
A HYBRID DIAGNOSTIC-RECOMMENDATION SYSTEM FOR
AGENT EXECUTION IN MULTI-AGENT SYSTEMS

Andrew Diniz da Costa, Carlos J. P. de Lucena
Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil

Viviane T. da Silva
Universidad Complutense de Madrid, Madrid, Spain

Paulo Alencar
University of Waterloo, Waterloo, Canada

Keywords: Multi-Agent Systems, Trust, Reputation, Diagnosis, Recommendation.

Abstract: Open multi-agent systems are societies with autonomous and heterogeneous agents that can work together
to achieve similar or different goals. Agents executing in such systems may not be able to achieve their
goals due to failures during system execution. This paper’s main goals are to understand why such failures
occurred and what can be done to remediate the problem. The distributed, dynamic and open nature of
multi-agent systems calls for a new form of failure handling approach to address its unique requirements,
which involves both diagnosing specific failures and recommending alternative plans for successful agent
execution and goal attainment. In this paper, we discuss solutions to the main challenges of creating a
system that can perform diagnoses and provide recommendations about agent executions to support goal
attainment, and propose a hybrid diagnostic-recommendation framework that provides support for methods
to address such challenges.

1 INTRODUCTION

Open multi-agent systems (Jennings and
Wooldridge, 1999) are societies with autonomous
and heterogeneous agents that can work together to
achieve similar or different goals (Boella and Torre,
2004). In many cases, the agents are unable to attain
their goals due to failures during system execution.
When an agent tries to attain its desired goal, but
faces execution failures that prevent achievement, it
becomes relevant to understand why such failures
occurred and what can be done to remediate the
problem.

This paper focuses on the diagnosis of failures
and on the recommendation of alternative plans for
successful agent execution and goal attainment.
Some proposals that have recently appeared in the
literature suggest different ways for agents to
diagnose system execution failures. Li et al. (Li et
al., 2004) present a decentralized system to monitor

and diagnose the agents’ behavior. Although this is
an interesting idea, in open multi-agent systems it is
not applicable because when the execution of an
agent is monitored its privacy is violated.

Another interesting work, which was proposed
by Horling et al. in (Horling et al., 2000), examines
how an independent domain for diagnoses can
behave in multi-agent systems and compares the
hoped result of an execution with the result obtained.
However, the approach does not offer a large data
set to define the expected behaviors, and there is no
control of the reputation of the agents when an agent
is detected as guilty of some failure.

In this paper we describe a new hybrid
diagnostic-recommendation system of agents’
executions that does not violate the agents’ privacy
and that defines a set of facts that can be used to
provide information about the reasons for failing to
achieve a goal. Diagnosis is assumed as the process
of determining the reason why agents do not achieve

159
Diniz da Costa A., J. P. de Lucena C., T. da Silva V. and Alencar P. (2008).
A HYBRID DIAGNOSTIC-RECOMMENDATION SYSTEM FOR AGENT EXECUTION IN MULTI-AGENT SYSTEMS.
In Proceedings of the Third International Conference on Software and Data Technologies - PL/DPS/KE, pages 159-168
DOI: 10.5220/0001879401590168
Copyright c© SciTePress

their goals. Recommendations are provided on how
to achieve the desired goals that agents have failed
to achieve.

A diagnostic system must be able to analyze
different sets of information related to the agents’
executions and point out the (main) problem that has
occurred. Recommendations are provided based on
the diagnosis and indicate alternatives to the agent’s
execution to try to achieve the same goal. A
recommendation system can recommend, among
others, the use of another resource, the execution of
another plan and the interaction with other agents. In
order to recommend other partners to interact with
the agent, the recommendation system bases its
choice on the agents’ reputations. The reputation of
an agent is evaluated according to its past behavior.
Several reputation systems have been proposed to
collect, distribute, and aggregate feedback about
agents’ past behavior. In this paper we use the
Governance Framework (Silva et al., 2007) to
provide agent reputations.

The hybrid diagnostic-recommendation
framework called DRP-MAS (Diagnosing and
Recommending Plans in open Multi-Agent Systems)
proposed in this paper can be instantiated to perform
different kinds of diagnoses and to provide
recommendations (advices) to help agents achieve
their desired goals. This framework uses the
Governance Framework to receive the agents’
reputations that are used to offer advice about
partners with which to interact.

This paper is structured as follows. In Section 2
we discuss some of the main difficulties of
diagnosing and providing alternative execution
strategies for agents to achieve their goals. In
Section 3 we provide an overview of the DRP-MAS
framework. Since our framework uses the
Governance Framework to represent the reputation
concept, in Section 4 we briefly explain how it was
used. Section 5 illustrates the applicability of the
framework through a case study and Section 6
presents some related work. Finally, in Section 7,
conclusions and future work are discussed.

