
FAULTS ANALYSIS IN DISTRIBUTED SYSTEMS 
Quantitative Estimation of Reliability and Resource Requirements 

Christian Dauer Thorenfeldt Sellberg 
IBM Denmark A/S. Nymoellevej 91, 2800 Kgs. Lyngby, Denmark 

Michael R. Hansen, Paul Fischer 
Institute of Mathematical Modelling, Technical University of Denmark  

Richard Petersens Plads, DTU - Building 321, 2800 Kgs. Lyngby, Denmark 

Keywords: Fault tolerance, Dependable systems, Distributed systems, Process Algebra, Pi-calculus. 

Abstract: We live in a time where we become ever more dependent on distributed computing. Predictable quantitative 
properties of reliability and resource requirements of these systems are of outmost importance. But today 
quantitative properties of these systems can only be established after the systems are implemented and 
released for test, at which point problems can be costly and time consuming to solve. We present a new 
method, a process algebra and simulation tool for estimating quantitative properties of reliability and 
resource requirements of a distributed system with complex behaviour hereunder complex fault-tolerance 
behaviour. The simulation tool allows tailored fault injection e.g. random failure and attacks. The method is 
based upon π-calculus (Milner, 1999) to which it adds a stochastic fail-able process group construct. 
Performance is quantitatively estimated using reaction rates (Priami, 1995). We show how to model and 
estimate quantitative properties of a CPU scavenging grid with fault-tolerance. To emphasize the 
expressiveness of our language called Gπ we provide design patterns for encoding higher-order functions, 
object-oriented classes, process translocation, conditional loops and conditional control flow. The design 
patterns are used to implement linked lists, higher-order list functions and binary algebra. The focus of the 
paper--is—on--practical--application.

1 INTRODUCTION 

Failure (faults) happens. The computational 
resources of distributed systems are unreliable; as 
every human made thing is and they will eventually 
fail either because of random failure, because of 
limited longevity or because of malicious attacks. To 
be reliable then dependable systems need to be 
robust against these different causes of failure. 
Robustness against failures can e.g. be achieved via 
fault-tolerance techniques. 

Analysis of reliability and resource requirements 
(such as performance) is usually delayed (or not 
done at all) until a distributed system is implemented 
and deployed, where the analysis is based on data 
collected via load and stress testing, LST, of the 
deployed system via LST tools. The reason for this 
delay is that reliability and resource requirements of 
a system are not easily deduced in the planning and 

modelling phases. We need a method which allows 
quantitative estimation of reliability and quantitative 
estimation of predictive statistics (mean, standard 
deviation, minimum, median, maximum) of resource 
requirements in space and time (e.g. memory, 
network size, workload, performance) based on a 
model of the system. The method should be able to 
account for location failure (e.g. server crash) and 
fault-tolerance (fault detection, fault confinement, 
fault recovery) techniques. The method should be 
able to express component based job distribution to 
a computational resource. Our thesis is that π-
calculus (Milner, 1999) could be extended for this 
purpose and the results presented in this paper are a 
summary of the results from the master thesis 
(Sellberg, 2008).  

Why a new process algebra? There exists 
process algebras based on π-calculus (Milner, 1999) 
with location failure; examples are asynchronous πl, 

45
Dauer Thorenfeldt Sellberg C., R. Hansen M. and Fischer P. (2008).
FAULTS ANALYSIS IN DISTRIBUTED SYSTEMS - Quantitative Estimation of Reliability and Resource Requirements.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 45-52
DOI: 10.5220/0001881700450052
Copyright c© SciTePress



 

(Amadio, 1997) and DπLoc, (Francalanza, 2006). 
But these process algebras have no means for 
expressing quantitative aspects of reliability and 
resource requirements in time and space. One 
extension of π-calculus with quantitative properties 
is Stochastic π-calculus, Sπ, (Priami, 1995). Sπ can 
via its stochastic reaction rate extension to π-
calculus quantify system performance but Sπ has no 
notion of failure. 

