered by devices (Kochnev and Terekhov, 2003).

The approach to incorporate the Java VM directly
into the mobile phone’s operating system initially also
seemed like a viable alternative. However, develop-
ment of Sun’s own JavaOS, as well as the third-party
SavaJe OS, have recently been discontinued. The lat-
ter is currently being incorporated into Sun’s JavaFX
Mobile platform (Sun, 2007), a Java-based operation
and application environment based on a Linux OS that
is explicitly positioned for the development of Rich
Internet Applications. A more thorough evaluation of
this technology will be possible once JavaFX matures
from its current alpha development stage.

In contrast to most other runtime environments
discussed in this paper, Java ME has the benefit of be-
ing independent of a permanent network connection,
as all necessary logic can be deployed on the client
device. It also benefits from long-established devel-
oper skills and a wide spectrum of development tools.
As such, it is well-suited for rather isolated, compact
applications whose purpose does not hinge on a per-
manent network connection. Of course, this ease of
development and network independence comes at the
price of a comparably heavyweight runtime environ-
ment. However, for applications that rely heavily on
remote resources or content, and thus require a per-
manent network connection by virtue of their appli-
cation domain anyway, Java ME cannot keep up with
the flexibility and small footprint that the runtime en-
vironments for RIAs offer.

2.3 AJAX

Since a few years, interest in a new class of dynamic
web applications has surged, largely fueled by the
Web 2.0 hype: By using a combination of estab-
lished web-based technologies, developers are cre-

TECHNICAL CLASSIFICATION OF RUNTIME ENVIRONMENTS FOR MOBILE APPLICATIONS

155



ating applications with a look and feel that resem-
bles desktop-based interaction patterns much more
than the usual page-centric paradigm. Collectively
termed AJAX (Asynchronous JavaScript and XML)
(Paulson, 2005), these technologies effectively hide
the request-response communication taking place be-
tween client and server, and instead present users with
a self-contained, highly responsive interface that al-
lows them to manipulate and interact with the content
directly.

To achieve this, AJAX applications rely on a num-
ber of prerequisites. To circumvent the interactive
limitations of HTTP, AJAX applications employ fair
amounts of JavaScript to control the behavior of the
user interface and implement minor application tasks.
This presentation logic communicates with the server
by exchanging HTTP requests that are extended over
long periods of time to achieve the illusion of asyn-
chronous communication.

The technologies that jointly constitute what may
be called the “runtime environment” for AJAX ap-
plications are meanwhile incorporated in all major
web browsers. Experiences with running AJAX ap-
plications on mobile phones are still quite limited
– while technically feasible on sufficiently equipped
smart phones, it may be a challenge to carry the us-
ability of AJAX applications (which tend to make ex-
cessive use of the direct manipulation paradigm) over
to mobile phones with their limited display and input
capabilities. On the other hand, the iPhone’s multi-
touch display is a prime example of the usability po-
tential inherent in direct manipulation interfaces – if
device manufacturers are willing to give up the tradi-
tional ten-button/two-softkey input paradigm.

Regarding future developments, it seems likely
that AJAX will continue to enjoy high popularity
among developers and end-users. Its major advan-
tage over other approaches is the dependency on just
a very basic set of technologies that are built into
any modern web browser, so it requires zero installa-
tion. On the other hand, it must be noted that the im-
plementations of different web browsers may contain
enough subtle differences to make the development
of complex portable AJAX applications a non-trivial
challenge. The independence from a dedicated run-
time environment makes AJAX especially attractive
for mobile devices, as it does not introduce a persis-
tent memory footprint of its own, and it can be exe-
cuted in a controlled environment that is unlikely to
expose the handset or network to serious threats.

2.4 Adobe Flash / Flash Lite

Adobe Flash (formerly Macromedia Flash) is a pop-
ular proprietary technology for the development of
multimedia content that has been around for a long
time by now. The runtime environment for Flash
applications is the Flash Player, which is executed
within a web browser. Through its combination of
media content with programming logic, Flash is es-
pecially suited for the multi-medial representation of
complex processes. With the help of ActionScript,
it is possible to implement online games, multimedia
tutorials, and A/V streaming.

For mobile devices, the Flash Lite technology has
been derived from the basic Adobe Flash, and opti-
mized to achieve a more lightweight runtime envi-
ronment in terms of file size, memory footprint and
performance requirements. A disadvantage of Flash
technology may be that its authoring tools are more
geared towards designers than developers, and that
the file format is proprietary. However, the multime-
dia capabilities and its installed base are virtually un-
paralleled, with many popular Web 2.0 applications
using Flash technology. In the mobile world, Flash
Lite is also quite well established (Adobe, 2007).

