
THREATS TO THE TRUST MODEL OF MOBILE AGENT
PLATFORMS

Michail Fragkakis and Nikolaos Alexandris
Department of Informatics, University of Piraeus, 80 Karaoli & Dimitriou St, 185 34, Greece

Keywords: Mobile Agents, Security, Threat Scenarios, Trust model.

Abstract: This paper intends to present the ways in which mobile agent architectures address important threats
concerning their trust model, by comparing the behaviour of four major mobile agent platforms. The
conclusions drawn are then used to point out deficiencies of current technology and highlight issues that
need to be addressed by future research.

1 INTRODUCTION

Agent systems are a special category of software,
which is designed to carry out a specific task on
behalf of an entity. A mobile agent should be able to
travel between different platforms, possibly carrying
along all its data. As a research field, they are
closely connected to artificial intelligence and
distributed computing (Rempt 02, Vlassis 07). As a
result, Multi-Agent Systems (MAS) bear the same
security issues met at any mobile code systems
application. Despite the employment of various
security features by most systems, there is lack of a
generally adopted security standard that covers all
their operation aspects (Fragkakis 07 a, b, Roth 04).

This paper continues our previous research on
mobile agent trust and security models (Fragkakis 07
a, b). In our present work we will focus on the trust
model of the MASs previously examined. We will
examine the behaviour of each system on specific
threats involving their trust assumptions.
Furthermore we will attempt to determine the
suitability of each trust model for open environment
operations. In contrast to our previous research, we
will use a different method of analysis on the same
set of agent systems. This way we will be able to
support the validity of our past conclusions on
security deficiencies. This would strengthen our
position that there is a general lack of
standardization on trust and security models. Finally,
based on our findings, we will attempt to point out
certain areas, where security technology may be
insufficient and we will set goals for future research.

2 THE MOBILE AGENT
SECURITY CONCEPT

Multi-agent systems involve communication
between agents, as well as a certain degree of
mobility. For certain tasks it may be vital that an
agent is moved, along with its computations, across
a wide area network. As a consequence, agents must
be protected against malicious platforms, aiming to
tamper with their operation or (possibly
confidential) data. On the other hand, platforms
providing agent hosting services must also be
protected against malicious agents. Finally, it is
possible for an agent to launch an attack against
another agent in the same, or even, in a different
platform.

Agent developers employ a number of security
mechanisms in order to address issues, which
include authentication, confidentiality, integrity and
monitoring (Ameller 04, Rempt 02, Posland 02,
Zhang 01). In addition to these, the fact that an agent
may have to operate in a changing environment
introduces the concept of trust. Trust resembles the
social human behaviour for evaluating risk, driven
by the need for cooperation through communication
and interaction for the accomplishment of a specific
purpose (Posland 02, English 02, Zhang 01). It
involves assumptions about the security or even
malice of several entities comprising a MAS.
Although making trust assumptions is necessary,
sometimes it may lead to mistakenly considering a
party to be secure or legitimate, when it actually is
not. In this case, using the latest and most advanced
security mechanisms is pointless.

175
Fragkakis M. and Alexandris N. (2008).
THREATS TO THE TRUST MODEL OF MOBILE AGENT PLATFORMS.
In Proceedings of the Third International Conference on Software and Data Technologies - PL/DPS/KE, pages 175-180
DOI: 10.5220/0001884301750180
Copyright c© SciTePress

Although agent technology can be very useful,
their adoption is considered to be slow (Roth 04).
The fact that there is autonomous and intelligent
software running on a foreign host without a
standard security model may restrict their
applications. As a result, current agent systems are
usually implemented within a limited network,
which is considered to be secure.

3 THREAT SCENARIOS

We will attempt to investigate the behaviour of
mobile agent systems on threats concerning their
trust model. Our purpose does not include generic
Information Security issues, which also happen to
concern mobile agents, like communications
security, or access control violations. Rather, we will
only focus on agent-specific threat scenarios, more
specifically on scenarios of trust model
insufficiency. As such, we will attempt to examine
the behaviour of the agent systems in the following
scenarios:

 Malicious behaviour of an authenticated/
trusted agent. The trust level attributed to an
agent usually derives from the identity of its
owner (Fragkakis 07 a, b). However,
belonging to a legitimate user, does not
prevent an agent from exhibiting malicious
behaviour. This type of attack may be realised
either intentionally by the so far trusted user
or by a third party committing identity theft of
the trusted user. Whichever the cause of this
may be, we would like to investigate the
response of the agent system, as well as the
possible consequences on its operation.