We have considered whether we should extend 
e.g. πl or DπLoc with quantitative properties but 
have abandoned doing this for the following reasons. 
πl and DπLoc has fault detection logic, FD, a ping 
“are you alive” construct, as a part of the syntax.  FD 
in πl and DπLoc cannot fail, unlike FD in real 
systems (see Section 2), so we cannot use πl and 
DπLoc to study fault detection. Another issue is that 
πl and DπLoc have syntactical fault injection 
constructs. We prefer for clarity reasons that a model 
is defining a system’s functional specification, 
which does not include fault injection logic.  

Therefore we introduce a new (π-calculus based) 
process algebra which is able to express “location 
failure” and quantitative properties of reliability and 
resource requirements in time and space. Our 
process algebra, named Gπ-calculus, adds to π-
calculus a stochastic fail-able process group 
construct for location failure. We adapt reaction 
rates from (Priami, 1995) in the form of transition 
time labels (see section 3) for quantitative estimation 
of performance. Component based job distribution is 
expressed via a distribution rule. The semantics of 
Gπ is given in the form of a structural operational 
semantics (Plotkin, 1981). The emphasis will, 
however, be on practical applications. 

The paper has the following outline. In Section 2, 
we present a motivating example and give a flavour 
of how the method quantitatively can estimate 
reliability and descriptive statistics of resource 
requirements in time and space of a simple CPU 
scavenging grid. Technical details are left to Section 
6. In Section 3, we give an informal introduction to 
Gπ-calculus. In Section 4 we stress the 
expressiveness of Gπ by presenting design patterns 
for how to use it to implement advanced behaviour. 
In Section 5, we present the simulator tool which 
can estimate descriptive statistics of quantitative 
properties of models. In Section 6 we introduce how 
to model fault-tolerance techniques by elaborating 
on the example from Section 2. The paper ends with 
a conclusion. 

2 A MOTIVATING EXAMPLE 

Dependability on a system requires that the system 
has predictable reliability and predictable 
quantitative resource requirements in time, 
(performance), and space, e.g. network size (here 
defined as the number of concurrent computers 
which simultaneously is having a job assigned), 
number of job distributions (the number of 
assignments of a computational problem to a new 
computational resource) and workload (here defined 
as the number of computations/reductions). With 
predictable we understand that standard deviation is 
relatively low in respect to the mean and that min 
and max is relatively close to the mean. We define 
reliability of a system as the probability that a 
system service will answer an arbitrary request in 
accordance with its system specification. 

We shall consider an example, a volunteering 
CPU grid, CPU-GRID, from High Performance 
Computing. High Performance Computing, HPC, is 
today applied in solving complex computation 
intensive problems. One way to achieve HPC is via 
a CPU-GRID.  Examples of CPU-GRIDs are: 
folding@- home, seti@home and world, community 
grid which respectively have the following urls: 

 http://folding.stanford.edu/ 
 http://setiathome.berkeley.edu/ 
 http://www.worldcommunitygrid.org 

A CPU-GRID is in its simplest form based on a 
central computer, a grid master, which has a set of 
volunteering computers, CPUs, to which it can 
delegate/schedule computational problems. 
Volunteering computers can usually join the grid by 
downloading and installing a screensaver which will 
connect the volunteering computer to the grid. When 
a grid master receives a job request by a grid user it 
will usually break the job request into sub-problems 
which it will delegate to volunteering CPUs. When a 
sub-problem is solved the volunteer CPU will return 
the sub-result to the grid master. The grid master 
will assemble all sub-results into one final result and 
return it to the user. The owner of a volunteer CPU 
can at any time chose to (temporarily or indefinitely) 
disconnect his CPU from the grid. From the point of 
view of the grid master then this disconnection can 
be considered as the failure of the sub-problem 
delegated to that CPU. To insure that the CPU-
GRID can achieve reliable computing with such 
unreliable computational resources it needs a fault-
tolerance strategy for handling the failure of 
volunteering CPUs.  

