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Abstract: This paper presents a new methodology to improve the quality of rule sets. We performed a series of data
mining experiments on completely specified data sets. In these experiments we removed some specified at-
tribute values, or, in different words, replaced such specified values by symbols of missing attribute values,
and used these data for rule induction while original, complete data sets were used for testing. In our exper-
iments we used the MLEM2 rule induction algorithm of the LERS data mining system, based on rough sets.
Our approach to missing attribute values was based on rough set theory as well. Results of our experiments
show that for some data sets and some interpretation of missing attribute values, the error rate was smaller
than for the original, complete data sets. Thus, rule sets induced from some data sets may be improved by
increasing incompleteness of data sets. It appears that by removing some attribute values, the rule induction
system, forced to induce rules from remaining information, may induce better rule sets.

1 INTRODUCTION

Recently data mining experiments with data sets
affected by missing attribute values were reported
(Grzymala-Busse and Grzymala-Busse, 2007). In
these experiments we conducted a series of experi-
ments on data sets that were originally complete, i.e.,
all attribute values were specified. First, for each
data set, a portion of 10% of the total number of at-
tribute values was replaced by special symbols denot-
ing missing attribute values, or, in different words,
this portion was replaced by missing attribute values.
Then, with an increment of 10%, among remaining
specified attribute values, a new portion of 10% was
replaced by symbols of missing attribute values. This
process was continued, with an increment of 10%, un-
til all specified attribute values were replaced by sym-
bols of missing attribute values. Then, for all data
sets, error rates were computed using ten-fold cross
validation. Obviously, during ten-fold cross valida-
tion experiments both training data and testing data,
with the exception of original, complete data sets,
were incomplete. It was observed that for some data

sets an error rate was surprisingly stable, i.e., was not
increasing as expected with an increase of the percent-
age of missing attribute values.

Therefore we decided to perform additional but
different experiments of ten-fold cross validation in
which training data sets are taken from incomplete
data sets while testing data sets were taken from the
original, complete data sets.

In (Grzymala-Busse and Grzymala-Busse, 2007)
we discussed three types of missing attribute val-
ues: lost values(the values that were recorded but
currently are unavailable),attribute-concept values
(these missing attribute values may be replaced by
any attribute value limited to the same concept),
and”do not care” conditions(the original values were
irrelevant). Aconcept(class) is a set of all cases clas-
sified (or diagnosed) the same way.

Two special data sets with missing attribute values
were extensively studied: in the first case, all miss-
ing attribute values arelost, in the second case, all
missing attribute values are”do not care” conditions.
Incomplete decision tables in which all attribute val-
ues are lost, from the viewpoint of rough set theory,

241
W. Grzymala-Busse J. and J. Grzymala-Busse W. (2008).
IMPROVING QUALITY OF RULE SETS BY INCREASING INCOMPLETENESS OF DATA SETS - A Rough Set Approach.
In Proceedings of the Third International Conference on Software and Data Technologies - PL/DPS/KE, pages 241-248
DOI: 10.5220/0001881902410248
Copyright c© SciTePress



were studied for the first time in (Grzymala-Busse
and Wang, 1997), where two algorithms for rule in-
duction, modified to handle lost attribute values, were
presented. This approach was studied later, e.g., in
(Stefanowski and Tsoukias, 1999; Stefanowski and
Tsoukias, 2001), where the indiscernibility relation
was generalized to describe such incomplete decision
tables.

In attribute-concept valuesinterpretation of a
missing attribute value, the missing attribute value
may be replaced by any value of the attribute domain
restricted to the concept to which the case with a miss-
ing attribute value belongs. For example, if for a pa-
tient the value of an attributeTemperatureis missing,
this patient is sick withflu, and all remaining patients
sick with flu have valueshigh or very high for Tem-
peraturewhen using the interpretation of the miss-
ing attribute value as theattribute-concept value, we
will replace the missing attribute value withhighand
very high. This approach was studied in (Grzymala-
Busse and Hu, 2000; Grzymala-Busse, 2004).

