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Abstract: Open multi-agent systems are societies with autonomous and heterogeneous agents that can work together 
to achieve similar or different goals. Agents executing in such systems may not be able to achieve their 
goals due to failures during system execution. This paper’s main goals are to understand why such failures 
occurred and what can be done to remediate the problem. The distributed, dynamic and open nature of 
multi-agent systems calls for a new form of failure handling approach to address its unique requirements, 
which involves both diagnosing specific failures and recommending alternative plans for successful agent 
execution and goal attainment. In this paper, we discuss solutions to the main challenges of creating a 
system that can perform diagnoses and provide recommendations about agent executions to support goal 
attainment, and propose a hybrid diagnostic-recommendation framework that provides support for methods 
to address such challenges. 

1 INTRODUCTION 

Open multi-agent systems (Jennings and 
Wooldridge, 1999) are societies with autonomous 
and heterogeneous agents that can work together to 
achieve similar or different goals (Boella and Torre, 
2004). In many cases, the agents are unable to attain 
their goals due to failures during system execution. 
When an agent tries to attain its desired goal, but 
faces execution failures that prevent achievement, it 
becomes relevant to understand why such failures 
occurred and what can be done to remediate the 
problem. 

This paper focuses on the diagnosis of failures 
and on the recommendation of alternative plans for 
successful agent execution and goal attainment. 
Some proposals that have recently appeared in the 
literature suggest different ways for agents to 
diagnose system execution failures. Li et al. (Li et 
al., 2004) present a decentralized system to monitor 

and diagnose the agents’ behavior. Although this is 
an interesting idea, in open multi-agent systems it is 
not applicable because when the execution of an 
agent is monitored its privacy is violated. 

Another interesting work, which was proposed 
by Horling et al. in (Horling et al., 2000), examines 
how an independent domain for diagnoses can 
behave in multi-agent systems and compares the 
hoped result of an execution with the result obtained. 
However, the approach does not offer a large data 
set to define the expected behaviors, and there is no 
control of the reputation of the agents when an agent 
is detected as guilty of some failure.  

In this paper we describe a new hybrid 
diagnostic-recommendation system of agents’ 
executions that does not violate the agents’ privacy 
and that defines a set of facts that can be used to 
provide information about the reasons for failing to 
achieve a goal. Diagnosis is assumed as the process 
of determining the reason why agents do not achieve 
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their goals. Recommendations are provided on how 
to achieve the desired goals that agents have failed 
to achieve.  

A diagnostic system must be able to analyze 
different sets of information related to the agents’ 
executions and point out the (main) problem that has 
occurred. Recommendations are provided based on 
the diagnosis and indicate alternatives to the agent’s 
execution to try to achieve the same goal. A 
recommendation system can recommend, among 
others, the use of another resource, the execution of 
another plan and the interaction with other agents. In 
order to recommend other partners to interact with 
the agent, the recommendation system bases its 
choice on the agents’ reputations. The reputation of 
an agent is evaluated according to its past behavior. 
Several reputation systems have been proposed to 
collect, distribute, and aggregate feedback about 
agents’ past behavior. In this paper we use the 
Governance Framework (Silva et al., 2007) to 
provide agent reputations.  

The hybrid diagnostic-recommendation 
framework called DRP-MAS (Diagnosing and 
Recommending Plans in open Multi-Agent Systems) 
proposed in this paper can be instantiated to perform 
different kinds of diagnoses and to provide 
recommendations (advices) to help agents achieve 
their desired goals. This framework uses the 
Governance Framework to receive the agents’ 
reputations that are used to offer advice about 
partners with which to interact.    

This paper is structured as follows. In Section 2 
we discuss some of the main difficulties of 
diagnosing and providing alternative execution 
strategies for agents to achieve their goals. In 
Section 3 we provide an overview of the DRP-MAS 
framework. Since our framework uses the 
Governance Framework to represent the reputation 
concept, in Section 4 we briefly explain how it was 
used. Section 5 illustrates the applicability of the 
framework through a case study and Section 6 
presents some related work. Finally, in Section 7, 
conclusions and future work are discussed. 