 The threat of an agent platform being, or having
become malicious. An execution platform is
usually by default considered to be trusted by
the agent (Fragkakis 07 a, b). However, it is
possible for a platform to launch an attack on
the executing agents. This can happen either
because the integrity of initially legitimate
platform has been compromised, or because
the platform was malicious in the first place.
We would like to determine the extent to
which the trust and security models of the
MASs under review are capable of addressing
this kind of threat and assess possible
consequences.

 Agent operation in an open environment.
Although this may not be considered to be
specific threat, we feel that it is important to
examine the efficiency of the trust model for

operation within environments, where there is
no common security administration, like the
Internet. We would like to determine the
degree to which this kind of operation is
supported.

4 MOBILE AGENTS
BEHAVIOUR

Using the proposed threat scenarios we will attempt
to determine the adequacy of the trust models of four
mobile agent platforms: Grasshopper, Cougaar,
Aglets and Havana. These systems were selected
because they have been developed taking into
account the security needs of mobile agent
technology, which becomes apparent from the fact
that they employ a wide range of security features
(Fragkakis 07 a, b).

In particular, Grasshopper and Aglets are general
purpose platforms whose trust and security models
have drawn considerable attention in the past
(Altman 01, Fischmeister 01, Giang 02, Baumer 99,
Kadhi 03, Vigna 02). Cougaar is a special purpose
agent system, initially funded by DARPA, which
was designed for the high risk environment of
warfare conditions. Finally, Havana is a special
purpose shopping agent system designed to provide
a totally trusted environment ruled by a business
contract.

Another reason for which the particular systems
were selected, is because they are diverse enough to
represent different types of applications of mobile
agent technology. Furthermore, they are among the
MAS projects whose internal operation and security
mechanisms are sufficiently documented.

In the following sections, we will examine the
behaviour of the four MAS systems in the afore-
mentioned threats.

4.1 Grasshopper

The Grasshopper agent system is developed by
GMD FOKUS, distributed by IKV++ and is
intended for e-commerce applications, information
retrieval, telecommunication services and mobile
computing.

Internal security relies on mechanisms provided
by the Java Virtual Machine (JVM) (Giang 02). It
aims to protect the platform and its resources from
malicious agents, as well as to provide protection at
agent-to-agent interactions. Grasshopper agents
inherit their owner’s access rights. As such, if a user

ICSOFT 2008 - International Conference on Software and Data Technologies

176

is trusted, their agents are also considered to be
trusted (Fischmeister 01, Giang 02, Altman 01). In
the case of a trusted agent behaving maliciously
Grasshopper relies on the security features of the
JVM. Although this may protect to a degree other
agents running on the same platform, the platform
itself is exposed. The malicious agent, having
already been authenticated, has been granted access
to system resources. Depending on its programming,
an agent may try to compromise the integrity of the
platform, access sensitive data or strain system
resources.

On the other hand the JVM is not designed to
protect an agent from a malicious platform. In this
case the integrity of the agent and its data can be
easily compromised and even manipulated, since
Grasshopper’s security model doesn’t address this
type of threat (Fischmeister 01, Giang 02).

Grasshopper defines a domain (Region) within
which agents operate (Giang 02, Baumer 99). The
security level in all platforms is globally defined by
the Region Registry in a centralised way. Despite the
fact that a Grasshopper Region is trusted by entities
within its boundaries, it cannot be regarded as an
open environment in any case. This is apparent, as
operation among foreign Regions is practically not
supported, restricting its efficiency on open
environments.

As far as the overall security level provided,
successful attacks have been achieved against the
Grasshopper MAS (Fischmeister 01). These involve
trusted code base attacks, graphic user interface
attacks, system properties attacks and policy system
attacks, which make use of trusted Java classes and
incomplete or unsecured methods.

4.2 Cougaar

Cognitive Agent Architecture (Cougaar) was
developed by Cougaar Software Inc as part of the
DARPA ALP and UltraLog programs. It is designed
to meet the high security, robustness and scalability
standards needed in times of war (Feiertag 04a).
Cougaar, as well, is based on Java.