2 DIFFICULTIES OF PROVIDING
DIAGNOSES AND
RECOMMENDATIONS

In this section, we describe some of the challenges
and requirements related to the process of
performing diagnoses and providing
recommendations to help agents to achieve their

goals. These challenges and associated requirements
include:

1. Deciding how to Analyze the Behavior of the
Agents

The first challenge was to determine an appropriate
way to analyze the behavior of the agents. Two
solutions could be adopted. In the first, the execution
of each agent is monitored. Since we are working
with open multi-agent system environments and
with heterogeneous agents, one of our requirements
is to not violate the agents’ privacy. In the second
possibility, each agent analyzes its own execution.
By using such an approach, the agent’s privacy is
not violated and the information stored in past
analyses can be used by the agent in future ones.
Due to these two reasons, our approach adopted the
second solution.

2. Selecting Data for Diagnosing
One major challenge was to define which data is
necessary to perform diagnoses related to the
execution of agents. To perform the diagnoses, the
following information can be used: problem which
occurred due to limited memory space, the list of
resources used and the ones that the agent tried to
use, etc. In this paper we are considering a
predefined list of information to be used in the
framework composed of the plan executed, desired
goal, norm violated, roles of the agents and the
agents that provided some information during the
execution of the plan, among others. Since different
domains can require different information, such a
list can be extended.

3. Determining Strategies for Diagnoses
Different domains can require different strategies to
provide diagnoses. The challenge was to define
services or strategies that could be used by different
domains and to make available an infrastructure that
could be extended to accept new strategies.

4. Determining Trustworthy Agents
The reason for the failure regarding the execution of
plan can be related to the behavior of the partner
with whom the agent has interacted. For instance,
the partner may have provided a bad service or
inadequate information. Therefore, when a diagnosis
is formulated and it is verified that a specific agent
was responsible for the unsuccessful execution, the
recommendation system will try to avoid selecting
such agent in the next advice. To solve the problem
of distinguishing whether an agent is good or bad
with respect to some criteria we are making use in
this paper of agents’ reputations.

ICSOFT 2008 - International Conference on Software and Data Technologies

160

5. Providing Recommendations
We meant to create a framework that could provide
alternative ways of execution to achieve the same
goal. Therefore, the big challenge was to define a
strategy, which could be used in different domains
and an infrastructure that could be extended to
accept new strategies.

6. Representing Profiles of Agents
The same diagnostic can be associated with two
different recommendations, depending on the
characteristics of the agents that will receive such
advices. The challenge is to define how to represent
profiles of agents and how they could influence the
recommendations provided by the proposed
framework. The framework makes available a basic
agent profile that specifies the minimum global
reputation of partners to be considered in advices.

3 THE DRP-MAS FRAMEWORK

In this section, we describe the DRP-MAS
framework that performs diagnoses about the failure
to achieve the goals; moreover, it provides
recommendations for agents about how to achieve
their goals. Initially, the general idea of the
framework is presented, followed by its architecture,
and in the sequel we discuss the central concepts on
which it is based.

3.1 The General Idea

The DRP-MAS framework is used when an agent
does not achieve one of its goals after the execution
of one of its plans. The agent of the application, the
Requester agent, requests to the Mediator agent a
Diagnostic agent. When the Mediator receives the
message, it creates a Diagnostic agent (responsible
for providing diagnoses) and a Recommendation
agent (responsible for providing recommendations)
and sends a message to the Requester informing
which Diagnostic agent will work for it (Figure 1).

Subsequently, the Requester requests diagnoses
to the Diagnostic agent in order to receive advices
from the Recommendation agent to achieve the
desired goal. For this purpose, it sends a message to
the Diagnostic agent with the values of a set of
attributes that can help it in the analyses, such as:
plan executed, goal not achieved, the agents used in
the negotiations with their played roles, its profile,
and a number that represents the quality of the
execution performed (details in Section 3.3). This

idea of quality was based on the works (Horling et
al., 2000) and (Horling et al., 2007).

When the Diagnostic agent receives the
message, it tries to find the reason (s) why the
Requester agent was unable to achieve the desired
goal. At the end of the analysis, it provides the
diagnosis to the Recommendation agent. Even if a
diagnosis could not be provided, the Diagnostic
agent sends a message to the Recommendation agent
informing that it was not possible to detect the
reason for the Requester agent not to have achieved
the desired goal. In this case, when the
Recommendation agent receives the message
informing that it was not possible to meet a
diagnosis, it simply selects another plan that
achieves the desired goal.

Figure 1: Conceptual Model for requesting the name of the
diagnosis agent.