On the other hand, incomplete decision tables in
which all missing attribute values are”do not care”
conditions, from the view point of rough set theory,
were studied for the first time in (Grzymala-Busse,
1991), where a method for rule induction was in-
troduced in which each missing attribute value was
replaced by all values from the domain of the at-
tribute (Grzymala-Busse, 1991). Such incomplete
decision tables, with all missing attribute values be-
ing ”do not care conditions”, were broadly studied in
(Kryszkiewicz, 1995; Kryszkiewicz, 1999), including
extending the idea of the indiscernibility relation to
describe such incomplete decision tables.

In this paper we report results of different exper-
iments. In our new experiments, for every complete
data set, we created a series of incomplete data sets by
starting with a portion of 5% of the total number of at-
tribute values. Then this portion of missing attribute
values was incrementally enlarged, with an increment
equal to 5% of the total number of missing attribute
values.

Our new experiments started from creation, for
every complete data set, a basic series of incremen-
tally larger portions of missing attribute values with
all missing attribute values being equal to ”?” (lost
values). For every basic series of data sets with miss-
ing attribute values, new series of data sets with miss-
ing attribute values were obtained by replacing all
symbols of ”?” by symbols of ”−” and ”*”, denoting
different types of missing attribute values (attribute-
concept values and ”do not care” conditions). Addi-
tionally, the same basic series of data sets were used
to induce certain and possible rule sets.

Note that our basic assumption was that for every
case at least one attribute value should be specified.
Thus, the process of enlarging the portion of miss-
ing attribute values was terminated when, during three
different attempts to replace specified attribute values
by missing ones, a case with all missing attribute val-
ues was generated.

In general, incomplete decision tables are de-
scribed bycharacteristic relations, in a similar way as
complete decision tables are described by indiscerni-
bility relations (Grzymala-Busse, 2003).

In rough set theory, one of the basic notions is the
idea of lower and upper approximations. For com-
plete decision tables, once the indiscernibility relation
is fixed and the concept (a set of cases) is given, the
lower and upper approximations are unique.

For incomplete decision tables, there are three im-
portant and different possibilities to define lower and
upper approximations, called singleton, subset, and
concept approximations (Grzymala-Busse, 2003).
Singleton lower and upper approximations were stud-
ied, e.g., in (Kryszkiewicz, 1995; Kryszkiewicz,
1999; Stefanowski and Tsoukias, 1999; Stefanowski
and Tsoukias, 2001). Note that similar definitions of
lower and upper approximations, though not for in-
complete decision tables, were studied in (Lin, 1992;
Slowinski and Vanderpooten, 2000; Yao, 1998). Fur-
ther definitions of approximations were discussed in
(Grzymala-Busse and Rzasa, 2006; Grzymala-Busse
and Rzasa, 2007). Additionally, note that some
other rough-set approaches to missing attribute values
were presented in (Grzymala-Busse, 1991; Grzymala-
Busse and Hu, 2000; Wang, 2002) as well.

2 LOWER AND UPPER
APPROXIMATIONS

We assume that the input data sets are presented in
the form of adecision table. Rows of the decision
table representcases, while columns are labeled by
variables. The set of all cases will be denoted byU .
Independent variables are calledattributesand a de-
pendent variable is called adecisionand is denoted
by d. The set of all attributes will be denoted byA.
Any decision table defines a functionρ that maps the
direct product ofU andA into the set of all values. A
decision table with an incompletely specified function
ρ will be calledincomplete.

For the rest of the paper we will assume that all de-
cision values are specified, i.e., they are not missing.
Also, we will assume that lost values will be denoted
by ”?”, attribute-concept values by ”−”, and ”do not
care” conditions by ”*”. Additionally, we will assume
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that for each case at least one attribute value is speci-
fied.

For completely specified decision tables, letB de-
note a nonempty subset of the setA. An indiscerni-
bility relation R associated withB is defined for all
x,y ∈ U by x R y if and only if for bothx andy the
values for all variables fromB are identical (Pawlak,
1982; Pawlak, 1991). An equivalence class ofR con-
tainingx is denoted[x]B. Any finite union of elemen-
tary sets ofP is called a B-definable set. Let X be
any subset of the setU . The setX is called aconcept
and is usually defined as the set of all cases defined
by a specific value of the decision. In general,X is
not aB-definable set. However, setX may be approx-
imated by twoB-definable sets, the first one is called
a B-lower approximationof X, denoted byBX and
defined as follows

{x∈U | [x]B ⊆ X}.