2 DIFFICULTIES OF PROVIDING 
DIAGNOSES AND 
RECOMMENDATIONS  

In this section, we describe some of the challenges 
and requirements related to the process of 
performing diagnoses and providing 
recommendations to help agents to achieve their 

goals.  These challenges and associated requirements 
include: 

1. Deciding how to Analyze the Behavior of the 
Agents 

The first challenge was to determine an appropriate 
way to analyze the behavior of the agents. Two 
solutions could be adopted. In the first, the execution 
of each agent is monitored. Since we are working 
with open multi-agent system environments and 
with heterogeneous agents, one of our requirements 
is to not violate the agents’ privacy. In the second 
possibility, each agent analyzes its own execution. 
By using such an approach, the agent’s privacy is 
not violated and the information stored in past 
analyses can be used by the agent in future ones. 
Due to these two reasons, our approach adopted the 
second solution. 

2. Selecting Data for Diagnosing 
One major challenge was to define which data is 
necessary to perform diagnoses related to the 
execution of agents. To perform the diagnoses, the 
following information can be used: problem which 
occurred due to limited memory space, the list of 
resources used and the ones that the agent tried to 
use, etc. In this paper we are considering a 
predefined list of information to be used in the 
framework composed of the plan executed, desired 
goal, norm violated, roles of the agents and the 
agents that provided some information during the 
execution of the plan, among others. Since different 
domains can require different information, such a 
list can be extended.   

3. Determining Strategies for Diagnoses 
Different domains can require different strategies to 
provide diagnoses. The challenge was to define 
services or strategies that could be used by different 
domains and to make available an infrastructure that 
could be extended to accept new strategies. 

4. Determining Trustworthy Agents 
The reason for the failure regarding the execution of 
plan can be related to the behavior of the partner 
with whom the agent has interacted. For instance, 
the partner may have provided a bad service or 
inadequate information. Therefore, when a diagnosis 
is formulated and it is verified that a specific agent 
was responsible for the unsuccessful execution, the 
recommendation system will try to avoid selecting 
such agent in the next advice. To solve the problem 
of distinguishing whether an agent is good or bad 
with respect to some criteria we are making use in 
this paper of agents’ reputations. 
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5. Providing Recommendations 
We meant to create a framework that could provide 
alternative ways of execution to achieve the same 
goal. Therefore, the big challenge was to define a 
strategy, which could be used in different domains 
and an infrastructure that could be extended to 
accept new strategies. 

6. Representing Profiles of Agents 
The same diagnostic can be associated with two 
different recommendations, depending on the 
characteristics of the agents that will receive such 
advices. The challenge is to define how to represent 
profiles of agents and how they could influence the 
recommendations provided by the proposed 
framework. The framework makes available a basic 
agent profile that specifies the minimum global 
reputation of partners to be considered in advices. 

3 THE DRP-MAS FRAMEWORK 

In this section, we describe the DRP-MAS 
framework that performs diagnoses about the failure 
to achieve the goals; moreover, it provides 
recommendations for agents about how to achieve 
their goals. Initially, the general idea of the 
framework is presented, followed by its architecture, 
and in the sequel we discuss the central concepts on 
which it is based. 

3.1 The General Idea 

The DRP-MAS framework is used when an agent 
does not achieve one of its goals after the execution 
of one of its plans. The agent of the application, the 
Requester agent, requests to the Mediator agent a 
Diagnostic agent. When the Mediator receives the 
message, it creates a Diagnostic agent (responsible 
for providing diagnoses) and a Recommendation 
agent (responsible for providing recommendations) 
and sends a message to the Requester informing 
which Diagnostic agent will work for it (Figure 1). 

Subsequently, the Requester requests diagnoses 
to the Diagnostic agent in order to receive advices 
from the Recommendation agent to achieve the 
desired goal. For this purpose, it sends a message to 
the Diagnostic agent with the values of a set of 
attributes that can help it in the analyses, such as: 
plan executed, goal not achieved, the agents used in 
the negotiations with their played roles, its profile, 
and a number that represents the quality of the 
execution performed (details in Section 3.3). This 

idea of quality was based on the works (Horling et 
al., 2000) and (Horling et al., 2007). 

When the Diagnostic agent receives the 
message, it tries to find the reason (s) why the 
Requester agent was unable to achieve the desired 
goal. At the end of the analysis, it provides the 
diagnosis to the Recommendation agent. Even if a 
diagnosis could not be provided, the Diagnostic 
agent sends a message to the Recommendation agent 
informing that it was not possible to detect the 
reason for the Requester agent not to have achieved 
the desired goal. In this case, when the 
Recommendation agent receives the message 
informing that it was not possible to meet a 
diagnosis, it simply selects another plan that 
achieves the desired goal. 