ICSOFT 2008 - International Conference on Software and Data Technologies

46



 

Fault-tolerance is about fault detection, fault 
isolation/error assessment and fault recovery/error 
correction (Tanenbaum, 2006). Fault detection in 
distributed processes is achieved by timed processes, 
usually called watchdogs, triggering timed e.g. “are-
you-alive” signals to a heart-beat process located at 
a component under fault surveillance, e.g. a 
volunteering CPU. If a timed heart-beat is missed 
then a watchdog will handle it as the failure of the 
volunteering CPU. The watchdog will then trigger 
fault recovery by rescheduling the failed sub-
problem. This is the fault-tolerance approach 
followed in our example below. Notice that race 
conditions can course a heart-beat to be missed. This 
will falsely trigger fault recovery and reschedule an 
already ongoing job.  

The architecture of the CPU-GRID example is 
shown in Figure 1.  

Figure 1: CPU-GRID architecture. 

The CPU-GRID consists of a grid master and an 
unlimited amount of volunteering CPUs. The user 
entrance to the grid is via the grid master. The grid 
master can receive a job request from a user which it 
split into two sub-problems A and B which it will 
schedule to volunteering CPUs. A CPU which has 
been assigned a job of type A or B will be named 
CpuA and CpuB resepectively. The grid master will 
apply passive task replication as its fault-tolerance 
strategy, i.e. it will apply watchdogs at the grid 
master and heart-beat listening processes at CpuA 
and CpuB for fault detection and fault recovery. The 
failure probability of CpuA and CpuB is 0.5, i.e. 
they are very unreliable. We consider the grid master 
to have failure probability 0, i.e. it cannot fail.  

We have modelled this example in Gπ and 
experimented with the simulator tool. Table 1 shows 
the results. 

Reliability and performance are two system 
properties being perceived by the grid user. The 
model has high reliability but its performance is 
unpredictable (standard deviation, std.dev Table 1, is 
large compared to the mean) and from the point of 

view of the grid user this unpredictability makes the 
grid undependable. 

“Network size”, “Number of job distributions” 
and “System workload” are parts of the system 
resources which need to be available for the CPU-
GRID for it to deliver the estimated reliability and 
performance. The results show that these resource 
requirements are unpredictable, but whether this 
unpredictability indicates a dependability problem 
depends on the actual resources available to the 
CPU-GRID. If the CPU-GRID had access to e.g. 
600000 volunteering computers then the resource 
requirement unpredictability would probably be of 
no concern but if the CPU-GRID had access to only 
100 computers then it would be of concern. 

The statistics for network size (Table 1) give us 
an indication of the “quality” of the fault-tolerance 
strategy. We can derive that fault detection wrongly 
triggers fault recovery of non-failed components 
because network size would be no larger than 4 (1 
user, 1 grid master, 1 CpuA, 1 CpuB) if fault 
detection did not fail but network size (Table 1, 
Network size) is on average 7.75 and can be as large 
as 16 concur rent computers.  

Faults, is the number of failed volunteering 
computers and can be interpreted as the “hostility” 
of the environment. It seems fair to say that the 
environment is relatively hostile. 

Table 1: CPU scaveng. grid with passive task replication. 

Total number of experiments  
100.0  

Reliability  
1.0  

Performance (times units) 
mean  std.dev.  min  median  max 

695,41  461,9111  49  583,5  2114 
Network size  

mean  std.dev.  min  median  max 
7,75  2,2036  5  7  16  

Number of job distributions  
mean  std.dev.  min  median  max 

275,72  183,368  22  229  848  
System workload (reductions) 

mean  std.dev.  min  median  max 
2196,54 1457,3966  160  1785  6685 

Faults  
mean  std.dev.  min  median  max 

269,52  182,1981  17  222,5  841  
 
 
 
 
 

GridMaster

CPU

CPU

User

CPU

CPU...
Unlimited number of 
volunteering CPUs

FAULTS ANALYSIS IN DISTRIBUTED SYSTEMS - Quantitative Estimation of Reliability and Resource Requirements

47



Table 2: Structural Operational Semantics of Gπ-calculus. 