The second set is called aB-upper approximationof
X, denoted byBX and defined as follows

{x∈U | [x]B∩X 6= /0},

(Pawlak, 1982; Pawlak, 1991). The above shown
way of computing lower and upper approximations,
by constructing these approximations from singletons
x, will be called thefirst method. TheB-lower approx-
imation ofX is the greatestB-definable set, contained
in X. TheB-upper approximation ofX is the smallest
B-definable set containingX.

As it was observed in (Pawlak, 1991), for com-
plete decision tables we may use asecond methodto
define theB-lower approximation ofX, by the follow-
ing formula

∪{[x]B | x∈U, [x]B ⊆ X},

and theB-upper approximation ofx may be defined,
using the second method, by

∪{[x]B | x∈U, [x]B∩X 6= /0}.

Obviously, for complete decision tables both methods
result in the same respective sets, i.e., corresponding
lower approximations are identical, and so are upper
approximations.

Let a be an attribute, i.e.,a ∈ A and letv be a
value ofa for some case. For complete decision ta-
bles if t = (a,v) is an attribute-value pair then ablock
of t, denoted[t], is a set of all cases fromU that for
attributea have valuev. For incomplete decision ta-
bles the definition of a block of an attribute-value pair
must be modified in the following way:

• If for an attributea there exists a casex such
that ρ(x,a) =?, i.e., the corresponding value is
lost, then the casex should not be included in any
blocks[(a,v)] for all valuesv of attributea,

• If for an attributea there exists a casex such that
the corresponding value is an attribute-concept
value, i.e.,ρ(x,a) = −, then the corresponding
casex should be included in blocks[(a,v)] for all
specified valuesv∈V(x,a) of attributea, where

V(x,a) = {ρ(y,a) | ρ(y,a) is specified,

y∈U, ρ(y,d) = ρ(x,d)}.

• If for an attributea there exists a casex such that
the corresponding value is a ”do not care” condi-
tion, i.e., ρ(x,a) = ∗, then the casex should be
included in blocks[(a,v)] for all specified values
v of attributea,

For a casex∈U thecharacteristic set KB(x) is defined
as the intersection of the setsK(x,a), for all a ∈ B,
where the setK(x,a) is defined in the following way:

• If ρ(x,a) is specified, thenK(x,a) is the block
[(a,ρ(x,a)] of attributea and its valueρ(x,a),

• If ρ(x,a) =? orρ(x,a) = ∗ then the setK(x,a) =
U ,

• If ρ(x,a) = −, then the corresponding setK(x,a)
is equal to the union of all blocks of attribute-
value pairs(a,v), wherev ∈ V(x,a) if V(x,a) is
nonempty. IfV(x,a) is empty,K(x,a) = U .

Figure 1: Bankruptcy data set.

For incomplete decision tables lower and upper
approximations may be defined in a few different
ways. In this paper we suggestconceptdefinitions
of lower and upper approximations for incomplete
decision tables, following (Grzymala-Busse, 2003).
Again, let X be a concept, letB be a subset of the
set A of all attributes, and letKB(x) be the charac-
teristic set of the incomplete decision table, where
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Figure 2: Breast cancer data set.

Figure 3: Hepatitis data set.

x∈U . The first possibility is to use the first Pawlak’s
method to define lower and upper approximations, us-
ing characteristic sets instead of equivalence classes
of the indiscernibility relation. This idea was dis-
cussed in (Kryszkiewicz, 1995; Kryszkiewicz, 1999;
Stefanowski and Tsoukias, 1999; Stefanowski and
Tsoukias, 2001). Such approximations are calledsin-
gleton.

The second method of defining lower and up-
per approximations for complete decision tables uses
another idea: lower and upper approximations are
unions of characteristic sets, i.e., we use the second
Pawlak’s method. Although there are two ways to do
this, we will quote only on of them. Aconcept B-

lower approximation ofX is defined as follows:

BX = ∪{KB(x) | x∈ X,KB(x) ⊆ X}.

A concept B-upper approximation of the conceptX is
defined as follows:

BX = ∪{KB(x) | x∈ X,KB(x)∩X 6= /0} =

= ∪{KB(x) | x∈ X}.

Figure 4: Image segmentation data set.

Figure 5: Iris data set.
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Figure 6: Lymphography data set.

Figure 7: Wine data set.