 
Figure 1: Conceptual Model for requesting the name of the 
diagnosis agent. 

In the case that some diagnosis is met, the 
Recommendation searches alternative plans to 
achieve the goal (details in Section 3.4) by 
considering the data in the diagnosis. When the 
diagnosis indicates a problem with agent interaction, 
an analysis is made to decide which other agents 
could be used to perform the interactions (analysis 
performed based on the roles played). 

From the set of agents that can perform the same 
roles in those interactions, the Recommendation 
agent uses the agents’ reputations to select the 
“best” agents, i.e., the agents with the top 
reputations. The profile of the Requester agent can 
be an important piece of information to define which 
agents should be selected. When the execution of the 
Recommendation agent ends, a message to the 
Requester agent is provided with the selected 
recommendations.  

To help in representing agents’ reputations, we 
are making use of the Governance Framework (Silva 
et al., 2007), which is based on testimonies provided 
by witnesses about facts or events that they know are 
related to norms that have been violated. Since 
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agents know the application’s norms (laws), they 
can judge whether an agent violated a norm. 
Besides, it is possible to attribute a reputation to 
each agent of the system (details in Section 3.2). 
Before a Requester requests some recommendation 
from the DRP-MAS agents, the possible plans that 
the Recommendation agent can recommend to an 
agent must be defined by the application. Not only 
the plans themselves but also their related data (such 
as resources to be used in the execution and the roles 
of the agents with whom the agent executing the 
plan will need to interact) must be provided. Such 
plans are stored in a plan base that the 
Recommendation agents can access in order to 
perform the advices. 

3.2 Architecture 

In this section we describe the architecture of our 
approach that is composed for two layers: DRP-
MAS and Reputation. The DRP-MAS is composed 
of four models: Mediation, Diagnosis, 
Recommendation and Artificial Intelligence Toolset. 

The mediation module is responsible for 
providing the Mediator agent, which creates a 
Diagnostic agent and a Recommendation agent for a 
Requester agent defined in the Application, as 
described in Sub-Section 3.1. The Diagnosis module 
performs the process of diagnosis, while the 
Recommendation module aims to provide 
recommendations to achieve some desired goal. The 
Artificial Intelligence Toolset module defines an 
API (Application Public Interface) interface called 
BIGUS (Bigus, 2001), which allows using different 
kinds of reasoning algorithms to perform the 
processes mentioned: forward chaining, backward 
chaining and fuzzy logic. 

The Reputation layer supplies reputations to the 
DRP-MAS and can also supply them to the 
Application layer, when requested. In the current 
implementation, we are using the Governance 
Framework to implement the Reputation layer. The 
framework defines three modules: judgment, 
reputation and punishment. The judgment module  is 
responsible for receiving the testimonies and for 
providing a verdict to the punishment module, i.e., 
for verifying whether an agent violated a norm. The 
module can make use of different strategies to judge 
the violation of the different norms. Such strategies 
may use the reputation module to help in providing 
the decision about the violations.  

The reputation module is responsible for 
calculating the reputation of the agents and provides 
them to the judgment module and to other 

application agents. The reputations are updated 
based on the testimonies provided by the judgment 
module about violated norms. This module already 
offers calculations to provide the reputations. In 
addition, the instances of the framework can define 
new calculations. The final module, punishment, is 
responsible for determining the penalties applied to 
agents that have violated the norms of the 
environment. 

For better comprehension of the DRP-MAS 
framework, two key concepts are elaborated as 
follows: how to perform diagnoses and how to 
provide recommendations. 

3.3 Performing Diagnoses 

As was already explained in Sub-Section 3.1, the 
diagnosis is performed by the Diagnostic agent 
offered by the proposed framework. Such analyses 
are performed based on a set of information 
provided by the Requester agent. The set is used in 
different diagnosing processes and in different forms 
of recommending alternative ways to achieve some 
goal. The information provided in the set 
encompasses: 
1. Resources and associated problems - In 

(Horling et al., 2000) it is defined that resources 
are important data to support diagnoses. In some 
situations the reason why an execution cannot 
be successfully performed could be the absence 
of some resource, or perhaps an insufficient 
amount of resources used to perform something. 
Therefore, the diagnostic agent should receive 
information about the used resources (their 
identification) and the amount used. 