The dominant characteristic of Cougaar is its
Security Adaptive Engine. This engine initially
identifies the important assets of each application. It
then creates scenarios of potential attacks and their
purpose and identifies vulnerabilities of the
applications. Finally, it produces a list of suitable
countermeasures and their cost and enforces a set of
countermeasures, which balance the level of security
with the total cost. The Security Adaptive Engine is
considered to be necessary, because enforcing the

maximum level of security on all applications has a
serious impact on the performance of the platform
(Cougaar 04, Feiertag 04b).

Depending on the type of application built on top
of Cougaar, security features may be enabled or not.
The trust model is determined by the authentication
requirements set by each application. In general, an
authenticated agent is considered to be trusted and
the platform is considered to be trusted by the
agents. Cougaar includes a Monitor and Response
framework, which collects and analyses data from
various entities, in order to detect possible attacks
and dynamically adjust the level of security (Rosset
04).

As a result of this approach, the Cougaar hosting
platform is protected from malicious agents by the
Java Sandbox, as well as this intrusion detection
mechanism. Depending on the security policy set
and the behaviour of the agent, measures can be
taken to ensure the integrity of the platform
(Feiertag 04b).

As for the threat of a malicious platform,
Cougaar makes no specific provision. Most security
features address agent based threats or external
threats. However, features like mutual
authentication, as well as operation in the closed
environment of military applications, reduce the
likelihood of the specific risk.

As a military application, Cougaar features
centralized administration in a domain (Society)
through the Society Authority, which is responsible
for adjusting the security policy in each server
(Node). As a result the overall level of security
increases, since agent operations happen in a
controlled environment. However, in a similar
manner to the case of Grasshopper, the trust model
is unsuitable for open environment applications.

4.3 Aglets

IBM Aglets Workbench was developed initially at
the IBM Tokyo Research Laboratory (Ferrari 04),
and currently is an open source project. It is a
general-purpose mobile agent platform designed to
provide an easy programming model, reliable
communications and adequate security features. It is
intended for use over the Internet and it is
implemented in Java (Ferrari 04, Oshima 98).

Aglets attempts to ensure platform integrity from
malicious agents in two ways: the JVM native
mechanisms, as well as an intrusion detection tool.
This tool relies on audit information analysis to
ensure platform integrity (Vigna 02, Ferrari 04,
Fischmeister 01). The use of the intrusion detection

THREATS TO THE TRUST MODEL OF MOBILE AGENT PLATFORMS

177

mechanism mitigates the insufficiency of the JVM
standard mechanisms against attacks by
authenticated/trusted agents.

In Aglets all agent system components within a
domain are considered to be trusted and use a shared
secret key for authentication and communications
integrity (Fischmeister 01, Karjoth 97). Bearing this
common key, the platform is de facto considered to
be trusted by the agent, irrespective of the possibility
of being malicious. As a self-protection mechanism,
each agent employs a proxy, which isolates the agent
itself from the other entities in the system. This
security feature, although useful for interactions
between agents, may not be effective in the case of a
malicious platform, since the proxy itself runs on the
platform.

The Aglets MAS is designed for use over the
Internet as a medium, but this should not be
mistaken for operation over an open environment. In
fact, Aglets entities operate only within a well
defined Domain. In particular, they share the same
Domain-wide security policy and the afore-
mentioned secret key, both issued by the central
Domain Authority. This common security
administration, as well as the existence of a single
shared key, imply that Aglets is oriented for
operation among trusted entities, sharing some type
of common background. As such, operation on an
open environment seems to be outside of its scope.

4.4 Havana

Havana is a mobile agent system developed by the
University of Guelph, Canada. It aims to provide the
execution platform, as well as a business model for
integrating mobile agent technology to existing web
servers (Mahmoud 04, 05, 06). Havana proposes a
closed architecture where all entities are bound to
each other with a profitable business contract
(Mahmoud 06). The agents are in fact shopping
agents, which are introduced to the world through a
Gateway. Their migration takes place between the
Gateway and the Business Servers of various online
retailers.

A dominant concept in Havana is the trust
model. Any malicious behaviour during interaction
results in the breaking of the business contract. As
Havana is based on Java, the platform is protected
by malicious or malfunctioning agents by the Java
Security Manager, without implementing any
additional mechanisms. However, the real protection
Havana offers is the business contract between the
entities. Consequently, a malicious agent may

compromise the platform integrity, but this will have
direct impact on its owner.