3 LERS AND LEM2

The data system LERS (Learning from Examples
based on Rough Sets) (Grzymala-Busse, 1997) in-
duces rules from incomplete data, i.e., data with miss-
ing attribute values, from data with numerical at-
tributes, and from inconsistent data, i.e., data with
conflicting cases. Two cases are conflicting when they
are characterized by the same values of all attributes,
but they belong to different concepts (classes). LERS
uses rough set theory to compute lower and upper ap-
proximations for concepts involved in conflicts with
other concepts.

Rules induced from the lower approximation of

Table 1: Data sets used for experiments.

Data set Number of
cases attributes concepts

Bankruptcy 66 5 2
Breast cancer 277 9 2
Hepatitis 155 19 2
Image segmentation 210 19 7
Iris 150 4 3
Lymphography 148 18 4
Wine 178 13 3

Table 2: Error rate for thebreast cancer.data set.

Percentage of Rules
Lost values certain possible

0 28.52 28.88
5 29.6 29.6
10 28.88 28.52
15 29.6 29.24
20 27.8 29.24
25 28.52 29.6
30 28.88 27. 8
35 27.44 27.8
40 29.24 28.52
45 29.24 28.52

the conceptcertainlydescribe the concept, hence such
rules are calledcertain (Grzymala-Busse, 1988). On
the other hand, rules induced from the upper approx-
imation of the concept describe the conceptpossibly,
so these rules are calledpossible(Grzymala-Busse,
1988). For rule induction LERS uses three algo-
rithms: LEM1, LEM2, and MLEM2.

3.1 LEM2

The LEM2 algorithm of LERS is most frequently
used for rule induction since—in most cases—it gives
better results than LEM1. LEM2 explores the search
space of attribute-value pairs. Its input data set is a
lower or upper approximation of a concept, so its in-
put data set is always consistent. In general, LEM2
computes a local covering and then converts it into
a rule set. We will quote a few definitions to de-
scribe the LEM2 algorithm (Chan and Grzymala-
Busse, 1991; Grzymala-Busse, 2002).

The LEM2 algorithm is based on an idea of an
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Table 3: Error rate for thehepatitis.data set.

Percentage of Rules
Lost values certain possible

0 17.42 17.42
5 18.06 18.06
10 15.48 15.48
15 20.65 16.77
20 18.06 18.06
25 19.35 19.35
30 19.35 19.35
35 17.42 17.42
40 18.71 18.71
45 18.71 18.71
50 18.71 20.0
55 17.42 17.42
60 18.06 18.71

attribute-value pair block. LetX be a nonempty lower
or upper approximation of a concept represented by a
decision-value pair(d,w). SetX dependson a setT
of attribute-value pairst = (a,v) if and only if

/0 6= [T] =
⋂

t∈T

[t] ⊆ X.

Set T is a minimal complexof X if and only if
X depends onT and no proper subsetT ′ of T exists
such thatX depends onT ′. Let T be a nonempty
collection of nonempty sets of attribute-value pairs.
Then T is a local coveringof X if and only if the
following conditions are satisfied:

• each memberT of T is a minimal complex ofX,

•
⋃

t∈T [T] = X, and

• T is minimal, i.e.,T has the smallest possible
number of members.

MLEM2, a modified version of LEM2, processes
numerical attributes differently than symbolic at-
tributes. For numerical attributes MLEM2 sorts all
values of a numerical attribute. Then it computes cut-
points as averages for any two consecutive values of
the sorted list. For each cutpointq MLEM2 creates
two blocks, the first block contains all cases for which
values of the numerical attribute are smaller thanq,
the second block contains remaining cases, i.e., all
cases for which values of the numerical attribute are
larger thanq. The search space of MLEM2 is the
set of all blocks computed this way, together with
blocks defined by symbolic attributes. Starting from

Table 4: Error rate for theiris. data set.

Percentage of Rules
Lost values certain possible

0 4.67 4.67
5 4.0 4.67
10 6.0 5.33
15 6.0 6.0
20 6.0 4.67
25 6.67 7.33
30 6.67 7.33
35 6.67 6.67

that point, rule induction in MLEM2 is conducted the
same way as in LEM2.

3.2 LERS Classification System

Rule sets, induced from data sets, are used mostly to
classify new, unseen cases. A classification system
used in LERS is a modification of the well-known
bucket brigade algorithm (Booker et al., 1990; Hol-
land et al., 1986).