In the case that some diagnosis is met, the
Recommendation searches alternative plans to
achieve the goal (details in Section 3.4) by
considering the data in the diagnosis. When the
diagnosis indicates a problem with agent interaction,
an analysis is made to decide which other agents
could be used to perform the interactions (analysis
performed based on the roles played).

From the set of agents that can perform the same
roles in those interactions, the Recommendation
agent uses the agents’ reputations to select the
“best” agents, i.e., the agents with the top
reputations. The profile of the Requester agent can
be an important piece of information to define which
agents should be selected. When the execution of the
Recommendation agent ends, a message to the
Requester agent is provided with the selected
recommendations.

To help in representing agents’ reputations, we
are making use of the Governance Framework (Silva
et al., 2007), which is based on testimonies provided
by witnesses about facts or events that they know are
related to norms that have been violated. Since

A HYBRID DIAGNOSTIC-RECOMMENDATION SYSTEM FOR AGENT EXECUTION IN MULTI-AGENT
SYSTEMS

161

agents know the application’s norms (laws), they
can judge whether an agent violated a norm.
Besides, it is possible to attribute a reputation to
each agent of the system (details in Section 3.2).
Before a Requester requests some recommendation
from the DRP-MAS agents, the possible plans that
the Recommendation agent can recommend to an
agent must be defined by the application. Not only
the plans themselves but also their related data (such
as resources to be used in the execution and the roles
of the agents with whom the agent executing the
plan will need to interact) must be provided. Such
plans are stored in a plan base that the
Recommendation agents can access in order to
perform the advices.

3.2 Architecture

In this section we describe the architecture of our
approach that is composed for two layers: DRP-
MAS and Reputation. The DRP-MAS is composed
of four models: Mediation, Diagnosis,
Recommendation and Artificial Intelligence Toolset.

The mediation module is responsible for
providing the Mediator agent, which creates a
Diagnostic agent and a Recommendation agent for a
Requester agent defined in the Application, as
described in Sub-Section 3.1. The Diagnosis module
performs the process of diagnosis, while the
Recommendation module aims to provide
recommendations to achieve some desired goal. The
Artificial Intelligence Toolset module defines an
API (Application Public Interface) interface called
BIGUS (Bigus, 2001), which allows using different
kinds of reasoning algorithms to perform the
processes mentioned: forward chaining, backward
chaining and fuzzy logic.

The Reputation layer supplies reputations to the
DRP-MAS and can also supply them to the
Application layer, when requested. In the current
implementation, we are using the Governance
Framework to implement the Reputation layer. The
framework defines three modules: judgment,
reputation and punishment. The judgment module is
responsible for receiving the testimonies and for
providing a verdict to the punishment module, i.e.,
for verifying whether an agent violated a norm. The
module can make use of different strategies to judge
the violation of the different norms. Such strategies
may use the reputation module to help in providing
the decision about the violations.

The reputation module is responsible for
calculating the reputation of the agents and provides
them to the judgment module and to other

application agents. The reputations are updated
based on the testimonies provided by the judgment
module about violated norms. This module already
offers calculations to provide the reputations. In
addition, the instances of the framework can define
new calculations. The final module, punishment, is
responsible for determining the penalties applied to
agents that have violated the norms of the
environment.

For better comprehension of the DRP-MAS
framework, two key concepts are elaborated as
follows: how to perform diagnoses and how to
provide recommendations.

3.3 Performing Diagnoses

As was already explained in Sub-Section 3.1, the
diagnosis is performed by the Diagnostic agent
offered by the proposed framework. Such analyses
are performed based on a set of information
provided by the Requester agent. The set is used in
different diagnosing processes and in different forms
of recommending alternative ways to achieve some
goal. The information provided in the set
encompasses:
1. Resources and associated problems - In

(Horling et al., 2000) it is defined that resources
are important data to support diagnoses. In some
situations the reason why an execution cannot
be successfully performed could be the absence
of some resource, or perhaps an insufficient
amount of resources used to perform something.
Therefore, the diagnostic agent should receive
information about the used resources (their
identification) and the amount used.

2. Norm violated - The violation of a norm could
be a reason for not achieving a goal. Thus, the
diagnosis may depend on the norm violated.
Note that a norm can be considered a law that
must be followed by one or more agents. Some
data are provided about the norm violated: (i)
the agent responsible for the failure and (ii) a
value that represents the importance of said
violation from the agent’s point of view, called
degree of violation.