The trust model of Havana considers an
authenticated platform to be trusted. Of course, it is
possible for a previously legitimate platform to
become malicious. In this case, it is technically
possible to compromise an agent’s integrity, and
even manipulate its shopping activity. However,
Havana offers strong non-repudiation services. As
soon as an agent completes its operations on a
server, it transmits the results back to the Gateway.
This is done to detect any alterations from future
hosts, which would again result in the breaking of
the contract. Again, in this threat the true protection
comes from the real world consequences on the
entity that broke the business contract.

Havana is suitable for operations across open
networks, with the various entities involved having
independent security administration (Mahmoud 04,
06). However, the Gateway is responsible for the
registration and authorization of shopping users,
agents and online stores, allowing their interaction.
Therefore, it can be considered to be a central
security enforcer which renders the Havana world a
closed environment. Accordingly, the Havana world
is considered to be trusted, creating in this way a
beneficial relationship where no unauthorized entity
may enter.

5 COMPARISON RESULTS

Having reviewed the behaviour of the trust models
of Grasshopper, Cougaar, Aglets and Havana MASs,
we will proceed to their comparison. Since all
systems examined are based on Java, they display a
number of similarities on their security features.
However, our comparison will focus on the
behaviour of the systems in the threat scenarios
listed in Section 3. A summary of the comparison is
shown in Table 1.

As far as the threat of a malicious agent is
concerned, all systems make use of the Java
Sandbox, which is designed for untrusted code
execution (Giang 02). The isolated execution
environment it provides can protect the platform or
other agents from establishing direct contact with the
malicious entity - at least to some degree. However,
a trusted agent exhibiting malicious behaviour poses
a serious threat, since it is granted access to system
resources and information, even with the use of Java
Sandbox. Cougaar, Aglets and Havana employ
additional features to counter this threat. In
particular, Aglets and Cougaar use built-in intrusion

ICSOFT 2008 - International Conference on Software and Data Technologies

178

detection mechanisms which monitor the agents for
suspicious behaviour. Havana, on the other hand,
uses its non-repudiation Services, offered by the
Gateway, to allocate liability for malicious
behaviour. Although this approach deviates from the
ones adopted by the other systems, it can be very
effective for the trade oriented environment of
Havana, where all entities are bound by a real-world
business contract.

Table 1: Comparison results.

 Malicious
Agent

Malicious
Platform

Open
Environ-

ment
Grass-
hopper

Java
Sandbox

Agent is
exposed

Operates
within a
defined
Region

Cougaar Intrusion
detection
(Monitor

and
Response),

Java
Sandbox

Attack is
possible but
unlikely to

occur due to
contained

environment

Operates
within a
defined
Society.

Initially not
intended for
non military
applications

Aglets Intrusion
detection,

Java
Sandbox

Proxy
(limited

effectiveness)

Operates
within a
defined
Domain

Havana Real world
consequenc
es, due to
business
contract,

Strong non
repudiation
Services by

the
Gateway,

Java
Sandbox

Attack is
possible but
brings real

world
consequen-
ces, due to
business
contract.

Strong non
repudiation
Services by
the Gateway

Operates in
a closed

environmen
t for trade
operations
only. All

entities are
bound by a
real world
business
contract.

The threat of a malicious platform is dealt with

varying ways among the systems. Although all
MASs dictate that an authenticated platform is
trusted by all the agents of the same domain, they
may employ additional mechanisms to protect the
integrity of the agents. In particular, the trust model
of Grasshopper relies only on this assumption to
ensure the integrity of an agent, which can be very
risky if this threat is actually realised. Likewise,
Cougaar relies on the same assumption, so an attack
may be possible. However, the risk is mitigated by
the closed nature of its network environment. Since
Cougaar was developed for military applications, it
relies on the use of mutual authentication between
entities, closed networks, tamper-resistant hardware

and restricted communication channels. All these
features leave minimal margin for the existence of a
malicious platform. Aglets on the other hand,
attempts to address this threat through the use of a
proxy, built inside the agent. The effectiveness of
this approach may be limited, since it is possible for
the platform to tamper with the proxy. Finally,
Havana does not employ any security mechanism to
protect an agent from a malicious platform, but
assumes that the platform can be trusted. On the
other hand, the business model of Havana ensures
that there is no gain for a platform attacking an
agent, even if there is such an intention. Even if this
attack is realised, the non-repudiation services, in
conjunction with the real world contract that binds
all entities, ensure the amendment of the abused
party.