The decision to which concept a case belongs to
is made on the basis of three factors:strength, speci-
ficity, andsupport. These factors are defined as foll:
strengthis the total number of cases correctly classi-
fied by the rule during training.Specificityis the total
number of attribute-value pairs on the left-hand side
of the rule. The matching rules with a larger num-
ber of attribute-value pairs are considered more spe-
cific. The third factor,support, is defined as the sum
of products of strength and specificity for all match-
ing rules indicating the same concept. The conceptC
for which the support, i.e., the following expression

∑
matching rules r describing C

Strength(r)∗Specificity(r)

is the largest is the winner and the case is classified as
being a member ofC.

In the classification system of LERS, if complete
matching is impossible, partial matching is applied,
for details see (Grzymala-Busse, 1997).

4 EXPERIMENTS

In our experiments we used seven typical data sets,
see Table 1. All of these data sets are available from
the UCI ML Repository, with the exception of the
bankruptcy data set.
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Table 5: Error rate for thelymphography.data set.

Percentage of Rules
Lost values certain possible

0 18.92 18.92
5 14.19 14.19
10 18.92 18.92
15 18.92 18.92
20 21.62 21.62
25 18.92 17.57
30 17.57 16.22
35 20.27 20.95
40 22.30 22.3
45 21.62 21.62
50 22.30 22.30
55 19.59 19.59
60 21.62 22.97

During experiments of ten-fold cross validation,
training data sets were affected by an incrementally
larger portion of missing attribute values, while test-
ing data sets were always the original, complete data
sets.

The MLEM2 algorithm was used for rule induc-
tion, while concept lower and upper approximations
were used for rule induction of certain and possible
rules, respectively.

For any ten experiments of ten-fold cross valida-
tion all ten parts for both data sets: complete and in-
complete were pairwise equal (if not taking missing
attribute values into account), i.e., any such two parts,
complete and incomplete, would be equal if we will
put back the appropriate specified attribute values into
the incomplete part.

Results of experiments are presented in Figures 1-
7. For some data sets (bankruptcy and image) the er-
ror rate increases rather consistently with our expec-
tations: with an increase in the percentage of missing
attribute values, the error rate increases as well. On
the other hand, it is quite clear that for some data sets
(breast, hepatitis, iris, lymphography and wine) the
error rate is approximately stable with an increase of
the percentage of missing attribute values of the type
lost, while for some data sets (breast and hepatitis)
the error rate is stable for all three types of missing
attribute values, except the largest percentage of miss-
ing attribute values. Note also that there is not a big
difference between certain and possible rule sets with
the exception of certain rule sets and ”do not care”
conditions, where the error rate is large due to empty

Table 6: Error rate for thewine.data set.

Percentage of Rules
Lost values certain possible

0 6.18 6.18
5 5.06 4.49
10 10.67 8.99
15 8.99 6.74
20 7.87 7.87
25 6.74 6.18
30 7.30 7.30
35 6.18 5.62
40 5.62 6.74
45 8.99 7.30
50 7.87 7.30
55 9.55 8.99
60 8.43 7.30
65 7.87 10.11

lower approximations for a large percentage of the
”do not care” conditions.

Additionally, exact error rates are presented for
five data sets: (breast, hepatitis, iris, lymphography
and wine) for missing attribute values of the typelost.
Most surprisingly, from Tables 2-6 it is clear that for
some percentage of lost values the error rate is smaller
than for complete data sets (0% of lost values).

5 CONCLUSIONS

As follows from our experiments, rule sets induced
from some data sets may be improved by replacing
specified attribute values by missing attribute values
of the typelost. Thus, in the process of data mining it
makes sense to try to replace some portion of attribute
values by missing attribute values of the typelost and
check whether the error rate decreases. Replacing a
portion of attribute values by missing attribute val-
ues of the typelost corresponds to hiding from the
rule induction system some information. It appears
that for some data sets the rule induction system, re-
turning new rule sets, occasionally finds better regu-
larities, hidden in the remaining information. Addi-
tionally, the fact that the error rate does not increase
with replacement of larger and larger portions of spec-
ified attribute values by missing ones testifies that the
rough-set approach to missing attribute values is very
good.
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