2.5 Adobe Flex

Adobe Flex is a development framework that strives
to make the traditionally designer-centric Flash tech-
nology more accessible to software developers by en-
abling them to build RIAs based on Flash technol-
ogy. A Flex application is developed using the pro-
gramming language MXML for the description of the
user interface, and ActionScript for the implementa-
tion of the client-side logic. The Flex compiler will
then translate this code into Flash bytecode that can
be executed by any Flash runtime environment. Flex
can be especially attractive as a front-end for complex
information systems, where the business logic can
be implemented using Java EE on the server, which
communicates with the Flex front-end through the so-
called Flex LifeCycle Dataservice.

The use of Flex offers the advantage that the im-
plementation of the presentation logic on the client al-
lows for a highly responsive user interface, while the
server-side business logic has easy access to back-end
systems.

2.6 Microsoft Silverlight

Silverlight (Microsoft, 2007) is Microsoft’s attempt
to introduce a browser extension into the market that

ICSOFT 2008 - International Conference on Software and Data Technologies

156



shall provide the capabilities of the Windows Presen-
tation Foundation (WPF) to arbitrary platforms.

Silverlight consists of a browser plug-in which
also includes a runtime environment for .NET (the
.NET Framework for Silverlight) in version 1.1. Us-
ing the Silverlight technology, WPF user interfaces
can be realized as RIAs, which would enable large-
scale reuse of application paradigms know from the
Windows world. GUIs are described declaratively us-
ing the open and standardized XAML language, while
different programming languages can be used to im-
plement the GUI logic. Client-server communication
is realized using JavaScript (similar to the AJAX ap-
proach); from version 1.1, limited .NET support for
web services is also available. Since all GUI code is
executed on the server and all communication is con-
ducted across web services, there are no prerequisites
as to which server platform should be employed.

Since Silverlight is still a young technology, dis-
advantages are its relative immaturity and sparse in-
stalled base among end-users. Silverlight support is
still low in the mobile realm: Microsoft provides Sil-
verlight runtime only for Windows Mobile platform.

2.7 OpenLaszlo

OpenLaszlo (Laszlo, 2007) is another platform for the
creation of Rich Internet Applications. The technol-
ogy is freely available as open source software under
the Common Public License.

The architecture is similar to Adobe Flex in that
it does not require a runtime environment of its own,
but employs existing runtime technologies: The GUI
description and logic are encoded in the XML-based
LZX format, which is translated by a compiler into
Flash bytecode or DHTML. Either of these represen-
tations can be presented in a browser by clients. In ad-
dition, it is possible to generate applications for other
runtime environments such as AJAX or Silverlight.

Benefits of OpenLaszlo applications are the use
of an open, declarative language, which offers a great
selection of standard GUI components, and the pos-
sibility to integrate it with server-side business logic
implemented in Java. However, developers need to be
aware of potential restrictions imposed by different
target platforms that the OpenLaszlo application may
be compiled to. Still, OpenLaszlo is attractive due to
its support of different target runtime environments.

3 MIDDLEWARE FOR MOBILE
APPLICATION SUPPORT

Runtime environments for mobile applications, and
especially technologies for RIAs, have the potential
to open up a large universe of information to users
through lightweight user interfaces. However, their
network dependence makes them prone to temporary
losses of connectivity, which may lead to anything
from erratic application behaviour to loss or corrup-
tion of back-end data.

To ameliorate these problems that typically plague
mobile applications, a number of middleware solu-
tions exist that decouple the client- and server-side
processing logic from the network by providing trans-
parent caching and synchronization services. In Fig.
1, these middleware implementations would be de-
ployed on a client layer just below the web browser,
where they can transparently manage the cooperation
with remote components and handle communications
with the server.

The recently-introduced Google Gears framework
provides a mechanism for continuous execution of
AJAX-based applications even under unstable net-
work conditions (Google, 2007b). It serves as a data
management layer between the client-side applica-
tion UI and the client’s network layer. This data
management layer comprises a connectivity switch,
caching/synching logic and local database. In con-
nected operation, Google Gears will transparently
pass all data between client and server, while keeping
the local background database up-to-date with this in-
formation. When the network connection is lost, the
connectivity switch will reroute all read/write oper-
ations from the application UI to the local database,
which should be able to answer most requests for
data, and can cache all data updates. Once the connec-
tivity has been restored, the local database is synchro-
nized with the server, and the regular connected op-
eration resumes. The effectiveness of Google Gears’
masking of connection losses depends heavily on the
application domain and its reliance on external real-
time information.

For more heavyweight mobile applications, a
number of middleware solutions exist that support
disconnected operation, caching/replication, and con-
flict resolution. Among the most interesting prod-
ucts are XMIDDLE (Mascolo et al., 2002) and OSGi
(OSGi, 2007), two Java-based middleware implemen-
tations.