3. Quality of service – The quality of service
should be defined based on the TAEMS model
(Horling et al., 2000) (Horling et al., 2007). The
model represents a goal/task language that
provides an explicit representation for goals and
the available sub-goal pathways that are able to
achieve them from methods (plans). Each
branch in the tree can have an expected quality
based on the execution of the plans. Therefore,

ICSOFT 2008 - International Conference on Software and Data Technologies

162

to verify whether a goal was achieved, the
quality of the execution of the plan must be at
least equal to the minimum acceptable degree.
In order to represent this idea, each plan
contains the following data: (i) maximum
degree of quality related to the execution of the
plan; (ii) minimum acceptable degree of quality
to achieve the goal; and (iii) the degree
attributed after the execution of the plan.

4. Goal - The execution of an agent plan is always
associated with a goal that the agent wants to
achieve (Silva et al., 2003). To know the goal
that the agent is trying to achieve it is
fundamental not only to provide a diagnosis but
also to make advices. The advices about other
plans to be executed will be provided
considering the goal the agent was trying to
achieve

5. Plan executed - To know the plan executed by
the Requester agent it is important to
understand the reason of the failure and to
provide alternative execution to achieve the goal
that was not achieved.

6. Agents with whom the agent interacted - The
diagnosis can indicate that an agent is guilty of
having provoked the failure on the execution of
a plan. For this reason, it is important to know
the agents with whom the Requester has
interacted during the execution of such plan.

7. Roles - The roles played by the agents that have
interacted with the Requester can be important
to update reputations, and to serve as
recommendations for other agents that play the
same roles.

8. Profile - Agents can have profiles that represent
some of their characteristics. A profile can, for
instance, stipulate the minimum acceptable
degree of reputation of the agents that provide
information to the Requester agent. This
information can be useful in the process of
providing recommendations, especially when
there is a need to advise another partner to
interact with the Requester.

9. Problems met by the Requester - The
information that can be provided by the
Requester is not limited to the set mentioned
previously. The Requester can also send
domain-dependent information that will be used
by the domain-dependent strategies to perform
diagnoses and providing recommendations.

The DRP-MAS framework defines the
performance of diagnoses as a hot spot (or flexible
point) (Fayad et al., 1999) that can be implemented
by applications to provide domain-dependent

strategies. Therefore, different applications can
define different strategies to deal with the domain-
independent and domain-dependent sets of
information provided by the Requester agent.
Nevertheless, the framework makes available a
default strategy to provide diagnosis based on the
domain-independent information set.

In order to illustrate a situation when some
failure of a goal happens, let’s focus on the domain
of making coffee. An agent has a goal to make
coffee for its friends and to achieve this goal it
executes a specific plan. Suppose that the agent
noticed that the coffee is not good but does not know
why. There are several reasons leading to making
bad coffee: the quality of the coffee powder is poor,
the water used was cold, the quantities of coffee and
water were not adequate, etc. To find out what has
happened, the Requester agent should send to the
Diagnosis agent information about its goal (to make
coffee for three persons), the plan it has executed to
make the coffee, the coffee itself, the quantity of
water, the temperature of the water and the quality
and the description of the coffee powder used. The
Diagnosis agent must know how much water and
coffee powders are required to make a cup of coffee,
the ideal temperature of the water and which coffee
powders are good. One possible simple strategy
combines the information the agent has received
with the beliefs of the Diagnosis agent related to
make coffee. The more information the strategy
receives, the more precise the diagnosis will be.

To help defining domain-dependent strategies
three different algorithms (backward chaining,
forward chaining and fuzzy logic) are available in
the Artificial toolset module defined in the
framework. The strategies can use the BIGUS API
to access such algorithms. In Section 6 an example
of a strategy that used the forward chaining
algorithm is presented.

3.4 Providing Recommendations

The Recommendation agent incorporates the process
of advising alternative ways to achieve a goal. The
process is composed of three steps: to select plans,
to verify if the plan requires that agents request
information, and to choose good agents.

The first step is executed when the
Recommendation agent receives the diagnosis from
the Diagnostic agent. It first verifies which plans can
be used to achieve the desired goal. Second, the
Recommendation agent uses the diagnosis and the
information sent by the Requester agent to select a
plan. If no plan is encountered, then a message is

A HYBRID DIAGNOSTIC-RECOMMENDATION SYSTEM FOR AGENT EXECUTION IN MULTI-AGENT
SYSTEMS

163

sent to the Requester. Otherwise, the second step is
executed.

The second step verifies if the selected plan
needs the assistance of agents in order to request
information. If it is not necessary, then the process is
concluded and a message with the recommended
plan is sent. Otherwise, the reputations of the agents
are requested using the reputation module offered by
the Governance Framework. The third step is
executed after receiving all reputations (control
performed by the DRP-MAS). In the third step, the
Recommendation agent selects the agents to be used
by the chosen plans according to their reputations.
At the end, the selected plans and agents are
provided to the Requester agent.