Failure rules 
1. […+x!y.P]i

θi  | […+x?z.R]j
θj     →σi*(1-σj), ρ     0 | […+x?z.R] jθj 

2. […+x?y.P]iθi  | […+x!z.R] j
θj    →σi*(1-σj), ρ     0 | […+x!z.R ]j

θj 
3. […+x!y.P]i

θi  | […+x?z.R] jθj    →σi*σr, ρ         0 | 0 
4. […+x!y.P]i

θi  |  …+x?z.R          →σi, ρ             0 |   …+x?z.R 
5. […+x?y.P ]i

θi |  …+x!z.R          →σi, ρ             0 |   …+x!z.R 
6. […x!y.P  | ...+x?z.Q]i

 θi             →σi, ρ              0 
Communication rules 
1. […+x!y.P]i

θi   | […+x?z.R] jθj    →(1-σi)*(1 - σj), ρ   [P]i
θi |  [R{y/z}] jθj  

2. […+x!y.P ]i
θi | …+x?z.R            →(1-σi), ρ           [P]i

θi |  R{y/z} 
3. […+x?y.P ]i

θi | …+x!z.R            →(1-σi), ρ           [P{z/y}]i
θi | R  

4. […+x!y.P  | …+x?z.R]iθi           →(1-σi), ρ            [P | R{y/z}]i
θi 

…+x!y.P     |  …+x?z.R               →σ=1, ρ             P |  R{z/y} 
Distribution rule 

[(new a1…an)(Q | [P] θj)] θi         →σ,ρ                (new a1…an)( [Q] θi | [P] θj) where σ=1 and ρ=0 

 
 

3 INTRODUCTION TO  
Gπ-CALCULUS 

The calculus Gπ is based on the π-calculus 
introduced in (Milner, 1999) for modelling and 
analysing concurrent, communicating and mobile 
processes. For a comprehensive introduction to π-
calculus we refer to (Milner, 1999) or (Sangiorgi, 
2001). The syntax of π-calculus is shown in Table 3.  

Table 3: π-calculus syntax. 

P,Q ::= S | *P | (new x) P | P|Q | 0  
S, T ::= α.P | S + T  
α ::= a?b | a!b  
 
See Table 4 for an explanation of terms used. 

Table 4: Gπ-calculus syntax. 

P,Q ::= S  | *P | (new x) P |  P|Q  |  0  |  [P]θ 
S, T ::= α.P  |  S + T 
α ::= a?b  |  a!b  
θ ::= ε  |  ‘@’ name=value ‘;’ θ 
  
Where ε  is the empty string. P and Q are processes, 
S and T are summations and  α is an action. The 
syntactic constructs have the following meaning. 

π-calculus is Turing complete and therefore 
allows the modelling of arbitrarily complex 
behaviour, but π-calculus cannot express 
quantitative properties as reliability and resource 
requirements in time and space or grouped process 
failure and therefore primitives to express that is 
added to π-calculus.  

The syntax of Gπ is given in Table 4 and the 
operational semantics is sketched in Table 2. 

Composition: P|Q means that P and Q are two 
concurrent processes.  

Prefix: α.P means sequencing of behaviour. The 
process can engage in an α action and then it 
behaves as P.  

Action: a?b  and  a!b are symbolizing 
communication points. a?b is an input action and a!b 
is and output action. The name, a in a?b and a!b is 
called the subject and b is called the object. When an 
input- and output-action have the same subject-name 
they can engage in communication (Table 2, 
communication rules).   

Summation: S + T means choice of process 
behaviour where only one alternative i.e. either S or 
T but nor both will evaluate, the other alternative is 
discarded.  

Replication: *P represents an infinite set of 
process P occurrences. We have the following 
structural congruence rule *P ≡ P | *P.  