2. Norm violated - The violation of a norm could 
be a reason for not achieving a goal. Thus, the 
diagnosis may depend on the norm violated. 
Note that a norm can be considered a law that 
must be followed by one or more agents. Some 
data are provided about the norm violated: (i) 
the agent responsible for the failure and (ii) a 
value that represents the importance of said 
violation from the agent’s point of view, called 
degree of violation.  

3. Quality of service – The quality of service 
should be defined based on the TAEMS model 
(Horling et al., 2000) (Horling et al., 2007). The 
model represents a goal/task language that 
provides an explicit representation for goals and 
the available sub-goal pathways that are able to 
achieve them from methods (plans). Each 
branch in the tree can have an expected quality 
based on the execution of the plans. Therefore, 
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to verify whether a goal was achieved, the 
quality of the execution of the plan must be at 
least equal to the minimum acceptable degree. 
In order to represent this idea, each plan 
contains the following data: (i) maximum 
degree of quality related to the execution of the 
plan; (ii) minimum acceptable degree of quality 
to achieve the goal; and (iii) the degree 
attributed after the execution of the plan.  

4. Goal - The execution of an agent plan is always 
associated with a goal that the agent wants to 
achieve (Silva et al., 2003). To know the goal 
that the agent is trying to achieve it is 
fundamental not only to provide a diagnosis but 
also to make advices. The advices about other 
plans to be executed will be provided 
considering the goal the agent was trying to 
achieve  

5. Plan executed - To know the plan executed by 
the Requester agent it is important to 
understand the reason of the failure and to 
provide alternative execution to achieve the goal 
that was not achieved. 

6. Agents with whom the agent interacted - The 
diagnosis can indicate that an agent is guilty of 
having provoked the failure on the execution of 
a plan. For this reason, it is important to know 
the agents with whom the Requester has 
interacted during the execution of such plan. 

7. Roles - The roles played by the agents that have 
interacted with the Requester can be important 
to update reputations, and to serve as 
recommendations for other agents that play the 
same roles.  

8. Profile - Agents can have profiles that represent 
some of their characteristics. A profile can, for 
instance, stipulate the minimum acceptable 
degree of reputation of the agents that provide 
information to the Requester agent. This 
information can be useful in the process of 
providing recommendations, especially when 
there is a need to advise another partner to 
interact with the Requester. 

9. Problems met by the Requester - The 
information that can be provided by the 
Requester is not limited to the set mentioned 
previously. The Requester can also send 
domain-dependent information that will be used 
by the domain-dependent strategies to perform 
diagnoses and providing recommendations. 

The DRP-MAS framework defines the 
performance of diagnoses as a hot spot (or flexible 
point) (Fayad et al., 1999) that can be implemented 
by applications to provide domain-dependent 

strategies. Therefore, different applications can 
define different strategies to deal with the domain-
independent and domain-dependent sets of 
information provided by the Requester agent. 
Nevertheless, the framework makes available a 
default strategy to provide diagnosis based on the 
domain-independent information set.  

In order to illustrate a situation when some 
failure of a goal happens, let’s focus on the domain 
of making coffee. An agent has a goal to make 
coffee for its friends and to achieve this goal it 
executes a specific plan. Suppose that the agent 
noticed that the coffee is not good but does not know 
why. There are several reasons leading to making 
bad coffee: the quality of the coffee powder is poor, 
the water used was cold, the quantities of coffee and 
water were not adequate, etc. To find out what has 
happened, the Requester agent should send to the 
Diagnosis agent information about its goal (to make 
coffee for three persons), the plan it has executed to 
make the coffee, the coffee itself, the quantity of 
water, the temperature of the water and the quality 
and the description of the coffee powder used. The 
Diagnosis agent must know how much water and 
coffee powders are required to make a cup of coffee, 
the ideal temperature of the water and which coffee 
powders are good. One possible simple strategy 
combines the information the agent has received 
with the beliefs of the Diagnosis agent related to 
make coffee. The more information the strategy 
receives, the more precise the diagnosis will be. 

To help defining domain-dependent strategies 
three different algorithms (backward chaining, 
forward chaining and fuzzy logic) are available in 
the Artificial toolset module defined in the 
framework. The strategies can use the BIGUS API 
to access such algorithms. In Section 6 an example 
of a strategy that used the forward chaining 
algorithm is presented. 