3.4.1 Selecting Plan

The step Selecting Plan is responsible for choosing
alternative plans to achieve the desired goal. This
task is a domain-dependent one since the selection
of a plan may depend on the domain-dependent
information provided by the Requester agent.
Therefore, each application that uses the DRP-MAS
can define its own strategy to select plans. The task
for selecting plans is defined in the DRP-MAS as a
flexible point that should be extended by the
application.

The application should provide the possible
plans that the agents can execute and the expected
configuration that each one has. These expected
configurations are available in a plan base that can
be accessed by the application’s Recommendation
agents. Each plan can have the following data
associated with it: resources used during the
execution, desired goal, profiles of agents that accept
executing the plan, quality of service that determines
how the previous execution of the plan was
performed, related diagnoses, roles played by agents
in the execution of the plan, and a collection of
possible problems that the plan can resolve. Note
that the set of data used to configure a plan is the
same set that comprises the information described in
Sub-Section 3.3, i.e., the information provided by
the Requester agent.
Although the selection of a plan may be domain-
dependent, the framework provides a default
strategy for selecting a plan based on the domain-
independent set of information that the Requester
agent can provide. As a default strategy, the
framework provides plans that achieve the same
desired goal, excluding the plan used by the
Requester agent.

3.4.2 Verifying Selected Plans

After the selection of the alternative plans, it is
verified whether some plan needs to interact with
other agents. To perform this analysis, each plan
must have been associated with a list of the roles to
be played by agents with whom the agent executing
the plan may interact. If the list of roles in a plan is
empty, it means that no communication is needed
between agents while executing the plan. In the case
the lists of all plans are empty, a message can be
sent to the Requester agent with the recommended
plans. Otherwise, the Recommendation agent must
decide which agents should be used in the
interactions. This decision is based on the
reputations of agents that will be selected as partners
to play the roles. The Recommendation agent
requests the reputations of all agents that can play
the roles identified in the plans from the Governance
Framework. Although we propose the use of the
Governance Framework to provide the agents’
reputation, any other approach that is able to provide
the reputation of agents while playing a role can be
used. After receiving all reputations, the third step is
executed.

3.4.3 Choosing Agents

As in the two previous steps, the strategy in this step
is also a flexible point of the framework and
different kinds of strategies can be used. However,
the framework offers a default strategy that selects
the agents based on the minimum acceptable
reputation defined in the Requester agent profile.

Note that a profile can specify other information
that can also be useful when choosing agents. Multi-
agent systems can have heterogeneous agents with
different behaviors and characteristics that can
define several different profiles. We stimulate the
use of profiles to help on deciding about which plans
should be executed, and which agents the Requesters
accept to interact with.

Consider the application of buying and selling
goods to understand how the profiles of agents can
influence the selection of agents. If a buyer desires
to buy a given product, it can determine that it will
negotiate only with sellers that have good
reputations. Therefore, the buyer can determine a
minimum reputation in order to select the acceptable
sellers to future transactions.
After the selection of the advised agents, a message
is sent to the Requester agent with the
recommendations. For each plan, the possible agents
and the resources to be used are defined.

ICSOFT 2008 - International Conference on Software and Data Technologies

164

4 THE USE OF GOVERNANCE
FRAMEWORK

As mentioned in Section 3.1, the DRP-MAS uses the
Governance Framework in order to represent
reputations. The judgment module is used to update
reputations, while the reputation module is used to
request agents’ reputations These situations are
better explained as follows.

1. Updating reputations - To change the reputation
of selected agents, the Diagnostic agent of the
DRP-MAS can send testimonies to the
judgment module. The testimonies point out,
according to the information in the diagnoses,
the agents that have violated norms. Since the
testimonies provided by such agents are always
truth testimonies, the judgment module does not
judge them. For this reason, when the judgment
module receives the testimonies, the reputations
of the accused agents are automatically
modified by the reputation module.

2. Using reputations - When the Recommendation
agent needs to meet agents to provide
information about a plan, it requests the
reputation of the selected candidates from the
Reputation Module. When the Recommendation
agent receives all reputations requested, it
performs the analyses and decides which agents
are good or bad from the negotiation point of
view.

5 INTELLIGENT HOME

The example used to instantiate the DRP-MAS
framework is the intelligent home that also is used in
(Horling et al., 2000). From a set of possible cases
about the intelligent home, two were chosen for
illustration: dishwasher and to make coffee.