Restriction: (new x) P means that x is bounded in 
P. In the following example (new x)(P) | (new x)(Q) 
then the x’s in P and Q represents two different 
names.  

Termination: 0 means a terminated process, a 
process that takes no action.  

Grouping: [P]θ means process grouping. The 
process group can evaluate to the null process, 
[P]θ→0 (Table 2, failure rules). The tagging θ is a 
convenient way of adding meta information to 
process groupings. We use the tag @pf=0.5; for 
example to indicate the failure probability of a 
process group. We shall se other kinds of tags for 
type in section 6. 

ICSOFT 2008 - International Conference on Software and Data Technologies

48



 

We will now briefly explain the reason for our 
failure modelling approach. The processes deployed 
on a computational resource are un-reliable because 
a computational resource always can fail given some 
probability. The processes, so-to-speak, “inherit” 
this unreliability from their computational resource, 
because they cease to exist with the computational 
resource. We model a computational resource by a 
process group construct, [P], which we add as an 
extension to the π-calculus syntax (Table 4). We 
model the unreliability of the computational 
resource by extending the reduction rules of π-
calculus with reduction rules of failure (Table 2). 
Notice that failure is only defined for process 
groups, [ ], having processes which can react; this 
insures that we are only studying interesting failures 
which affects behaviour.  

In the operational semantics, each transition 
arrow, →σ, ρ,  has two labels. The first label, σ, is the 
transition probability and the second, ρ, is the 
transition time. The symbols σi and σj (Table 2) are 
the probabilities that respectively the process group 
marked i and j will fail during reaction. The 
transition probability σi*(1-σj) is the probability for 
the event that the process group marked i but not the 
process group marked j will fail during reaction 
(Table 2) etc. Using these transition labels we can 
deduce transition path probabilities and transition 
path times, to estimate reliability and performance 
figures.  

The semantic reduction rules for communication 
trivially specify that communication will take place 
when none of the involved process groups fails and 
the transition probabilities are reflecting this. Job 
distribution or assignment to computational 
resources is specified by the distribution.  

Different aspects of process size are used to 
estimate resource requirements in e.g. memory and 
network size. The number of times the different 
reduction rules are applied is used to estimate 
different aspects of work load, e.g. network traffic 
and CPU load. 

4 EXPRESSIVENESS 

To make Gπ useable by a wide audience we have 
presented six design patterns, Gπ-patterns (Table 5), 
for how Gπ-calculus can be used to implement 
complex behaviour via concepts familiar from the 
functional or object oriented world.  

The design patterns have been heavily inspired 
by both (Milner, 1999) and (Sangiorgi, 2003). Each 

design pattern has a name for reference, it defines a 
problem or problem context where it is useful, it 
defines a set of terms to be used as a vocabulary for 
talking about the pattern and most importantly it 
defines a Gπ process structure as a solution to the 
problem. The intention is that these process 
structures are to be used as coding templates which 
can be modified to fit a concrete problem. We will, 
for space reasons, not go into details about how 
these high-level constructs can be expressed in Gπ.  

Table 5: Gπ patterns overview 

Pattern Problem context 
Gπ-Function Need for an implementation 

of a function as known from 
functional programming 

Gπ-Conditional-
Loop 

Need for conditional loop e.g. 
do-while 

Gπ-If-Equals-Then-
Else 

Need for conditional control 
flow 

G-Higher-Order-
Function 

Need for higher order 
functions or subroutines. 

Gπ-Class-Object Need for an object oriented 
approach 

Gπ-Process-Group-
Handle 

Need for process 
translocation between process 

groups 

To demonstrate the usefulness of the Gπ-patterns 
we have used them to implement Gπ functionality 
on a representation of 7 bit binary numbers. All Gπ 
implementations have been tested via the simulator 
tool. We have implemented binary algebraic 
functionality where e.g. the implementation of 
binary addition makes use of the Gπ-Function, Gπ-
Conditional-Loop and Gπ-Conditional-Control-Flow 
patterns. Our Gπ implementation of binary 
multiplication makes among others use of the binary 
addition implementation via the Gπ-Higher-Order-
Function pattern.  