3.4 Providing Recommendations 

The Recommendation agent incorporates the process 
of advising alternative ways to achieve a goal. The 
process is composed of three steps: to select plans, 
to verify if the plan requires that agents request 
information, and to choose good agents. 

The first step is executed when the 
Recommendation agent receives the diagnosis from 
the Diagnostic agent. It first verifies which plans can 
be used to achieve the desired goal. Second, the 
Recommendation agent uses the diagnosis and the 
information sent by the Requester agent to select a 
plan. If no plan is encountered, then a message is 

A HYBRID DIAGNOSTIC-RECOMMENDATION SYSTEM FOR AGENT EXECUTION IN MULTI-AGENT
SYSTEMS

163



 

sent to the Requester. Otherwise, the second step is 
executed.    

The second step verifies if the selected plan 
needs the assistance of agents in order to request 
information. If it is not necessary, then the process is 
concluded and a message with the recommended 
plan is sent. Otherwise, the reputations of the agents 
are requested using the reputation module offered by 
the Governance Framework. The third step is 
executed after receiving all reputations (control 
performed by the DRP-MAS). In the third step, the 
Recommendation agent selects the agents to be used 
by the chosen plans according to their reputations. 
At the end, the selected plans and agents are 
provided to the Requester agent. 

3.4.1 Selecting Plan 

The step Selecting Plan is responsible for choosing 
alternative plans to achieve the desired goal. This 
task is a domain-dependent one since the selection 
of a plan may depend on the domain-dependent 
information provided by the Requester agent. 
Therefore, each application that uses the DRP-MAS 
can define its own strategy to select plans. The task 
for selecting plans is defined in the DRP-MAS as a 
flexible point that should be extended by the 
application. 

The application should provide the possible 
plans that the agents can execute and the expected 
configuration that each one has. These expected 
configurations are available in a plan base that can 
be accessed by the application’s Recommendation 
agents. Each plan can have the following data 
associated with it: resources used during the 
execution, desired goal, profiles of agents that accept 
executing the plan, quality of service that determines 
how the previous execution of the plan was 
performed, related diagnoses, roles played by agents 
in the execution of the plan, and a collection of 
possible problems that the plan can resolve. Note 
that the set of data used to configure a plan is the 
same set that comprises the information described in 
Sub-Section 3.3, i.e., the information provided by 
the Requester agent.  
Although the selection of a plan may be domain-
dependent, the framework provides a default 
strategy for selecting a plan based on the domain-
independent set of information that the Requester 
agent can provide. As a default strategy, the 
framework provides plans that achieve the same 
desired goal, excluding the plan used by the 
Requester agent. 
 

3.4.2 Verifying Selected Plans 

After the selection of the alternative plans, it is 
verified whether some plan needs to interact with 
other agents. To perform this analysis, each plan 
must have been associated with a list of the roles to 
be played by agents with whom the agent executing 
the plan may interact. If the list of roles in a plan is 
empty, it means that no communication is needed 
between agents while executing the plan. In the case 
the lists of all plans are empty, a message can be 
sent to the Requester agent with the recommended 
plans. Otherwise, the Recommendation agent must 
decide which agents should be used in the 
interactions. This decision is based on the 
reputations of agents that will be selected as partners 
to play the roles. The Recommendation agent 
requests the reputations of all agents that can play 
the roles identified in the plans from the Governance 
Framework. Although we propose the use of the 
Governance Framework to provide the agents’ 
reputation, any other approach that is able to provide 
the reputation of agents while playing a role can be 
used.  After receiving all reputations, the third step is 
executed. 

3.4.3 Choosing Agents 

As in the two previous steps, the strategy in this step 
is also a flexible point of the framework and 
different kinds of strategies can be used. However, 
the framework offers a default strategy that selects 
the agents based on the minimum acceptable 
reputation defined in the Requester agent profile. 

Note that a profile can specify other information 
that can also be useful when choosing agents. Multi-
agent systems can have heterogeneous agents with 
different behaviors and characteristics that can 
define several different profiles. We stimulate the 
use of profiles to help on deciding about which plans 
should be executed, and which agents the Requesters 
accept to interact with. 