5.1 Dishwasher

In one of the analyzed scenarios of the intelligent
home, an agent representing a dishwasher receives
hot water from another agent representing a water
heater. The water heater is also able to provide hot
water to the shower of a person. Suppose that while
the dishwasher is on, a person starts to take a
shower. Since the dishwasher needs hot water to
work properly, the dishwasher should adapt its
behavior by choosing one of the following options:
(i) to wait for the water heater to be free and provide
hot water again, (ii) to search for another available

water heater, if any, or (iii) to wash the dishes with
cold water. However, in this latter situation the agent
does not achieve the desired goal since the dishes are
not properly washed.

Let us suppose that the dishwasher has chosen
the latter option because there no water heaters are
available and that it is programmed to save energy.
When the dishwasher finishes its work, it notices
that the dishes are not properly washed. When this
happens, the dishwasher agent decides to request a
Diagnostic agent from the Mediator agent. In
sequel, the Requester agent (dishwasher) provides
six different pieces of data to the Diagnosis agent
about the execution performed: (i) the quality of
service on the plan, (ii) its profile, (iii) the norm
violated, (iv) the agent used during the execution,
(v) the role played by such agent and (vi) the
temperature of the water used. The first five pieces
of information are pre-defined by the framework
(Section 5.1), and the sixth is defined by the
application. On the profile of the agent it is informed
that only agents with reputations higher than 0.8 can
provide information to the Requester.

When the Diagnostic agent receives the message
supplied by the Requester, it begins to perform the
diagnosis. To perform it, we chose to use the well-
known Forward Chaining algorithm offered by the
Artificial Intelligence Toolset module of the
framework. This algorithm uses inference rules from
a set of available data in order to extract more data
while seeking an optimal goal. Therefore, we had to
create a rule base with all the possible rules that
allow meeting the diagnoses from the data provided
by the Requester agent. These rules are shown in
Figure 2.

The rule base uses six attributes: quality_service,
violated_norm, role_agent_used, temperature_water,
conclusion and problem. The values of the first four
attributes are provided by the Requester agent, while
the values of the two last ones are automatically
attributed by the forward chaining algorithm, which
tries to infer new data (conclusion and problem)
from available ones (quality_service, violated_norm,
role_agent_used and temperature_water). The
quality_service attribute represents the quality of the
execution performed by the plan. The violated_norm
informs the norms violated during the execution of
the plan. The role_agent_used informs the role
played by the partner agent (water heater) that
interacted with the Requester agent, and the
temperature_water attribute informs the temperature
of the water used to wash the dishes. The conclusion
attribute will inform if the dishwasher used hot
water during the washer, and the problem attribute

A HYBRID DIAGNOSTIC-RECOMMENDATION SYSTEM FOR AGENT EXECUTION IN MULTI-AGENT
SYSTEMS

165

will point out the final diagnosis. The rules
presented in the rule base lead to only two possible
diagnoses: the dishwasher did not succeed in
washing the dishes because the communication with
the water heater has failed, or some unknown
problem occurred.

Let’s suppose that the data provided by the
Requester agent were: quality_service=5, norm=
to_wash_dishes_with_hot_water, role_agent_
used=water_heater and temperature_water=30. After
applying the rules, the attributes conclusion and
problem receive the data without_hot_water and
problem_communication_waterheater, respectively,
indicating that the water heater did not provide hot
water correctly.

After meeting the desired diagnosis, a message
with the diagnosis is sent to the Recommendation
agent, in order to search for alternative executions to
the Requester agent. The Recommendation agent
analyzes the diagnosis and concludes that it is
necessary to select another agent to provide hot
water. The conclusion is that the selected plans need
to request hot water from a water heater agent. For
this reason, the Recommendation agent requests the
reputation of the water heaters, and therefore decides
which of them have reputations higher than 0.8
(defined in the profile supplied by the Requester).
After the analysis process, the selected agents and
plans are sent to the Requester agent.

 Problem_Communication_WaterHeater:

IF conclusion=without_hot_water AND
violated_norm=to_wash_dishes_with_hot_water
AND role_agent_used=water_heater AND
quality_service <10 THEN
 problem= problem_communication_waterheater
Problem_Unknown_in_the_Plan:
IF conclusion=com_agua_quente AND
quality_service <10 THEN
problem= problem_unknown_in_the_plan
With_Hot_Water:
IF temperature_water>39 THEN
conclusion=with_hot_water
Without_Hot_Water:
IF temperature_water<40 THEN
conclusion=without_hot_water

Figure 2: Rule base of the domain Dishwasher.

5.2 To Make Coffee

Another scenario chosen was the coffee maker,
whose goal is to make 20 cups of strong coffee.
While an agent represents the coffee maker, another
one represents a tester, which is responsible for

testing whether the coffee was made correctly.
Initially, the coffee maker executes a plan to make
the coffee. When the coffee is ready, a message is
sent to a Tester agent. It analyzes the coffee and
sends a response message informing that the coffee
is not good. For this reason, the coffee maker
decides to request recommendations from the
Analysis Module.