We have implemented linked list of binary 
numbers, where each list node is implemented as an 
instance of the Gπ-Class-Object pattern. The 
implementation of the linked list implements object 
functionality (methods) for traversing the list and for 
updating the value of a specific node and for adding 
new elements to the list. We have implemented 
higher-order linked list function which can apply a 
function to each element in the list.  

The implemented Gπ functions can be 
considered as the beginning of a reusable Gπ-API. 

 
 
 

FAULTS ANALYSIS IN DISTRIBUTED SYSTEMS - Quantitative Estimation of Reliability and Resource Requirements

49



 

5 SIMULATOR TOOL 

The simulator tool is written in Java. It has a 
graphical user interface, GUI, and a command line 
interface. The simulator has two main functions. It 
has an interface for studying the behaviour of a Gπ-
model; A Gπ-model can be loaded into the simulator 
and the user can study the behaviour of the model by 
observing structural changes in the model by 
applying one reduction rule at the time. The other 
function is that it can be used to quantitatively 
estimate reliability and descriptive statistics of 
resource requirements in time and space of a Gπ-
model. 

The simulator is an interpreter of the structural 
operational semantics of Gπ. It reduces a Gπ model 
one reduction rule at the time. After each reduction 
step it collects and updates quantitative properties of 
the Gπ model.  

We call one execution of the simulator algorithm 
on a Gπ-model for a simulation experiment. For 
each simulation experiment we collect quantitative 
properties. We can specify to the simulator (not 
shown here, please assist (Sellberg, 2008)) what a 
successful outcome is, so the simulator can decide 
whether a simulation experiment was a success or 
not (step number 07 in the simulator algorithm 
below). This is used to estimate reliability. The 
estimator part of the simulator tool will run a 
simulation experiment a specified number of times 
and collect quantitative properties and calculate 
descriptive statistics. Reliability is estimated as the 
fraction   of successful simulation experiments. 

Pseudo code for the simulator algorithm is given 
below where the symbol Γ symbolizes the Gπ-model 
to be executed. 

simulate( Γ)  
01: distribute (un-nest) all nested 

process groups in Γ 
02: randomly find matching process pair 

in Γ which can react 
03: if no match is found then stop else 

continue  
04: apply fault injection logic  
05: if faults were injected then goto 

step 01 else continue  
06: apply reaction for found matching 

process pair in Γ 
07: test if a functional test evaluated 

with success. If true then stop 
else goto step 01 

The fault injection logic and reaction rate logic is 
delegated to interfaces which can be implemented to 

fit specific failure and reaction rate scenarios. A Gπ 
model is given as ASCII text to the simulator. 

The purpose of Figure 2 and Figure 3 is to give 
the reader an impression of the estimator part of the 
simulators GUI.  

Figure 2 shows the Gπ-model of the CPU 
scavenging grid loaded from an ASCII file into the 
simulator GUI. We can edit the model (and save 
changes) via the black editor screen (Figure 2). 

 
Figure 2: Gπ-model loaded into the simulator tool. 

We can enter the number of simulation 
experiments we want to base our estimation results 
on and initiate our estimation process by pressing 
the button “run estimation”. Estimation results are 
presented as shown in Figure 3 and show the 
estimated statistics of reliability and resource 
requirements in time and space. The results have the 
form presented in Table 1.  

 
Figure 3: Result of executing a simulation. 

 

ICSOFT 2008 - International Conference on Software and Data Technologies

50



 

6 FAULT-TOLERANCE 

In (Sellberg, 2008) we sketch how we can use Gπ to 
model relevant and interesting fault and fault-
tolerance behaviour. We show how to model 
location failure, link failure and lost messages. We 
sketch how we can model the failure scenarios 
random failure, limited longevity and failures caused 
by attacks. We show how we can model hot task 
replication, passive task replication and voting based 
fault-tolerance (Tanenbaum, 2006). We apply the 
techniques to model and estimate quantitative 
properties of a CPU scavenging grid with hot task 
replication and passive task replication (the example 
presented in Section 2) using fault detection, timers, 
observer/watchdog, hearts-beats etc.  