Consider the application of buying and selling 
goods to understand how the profiles of agents can 
influence the selection of agents. If a buyer desires 
to buy a given product, it can determine that it will 
negotiate only with sellers that have good 
reputations. Therefore, the buyer can determine a 
minimum reputation in order to select the acceptable 
sellers to future transactions. 
After the selection of the advised agents, a message 
is sent to the Requester agent with the 
recommendations. For each plan, the possible agents 
and the resources to be used are defined. 
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4 THE USE OF GOVERNANCE 
FRAMEWORK 

As mentioned in Section 3.1, the DRP-MAS uses the 
Governance Framework in order to represent 
reputations. The judgment module is used to update 
reputations, while the reputation module is used to 
request agents’ reputations These situations are 
better explained as follows. 

1. Updating reputations - To change the reputation 
of selected agents, the Diagnostic agent of the 
DRP-MAS can send testimonies to the 
judgment module. The testimonies point out, 
according to the information in the diagnoses, 
the agents that have violated norms. Since the 
testimonies provided by such agents are always 
truth testimonies, the judgment module does not 
judge them. For this reason, when the judgment 
module receives the testimonies, the reputations 
of the accused agents are automatically 
modified by the reputation module. 

2. Using reputations - When the Recommendation 
agent needs to meet agents to provide 
information about a plan, it requests the 
reputation of the selected candidates from the 
Reputation Module. When the Recommendation 
agent receives all reputations requested, it 
performs the analyses and decides which agents 
are good or bad from the negotiation point of 
view. 

5 INTELLIGENT HOME 

The example used to instantiate the DRP-MAS 
framework is the intelligent home that also is used in 
(Horling et al., 2000). From a set of possible cases 
about the intelligent home, two were chosen for 
illustration: dishwasher and to make coffee. 

5.1 Dishwasher 

In one of the analyzed scenarios of the intelligent 
home, an agent representing a dishwasher receives 
hot water from another agent representing a water 
heater. The water heater is also able to provide hot 
water to the shower of a person. Suppose that while 
the dishwasher is on, a person starts to take a 
shower. Since the dishwasher needs hot water to 
work properly, the dishwasher should adapt its 
behavior by choosing one of the following options: 
(i) to wait for the water heater to be free and provide 
hot water again, (ii) to search for another available 

water heater, if any, or (iii) to wash the dishes with 
cold water. However, in this latter situation the agent 
does not achieve the desired goal since the dishes are 
not properly washed.   

Let us suppose that the dishwasher has chosen 
the latter option because there no water heaters are 
available and that it is programmed to save energy. 
When the dishwasher finishes its work, it notices 
that the dishes are not properly washed. When this 
happens, the dishwasher agent decides to request a 
Diagnostic agent from the Mediator agent. In 
sequel, the Requester agent (dishwasher) provides 
six different pieces of data to the Diagnosis agent 
about the execution performed: (i) the quality of 
service on the plan, (ii) its profile, (iii) the norm 
violated, (iv) the agent used during the execution, 
(v) the role played by such agent and (vi) the 
temperature of the water used. The first five pieces 
of information are pre-defined by the framework 
(Section 5.1), and the sixth is defined by the 
application. On the profile of the agent it is informed 
that only agents with reputations higher than 0.8 can 
provide information to the Requester.  

When the Diagnostic agent receives the message 
supplied by the Requester, it begins to perform the 
diagnosis. To perform it, we chose to use the well-
known Forward Chaining algorithm offered by the 
Artificial Intelligence Toolset module of the 
framework. This algorithm uses inference rules from 
a set of available data in order to extract more data 
while seeking an optimal goal. Therefore, we had to 
create a rule base with all the possible rules that 
allow meeting the diagnoses from the data provided 
by the Requester agent. These rules are shown in 
Figure 2. 

The rule base uses six attributes: quality_service, 
violated_norm, role_agent_used, temperature_water, 
conclusion and problem. The values of the first four 
attributes are provided by the Requester agent, while 
the values of the two last ones are automatically 
attributed by the forward chaining algorithm, which 
tries to infer new data (conclusion and problem) 
from available ones (quality_service, violated_norm, 
role_agent_used and temperature_water). The 
quality_service attribute represents the quality of the 
execution performed by the plan. The violated_norm 
informs the norms violated during the execution of 
the plan. The role_agent_used informs the role 
played by the partner agent (water heater) that 
interacted with the Requester agent, and the 
temperature_water attribute informs the temperature 
of the water used to wash the dishes. The conclusion 
attribute will inform if the dishwasher used hot 
water during the washer, and the problem attribute 
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will point out the final diagnosis. The rules 
presented in the rule base lead to only two possible 
diagnoses: the dishwasher did not succeed in 
washing the dishes because the communication with 
the water heater has failed, or some unknown 
problem occurred. 