The first step performed by the coffee maker is
to request a Diagnostic agent, and then to request
the recommendations, informing some data about its
execution: quality of the execution of the plan
(provided by the framework), amount of the water
and amount of coffee powder used (provided by the
instance), which are the resources used by the plan.

As in the case of the dishwasher presented
previously, we have also used the Forward Chaining
algorithm to make the diagnoses. Part of the rule
base defined in this example is shown in Figure 3.
Six data were defined: amount_water,
amount_powder, quality_service, conclusion_
coffee, conclusion_cups and problem. The first data
represents the amount of water used by the plan to
make the 20 cups of coffee. The second data is the
quantity of coffee powder used, while the
quality_service represents an assigned degree to the
execution of the plan. If the value attributed is lower
than 10, then some problem occurred during the
execution. Another data used was the
conclusion_coffee that informs whether the coffee
that was made used too little or too much coffee
powder, while the conclusion_cups verifies whether
the correct amount of water was used to make 20
cups. The problem attribute will represent the
diagnosis.

Let’s suppose that the Requester agent (coffee
maker) provided the following data:
quality_service=0, amount_water=600 (mL), and
amount_powder=20 (grams). As the goal of the
coffee maker is to make 20 cups of strong coffee, we
can see that applying these values in the rule base,
the problem met is
problem_amount_powder_and_cups. In other words,
the amount of powder and the amount of water were
incorrect to make 20 cups of strong coffee. For this
reason, the quality of service came with a value
lower than 10.

ICSOFT 2008 - International Conference on Software and Data Technologies

166

 Problem_Strong_Coffee _20_Cups:
IF conclusion_coffee= weak_coffee AND
 conclusion_water = Coffee_Incorrect_Water
AND quality_service <10 THEN
problem= problem_amount_powder_and_cups
Weak_Coffee:
IF amount_powder <30 THEN
conclusion_coffee= weak_coffee
Strong_Coffee:
IF amount_powder >29 THEN
conclusion_coffee= strong_coffee
Coffee_Correct_Water:
IF amount_water=1000 THEN
Conclusion_water= Coffee_Correct_Water
Coffee_Incorrect_Water:
IF amount_water!=1000 THEN
Conclusion_water= Coffee_Incorrect_Water

Figure 3: Rule base for the domain of coffee making.

After reaching the diagnosis, a message is sent to the
Recommendation agent. The strategy adopted in this
case was to verify the amount of necessary resources
to make 20 cups of strong coffee, and to search other
plans with the same goal. With the selected plans,
the correct quantity of powder and water to make the
coffee is informed to the plans. Later, it is verified
that the plans need a Tester agent to test the coffee.
As there is only one available tester (defined by the
application), this one is chosen. Finally, the
recommendations are provided to the coffee maker
(the Requester agent).

6 RELATED WORK

In this section, we describe some related work and
make a comparison with the proposed DRP-MAS. In
particular, we consider works reported in (Li et al.,
2004), (Horling et al., 2000) and (Roos et al., 2002).

6.1 Application of MAS in Control and
Fault Diagnosis Systems

In (Li et al., 2004), a decentralized system is
proposed in order to perform diagnosis and
monitoring. Each component has a monitor
(Monitoring Agent), which is responsible for
collecting information about it. When obtained, the
data are provided to agents offered by the proposed
system, which are responsible for working together
in order to find the diagnoses.
One of the drawbacks of this approach is that it
violates the privacy of the agents. For this reason,

the DRP-MAS does not create monitors, but waits
for the agents of the application to request for
diagnoses.

6.2 Diagnosis as Part of Adaptability

The authors in (Horling et al., 2000) examine the use
of domain-independent diagnoses in multi-agent
systems. They argue that the initial step is to make
available information describing the correct, or at
least expected, behavior of agents. They state that
useful method execution and goal achievement
information can be succinctly encoded in a domain-
independent way with a goal/task decomposition
language called TAEMS.

In the DRF-MAS the methods defined by the
TAEMS in order to achieve the desired goals are
represented by plans that are used to attain goals.
Each plan defines a set of possible related
information, such as resources used and their
expected amount, desired goal, expected quality,
etc., as described in Section 3.3. If a plan has a
problem, it is possible to verify the causes of the
failure.

Comparing with (Horling et al., 2000), our
approach offers a bigger information set, making it
possible to perform more and different diagnoses.
Another distinguishing characteristic of the DRP-
MAS is the use of agents’ reputations, which helps
during the selection of future partners.