The architecture (see Figure 1) of the system in 
Section 2 has the following basic and concurrent 
process group (for the user, the grid master and the 
two CPUs) structure in Gπ. 
[...]@type=user;      | 
[...]@type=gridMaster;| 
[...]@type=cpuA;      | 
[...]@type=cpuB; 

The dots, ... , represents the business logic 
specified in Section 2 including fault-tolerance logic.  

We here just give a flavour of how we have 
modelled fault-tolerance techniques in Gπ. The 
complete model of the CPU scavenging grid of 
Section 2 is in (Sellberg, 2008). We show how we 
have implemented fault detection (via watchdogs, 
heart-beats) and fault recover.  

Timers are crucial so first we will show how we 
can implement timers.  

*init?¤.((new c)( 
c!¤.c!¤.c!¤ |     
c?¤.c?¤.c?¤.timeout!¤.init!¤

)) |  
init!¤ 

The timer is a replication, because of the star *, 
and the timer is initiated by a reaction between init?¤ 
and init!¤. The actual timing process is constituted 
by the process  

c!¤.c!¤.c!¤ |  
c?¤.c?¤.c?¤.timeout!¤.init!¤.  

The timing process captures the passing of time 
via the reductions between c!¤ and c?¤. This will 
work because our use of reaction rates insures that 
each reduction takes a well defined amount of time. 
After three reductions of c!¤ and c?¤., we have the 
timeout event, timeout!¤.init!¤. When the timeout!¤ 

reacts then it reduces to init!¤ which will initiate a 
new timing process. 

The timer is used to implement fault detection by 
pushing “are you alive” signals. A process group 
under failure surveillance is equipped with a heart 
beat listening process, *areYouAlive?¤. Part of the 
fault detection logic of the watchdog process is as 
follows. 
*faultDetection?¤.(  

areYouAlive!¤.timeout?¤. 
faultDetection!¤  

+  
timeout?¤.failure!¤ )|  
faultDetection!¤ 

Notice that the body of the fault-detection 
process is a choice (due to the + symbol). I.e. it can 
either evaluate to 

areYouAlive!¤.timeout?¤. 
faultDetection!¤  

or to 
timeout?¤.failure!¤  

but not both. Also notice that the fault detection 
process is a replication because of the star symbol *. 
The fault detection process is initiated by the 
reaction between faultDetection?¤ and 
faultDetection!¤. 

If the,  
areYouAlive!¤.timeout?¤. 

faultDetection!¤  

process does not react with the heart beat 
listening process before the timeout event, then the 
failure observing process would evaluate to, 
failure!¤, which can be used to trigger fault 
recovery. If it does react then it will evaluate to 
timeout?¤.faultDetection!¤, which again on timeout 
will evaluate to faultDetection!¤ which will restart 
the fault detection process. 

Before we show the fault recovery process we 
need to show how we implement job distribution. 
The sketch of a volunteering CPU with a heart-beat 
listening process is.  
[*areYouAlive?¤|...]@type=cpuA;@pf=0.5; 

The three dots is symbolising non-fault detection 
related logic. The tag, @type=cpuA; is telling us that 
this process group is modelling a CpuA. The tag, 
@pf=0.5; is an instruction to the simulator that this 
process has a probability of failure of 0.5 and will be 
used by the fault injection logic. 

The event failure!¤ from the fault detection 
process presented previously can trigger fault 

FAULTS ANALYSIS IN DISTRIBUTED SYSTEMS - Quantitative Estimation of Reliability and Resource Requirements

51



 

recovery via a fault recovery process of the 
following form 
*failure?¤.( 
[*areYouAlive?¤ | ... ]@cpu=a;@pf=0.5;) 

Notice that the fault recovering process is a 
replication symbolized by the star symbol *. When 
the process above reacts with failure!¤ it will 
evaluate to [*areYouAlive?¤ | ... ]@cpu=a;@pf=0.5; 
which is our notion of job-distribution or job-
assignment to a computational resource. I.e. we have 
recovered our failed CpuA process by redistributing 
a new CpuA process.  