Let’s suppose that the data provided by the 
Requester agent were: quality_service=5, norm= 
to_wash_dishes_with_hot_water, role_agent_ 
used=water_heater and temperature_water=30. After 
applying the rules, the attributes conclusion and 
problem receive the data without_hot_water and 
problem_communication_waterheater, respectively, 
indicating that the water heater did not provide hot 
water correctly. 

After meeting the desired diagnosis, a message 
with the diagnosis is sent to the Recommendation 
agent, in order to search for alternative executions to 
the Requester agent. The Recommendation agent 
analyzes the diagnosis and concludes that it is 
necessary to select another agent to provide hot 
water. The conclusion is that the selected plans need 
to request hot water from a water heater agent. For 
this reason, the Recommendation agent requests the 
reputation of the water heaters, and therefore decides 
which of them have reputations higher than 0.8 
(defined in the profile supplied by the Requester). 
After the analysis process, the selected agents and 
plans are sent to the Requester agent. 

 
 Problem_Communication_WaterHeater: 

IF conclusion=without_hot_water AND 
violated_norm=to_wash_dishes_with_hot_water 
AND role_agent_used=water_heater AND 
quality_service <10 THEN 
      problem= problem_communication_waterheater 
Problem_Unknown_in_the_Plan: 
IF conclusion=com_agua_quente AND 
quality_service <10 THEN 
problem= problem_unknown_in_the_plan 
With_Hot_Water: 
IF temperature_water>39 THEN 
conclusion=with_hot_water 
Without_Hot_Water: 
IF temperature_water<40 THEN 
conclusion=without_hot_water 
  

Figure 2: Rule base of the domain Dishwasher. 

5.2 To Make Coffee 

Another scenario chosen was the coffee maker, 
whose goal is to make 20 cups of strong coffee. 
While an agent represents the coffee maker, another 
one represents a tester, which is responsible for 

testing whether the coffee was made correctly. 
Initially, the coffee maker executes a plan to make 
the coffee. When the coffee is ready, a message is 
sent to a Tester agent. It analyzes the coffee and 
sends a response message informing that the coffee 
is not good. For this reason, the coffee maker 
decides to request recommendations from the 
Analysis Module.  

The first step performed by the coffee maker is 
to request a Diagnostic agent, and then to request 
the recommendations, informing some data about its 
execution: quality of the execution of the plan 
(provided by the framework), amount of the water 
and amount of coffee powder used (provided by the 
instance), which are the resources used by the plan.   

As in the case of the dishwasher presented 
previously, we have also used the Forward Chaining 
algorithm to make the diagnoses. Part of the rule 
base defined in this example is shown in Figure 3. 
Six data were defined: amount_water, 
amount_powder, quality_service, conclusion_ 
coffee, conclusion_cups and problem. The first data 
represents the amount of water used by the plan to 
make the 20 cups of coffee. The second data is the 
quantity of coffee powder used, while the 
quality_service represents an assigned degree to the 
execution of the plan. If the value attributed is lower 
than 10, then some problem occurred during the 
execution. Another data used was the 
conclusion_coffee that informs whether the coffee 
that was made used too little or too much coffee 
powder, while the conclusion_cups verifies whether 
the correct amount of water was used to make 20 
cups. The problem attribute will represent the 
diagnosis. 

Let’s suppose that the Requester agent (coffee 
maker) provided the following data: 
quality_service=0, amount_water=600 (mL), and 
amount_powder=20 (grams). As the goal of the 
coffee maker is to make 20 cups of strong coffee, we 
can see that applying these values in the rule base, 
the problem met is 
problem_amount_powder_and_cups. In other words, 
the amount of powder and the amount of water were 
incorrect to make 20 cups of strong coffee. For this 
reason, the quality of service came with a value 
lower than 10. 
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 Problem_Strong_Coffee _20_Cups:  
IF conclusion_coffee= weak_coffee AND 
 conclusion_water = Coffee_Incorrect_Water  
AND quality_service <10 THEN 
problem= problem_amount_powder_and_cups 
Weak_Coffee:  
IF amount_powder <30 THEN 
conclusion_coffee= weak_coffee 
Strong_Coffee:  
IF amount_powder >29 THEN 
conclusion_coffee= strong_coffee 
Coffee_Correct_Water:  
IF amount_water=1000 THEN 
Conclusion_water= Coffee_Correct_Water 
Coffee_Incorrect_Water:  
IF amount_water!=1000 THEN 
Conclusion_water= Coffee_Incorrect_Water 
 

 
Figure 3: Rule base for the domain of coffee making. 