As a final example, the MobCo middleware
(Gruhn and Schäfer, 2007) currently developed by the
Applied Telematics/e-Business Group at the Univer-
sity of Leipzig in cooperation with Deutsche Telekom

TECHNICAL CLASSIFICATION OF RUNTIME ENVIRONMENTS FOR MOBILE APPLICATIONS

157



Laboratories strives to increase application availabil-
ity and ubiquitous usage scenarios for mobile clients.
MobCo offers a middleware and framework for the
development of components that are able to run both
on the server and the mobile client, but whose actual
execution location is determined at runtime. As the
middleware is context-aware (regarding mobile hard-
ware, network situation and application status), com-
ponents are able to migrate from server to client or
vice versa, depending on where they can experience
better performance or increase system availability (in
situations where the mobile client needs to switch to
offline mode). This is combined with a persistence
layer that is able to store and retrieve data from either
local or remote locations transparently to the applica-
tion. The optimal execution location for components
will be determined through simulation, which will en-
able derivation and evaluation of component migra-
tion strategies. With such flexibility in the applica-
tion’s architecture, the MobCo middleware will allow
distributed applications to cope much better with the
heterogeneous and ever-changingconditions (in terms
of network infrastructure, hardware, etc.) of mobile
software, and thereby expand the number of contexts
in which an application can successfully be run with-
out having to write it more than once.

4 CONCLUSIONS

Our comparison of runtime environments shows that
the future of mobile application development lies
in Rich Internet Applications, which are based on
highly distributed components and characterized by
the intensive use of communication networks, com-
plex interaction patterns and advanced GUI capabil-
ities. In contrast, fat client applications built as Java
ME, .NET Compact or native applications can make
a more efficient use of system resources and depend
less on a permanent network connection. However,
they are lesser platform independent, as their close-
ness to the underlying system causes distribution and
compatibility issues.

The more promising way for mobile devices thus
seems to be reliance on the above-mentioned RIA
technologies. AJAX is a prominent representative of
this approach, as the fast-growing amount of commer-
cial applications with this basis shows. From a soft-
ware process perspective, OpenLaszlo shows what the
future of Rich Internet Application development may
look like: an open, declarative language that enables
the generation of GUIs for different runtime environ-
ments and the opportunity to smoothly integrate it
with server-side business logic.

Finally, it is important to consider emerging spe-
cific middleware products for use in mobile environ-
ments. They are solving the typical mobility prob-
lems, which are of particular relevance when develop-
ing applications for demanding businesses use cases.
In combination, open and highly flexible technologies
for lightweight GUI development as well as highly
specialized middleware products will be the crucial
tools for developing the mobile Rich Internet Appli-
cations of tomorrow.

REFERENCES

Adobe (2007). Flash-Enabled Mobile Devices, Adobe Sys-
tems Inc. Available online athttp://www.adobe.
com/mobile/supported_devices/.

Duhl, J. (2003). Rich Internet Applications.
IDC White Paper. Available online at
http://www.adobe.com/platform/whitepapers/
idc_impact_of_rias.pdf.

Google (2007a). Android - An Open Handset Alliance
Project. Available online athttp://code.google.
com/android.

Google (2007b). Google Gears API Developer’s Guide
(Beta) – Architecture. Google, Inc. Available
online at http://code.google.com/apis/gears/
architecture.html.

Gruhn, V. and Schäfer, C. (2007). From Mobile Business
Processes to Mobile Information Systems.Software
Architecture, pages 296–299.

Helal, S. (2002a). Pervasive Java.IEEE Pervasive Comput-
ing, 01(1):82–85.

Helal, S. (2002b). Pervasive Java, Part II.IEEE Pervasive
Computing, 01(2):85–89.

Kochnev, D. S. and Terekhov, A. A. (2003). Surviving Java
for Mobiles. IEEE Pervasive Computing, 02(2):90–
95.

Laszlo (2007). OpenLaszlo, Laszlo Systems, Inc. Available
online athttp://www.openlaszlo.org.

LiMo (2007). LiMo Foundation Page. Available online at
https://www.limofoundation.org.

Mascolo, C., Capra, L., Zachariadis, S., and Emmerich, W.
(2002). XMIDDLE: A Data-Sharing Middleware for
Mobile Computing. Wireless Personal Communica-
tions, 21(1):77–103.

Microsoft (2007). Silverlight, Microsoft Corporation.
Available online athttp://silverlight.net.

OSGi (2007). OSGi Service Platform Release 4, Version
4.1. Open Services Gateway Initiative. Available on-
line at http://www2.osgi.org/Specifications/
HomePage.

Paulson, L. D. (2005). Building Rich Web Applications
with Ajax. Computer, 38(10):14–17.

Sun (2007). JavaFX. Sun Microsystems, Inc. Available on-
line athttp://www.sun.com/software/javafx/.

ICSOFT 2008 - International Conference on Software and Data Technologies

158