7 CONCLUSIONS 

We have presented a new unique process algebra 
and a simulator tool for analytic fault injection and 
for estimating descriptive statistics of quantifiable 
properties of reliability and resource requirements of 
a distributed system with complex behaviour 
hereunder complex fault-tolerance behaviour. The 
process algebra and tool have successfully been 
applied on a number of examples. 

Perspectives. The focus of the method is on analysis 
and design (before implementation) of new 
dependent distributed systems and could contribute 
to the emergence of more reliable distributed 
systems with predictable resource requirements. The 
method could also be used to model and optimise 
existing dependable systems. 

It is also possible that Gπ-calculus’ could be 
applied in the ongoing attempts to apply process 
algebras in describing the computational potential of 
biological processes by accounting for the seemingly 
unreliable computational environment of the living 
cell. 

Areas which apply cheap computational 
resources on large scale where failure is frequent 
could also potentially benefit from this method by 
analysing fault-tolerance behaviour which could 
compensate for the unreliability of the 
computational resources. 

Further Work. One way to introduce the Gπ-
calculus method to a wider audience which are not 
acquainted with process algebras could be to 
integrate Gπ-calculus with an existing accepted and 
widely used method such as UML (Fowler, 2003). It 
seems useful and trivial to extend the tools to present 
the executions of Gπ-calculus expressions as 
sequence diagrams since we just have to draw a 
UML object box for a process group and then 

present the Gπ-reactions between the components 
(process groups) by drawing directed action arrows 
between the time lines of the UML object boxes. If 
we model UML components as process groups then 
Gπ-calculus models could formalise the connection 
between UML component diagrams and UML 
sequence diagrams a formalisation which does not 
exists today.  

ACKNOWLEDGEMENTS 

This work is partially funded by ARTIST2 (IST- 
004527), MoDES (Danish Research Council 2106-
05-0022) and the Danish National Advanced 
Technology Foundation under project DaNES. 

REFERENCES 

Amadio, Roberto M., 1997. An asynchronous model of 
locality, failure, and process mobility. In D. Garlan 
and D. LeM´etayer, editors, Proceedings of the 2nd 
International Conference on Coordination Languages 
and Models (COORDINATION’97), volume 1282, 
pages 374–391, Berlin, Germany. Springer-Verlag. 

Fowler, Martin, 2003. UML Distilled: A Brief Guide to the 
Standard Object Modeling Language. 3rd Edition. The 
Addison-Wesley Object Technology Series. 

Francalanza, Adrian and Hennessy, Matthew, 2006. A 
theory for observational fault-tolerance. Lecture 
Notes in Computer Science (including subseries 
Lecture Notes in Artificial Intelligence and Lecture 
Notes in Bioinformatics). 3921 LNCS. 

Milner, Robin, 1999. Communicating and Mobile 
Systems: the Pi-Calculus, Cambridge Univ. Press. 

Plotkin, G, 1981. A structural approach to operational 
semantics. Tech. Rep. DAIMI FN-19, Computer 
Science Dept., Aarhus University, Aarhus, Denmark. 

Priami, Corrado, 1995. Stochastic pi-Calculus. Comput. J. 
38(7): 578-589. 

Sellberg, Christian, 2008. Model and Tool for Fault 
Analysis in Distributed Systems. Master Thesis. 
Informatics and Mathematical Modelling, Technical 
University of Denmark, {DTU}.  

Tanenbaum, Andrew S., Maarten van Steen, 2006. 
Distributed Systems: Principles and Paradigms. 
Prentice Hall; 2 edition. 

ICSOFT 2008 - International Conference on Software and Data Technologies

52