After reaching the diagnosis, a message is sent to the 
Recommendation agent. The strategy adopted in this 
case was to verify the amount of necessary resources 
to make 20 cups of strong coffee, and to search other 
plans with the same goal. With the selected plans, 
the correct quantity of powder and water to make the 
coffee is informed to the plans. Later, it is verified 
that the plans need a Tester agent to test the coffee. 
As there is only one available tester (defined by the 
application), this one is chosen. Finally, the 
recommendations are provided to the coffee maker 
(the Requester agent). 

6 RELATED WORK 

In this section, we describe some related work and 
make a comparison with the proposed DRP-MAS. In 
particular, we consider works reported in (Li et al., 
2004), (Horling et al., 2000) and (Roos et al., 2002). 

6.1 Application of MAS in Control and 
Fault Diagnosis Systems 

In (Li et al., 2004), a decentralized system is 
proposed in order to perform diagnosis and 
monitoring. Each component has a monitor 
(Monitoring Agent), which is responsible for 
collecting information about it. When obtained, the 
data are provided to agents offered by the proposed 
system, which are responsible for working together 
in order to find the diagnoses.  
One of the drawbacks of this approach is that it 
violates the privacy of the agents. For this reason, 

the DRP-MAS does not create monitors, but waits 
for the agents of the application to request for 
diagnoses. 

6.2 Diagnosis as Part of Adaptability 

The authors in (Horling et al., 2000) examine the use 
of domain-independent diagnoses in multi-agent 
systems. They argue that the initial step is to make 
available information describing the correct, or at 
least expected, behavior of agents. They state that 
useful method execution and goal achievement 
information can be succinctly encoded in a domain-
independent way with a goal/task decomposition 
language called TAEMS.  

In the DRF-MAS the methods defined by the 
TAEMS in order to achieve the desired goals are 
represented by plans that are used to attain goals. 
Each plan defines a set of possible related 
information, such as resources used and their 
expected amount, desired goal, expected quality, 
etc., as described in Section 3.3. If a plan has a 
problem, it is possible to verify the causes of the 
failure.  

Comparing with (Horling et al., 2000), our 
approach offers a bigger information set, making it 
possible to perform more and different diagnoses. 
Another distinguishing characteristic of the DRP-
MAS is the use of agents’ reputations, which helps 
during the selection of future partners. 

6.3 An Analysis of MAS Diagnosis 

In (Roos et al., 2002), the authors define an 
information set to be used by a global system to 
provide diagnoses. This set is: 

S = (C, M, Id, Sd, Ctx, Obs) 
where C is a set of components, M is a specification 
of possible fault per component, Id is a set of 
identifiers of points that connect components, Sd is 
the description of the system, the Ctx is a 
specification of input values of the system that are 
determined outside the system by the environment, 
and Obs is a set of observed values of the system. 
DRP-MAS follows a similar idea by extracting the 
necessary information to perform diagnoses from the 
set of information used by the process of diagnosis 
presented in Sub-Section 3.3. 

7 CONCLUSIONS 

In the present paper we have outlined the main 
challenges and associated requirements as well as 
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the design strategy to create a hybrid diagnostic-
recommendation system for agent execution in open 
multi-agent systems. This system helps to perform 
diagnoses and to recommend alternative ways for 
executions to achieve goals. The intelligent home 
domain was presented as a case study to illustrate 
the applicability of our approach. 

Two important lessons were learned in the 
process of analyzing and developing the proposed 
system. The first lesson relates to the diagnosis 
process. We have realized that to define a 
universally efficient solution to perform diagnoses in 
different domains is very difficult, because some 
domains have particular characteristics that 
influence the result of the diagnoses.  

The second lesson relates to the use of the 
reputation concept. Depending on the situation, to 
adequately select the agents that will be used to 
request some information can be important, because 
some provided information can determine the 
success or failure of some execution.  
Our plan for future work is to focus on case studies 
involving ubiquitous computing, because it can 
present complex situations where we can perform 
diagnoses and provide recommendations. 
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