6.3 An Analysis of MAS Diagnosis

In (Roos et al., 2002), the authors define an
information set to be used by a global system to
provide diagnoses. This set is:

S = (C, M, Id, Sd, Ctx, Obs)
where C is a set of components, M is a specification
of possible fault per component, Id is a set of
identifiers of points that connect components, Sd is
the description of the system, the Ctx is a
specification of input values of the system that are
determined outside the system by the environment,
and Obs is a set of observed values of the system.
DRP-MAS follows a similar idea by extracting the
necessary information to perform diagnoses from the
set of information used by the process of diagnosis
presented in Sub-Section 3.3.

7 CONCLUSIONS

In the present paper we have outlined the main
challenges and associated requirements as well as

A HYBRID DIAGNOSTIC-RECOMMENDATION SYSTEM FOR AGENT EXECUTION IN MULTI-AGENT
SYSTEMS

167

the design strategy to create a hybrid diagnostic-
recommendation system for agent execution in open
multi-agent systems. This system helps to perform
diagnoses and to recommend alternative ways for
executions to achieve goals. The intelligent home
domain was presented as a case study to illustrate
the applicability of our approach.

Two important lessons were learned in the
process of analyzing and developing the proposed
system. The first lesson relates to the diagnosis
process. We have realized that to define a
universally efficient solution to perform diagnoses in
different domains is very difficult, because some
domains have particular characteristics that
influence the result of the diagnoses.

The second lesson relates to the use of the
reputation concept. Depending on the situation, to
adequately select the agents that will be used to
request some information can be important, because
some provided information can determine the
success or failure of some execution.
Our plan for future work is to focus on case studies
involving ubiquitous computing, because it can
present complex situations where we can perform
diagnoses and provide recommendations.

REFERENCES

Bigus, J., Bigus, J., 2001. Constructing Intelligent Agents
Using Java, 2nd edition.

Boella, G., Torre, L., 2004. Regulative and Constitutive
Norms in Normative Multi-Agent Systems. In Proc. of
9th Int. Conf. on the Principles of Knowledge
Representation and Reasoning. California.

Fayad, M., Johnson, R., Schmidt, D., 1999. Building
Application Frameworks: Object-Oriented
Foundations of Framework Design (Hardcover), Wiley
publisher. 1st edition.

Horling, B., Lesser, V., Vincent, R., Bazzan, A. Xuan, P.,
2000. Diagnosis as an Integral Part of Multi-Agent
Adaptability, DARPA Information Survivability
Conference and Exposition, DISCEX’00, Proceedings,
Volume 2, pp. 211-219.

Horling, B., Lesser, V., Vincent, R., Wagner, T., Raja, A.,
Zhang, S., Decker, K., Garvey, A. 1999. The TAEMS
White Paper.
http://dis.cs.umass.edu/research/taems/white/. Last
access in November, 2007.

Jennings, N., Wooldridge, M., 1999. Agent- Oriented
Software Engineering. In Proc. of the 9th European
Workshop on Modeling Autonomous Agents in a
Multi-Agent World: Multi-Agent System Engineering
Vol. 1647, Springer-Verlag, pp. 1-7.

Li, T., Peng, Y., Zhao, H., Li, K., 2004. Application of
Multi-Agent in Control and Fault Diagnosis Systems.

In Proc. of the Third Int. Conf. on Machine Learning
and Cybernetics, Shanghai, pp. 26-29.

Roos, N., Teije, A., Bos, A., Witteveen, C., 2002. An
Analysis of Multi-Agent Diagnosis, AAMAS’02.

Silva, V., Cortês, M., Lucena, C., 2004. An Object-
Oriented Framework for Implementing Agent
Societies, MCC32/04. Technical Report, Computer
Science Department, PUC-Rio. Rio de Janeiro, Brazil.

Silva, V.; Duran, F.; Guedes, J., Lucena, C., 2007.
Governing Multi-Agent Systems, In Journal of
Brazilian Computer Society, special issue on Software
Engineering for Multi-Agent Systems, n. 2 vol. 13, pp.
19-34.

Silva, V.; Garcia, A.; Brandao, A.; Chavez, C.; Lucena,
C.; Alencar, P., 2003. Taming Agents and Objects in
Software Engineering" In: Garcia, A.; Lucena, C.;
Zamboneli, F.; Omicini, A; Castro, J. (Eds.), Software
Engineering for Large-Scale Multi-Agent Systems,
Springer-Verlag, LNCS 2603, pp. 1-26.

Vicent, R., Horling, B., 2000; Experiences in Simulating
Multi-Agent Systems Using TAEMS, Proceedings
Fourth International Conference on MultiAgent
Systems, Volume, Issue, pp. 455-456.

ICSOFT 2008 - International Conference on Software and Data Technologies

168