As far as the third scenario is concerned, all
systems follow a similar approach. All MASs
operate within a defined domain, with some sort of
central security administration. Specifically, in the
case of Havana, besides the security control applied
by the Gateway, the domain entities are also bound
by a real-world business contract. Although the
systems may be deployed over an open network,
their trust models require a central security
administration, closed to foreign entities. We cannot
say that any one of the systems examined supports
practical operation in an open environment, where
no common security administration exists.

6 CONCLUSIONS AND FUTURE
WORK

Based on our comparison of the four systems, we
were able to draw some general conclusions about
the trust models of MASs. Although the
architectures and the use of the selected systems
differ, we identified important similarities in their
trust models.

In all systems the trust model assumes that an
authenticated agent that belongs to a trusted user is
considered to be trusted by the platform.
Furthermore, the platform is by default considered to
be trusted by the agent. We argued that these two
assumptions can potentially lead to serious security
breaches, especially in the case of a malicious
platform. Although it is possible to employ self-
protection mechanisms within an agent (Ametller
04), the threat of a malicious platform is very
difficult to overcome. We have also argued
(Fragkakis 07 a, b) that mobile agent security issues

THREATS TO THE TRUST MODEL OF MOBILE AGENT PLATFORMS

179

are more difficult to resolve because there is no
commonly accepted framework covering all the
aspects of a trust and security model. These threats,
along with the lack of a standardized way to address
them, are possible reasons for which MASs rely on
domains with central security administration for
their operation. In such environments the risks
concerning malicious entities are mitigated.

 On the other hand, we have already stressed that
this kind of usage can be very restricting and hinders
the adoption of mobile agents, especially for large-
scale applications. It is true that, in order to operate
securely, an agent system requires a trusted
environment. This is achieved either by operating in
a completely closed environment, or by employing a
separate trust authority to guarantee the legitimacy
of the entities in a MAS.

Havana displays the interesting concept of
merging the trust-granting authority with the real-
world contracts. This combination ensures that in the
case of malicious behaviour there will be real-world
repercussions on the party behind the malicious
entity.

As a target of our future research, it would be
useful to take this concept outside the business scope
of Havana and create MAS-independent trust
granting authority, expanding the trust and security
models in the real world. Another interesting idea
for this trusted third party would be to offer non-
repudiation services in combination with insurance
services to registered members. The existence of this
service could help overcome the lack of trust in open
environment like the Internet, and could be
incorporated in a complete trust and security model
for the operation of mobile agents.

REFERENCES

Fragkakis, M., Alexandris, N., April 2007. Comparing the
Trust and Security Models of Four Mobile Agent
Platforms, RCIS’07 (a).

Fragkakis, M., Alexandris, N., 29 - 31 August 2007.
Comparing the Trust and Security Models of Mobile
Agents, IAS 07, Manchester, UK (b).

Ametller, J., Robles, S., Ortega-Ruiz, J. A., July 19-23, 04.
Self-Protected Mobile Agents, AAMAS'04, N. York.

Rempt, B., Mertz, D., July 2002. Distributing Computing -
Cooperative Computing with Mobile Agents Intel
Developer Services., Available:
http://gnosis.cx/publish/programming/dc4.pdf

Vlassis, N., 2007. A Concise Introduction to MAS and
Distributed AI, pp 1-6.

Poslad, S., Calisti, M., Charlton, P., 2002. Specifying
Standard Security Mechanisms in Multi-Agent
Systems”, AMAS 2002, Bologna, pages 122–127.

Zhang, M., Karmough, A., Impey, R., 2001. Adding
Security Features to FIPA Agent Platforms, Available:
www.elec.qmul.ac.uk/staffinfo/stefan/fipa-security/rfi-
responses/Karmouch-FIPA-Security-Journal.pdf.

English, C., Nixon, P., Terzis, S., McGettrick, A., Lowe,
H., 2002. Dynamic Trust Models for Ubiquitous
Computing Environments, UBICOMP `02.

Roth, V., July-2004. Obstacles to the adoption of mobile
agents, MDM’04.

Giang N.T., Tung, D.T., Jun 2002. Agent Platform
Evaluation and Comparison, II-SAS, Pellucid EU 5FP
IST-2001-34519 RTD.

Ferrari, L., Oct 2004. The Aglets 2.0.2 User’s Manual,
Available: http://aglets.sourceforge.net/.

Oshima, M., Karjoth, G., Ono K., 1998. Aglets
Specification 1.1 Draft, http://www.trl.ibm.com/aglets/

Fischmeister, S., Vigna, G., Kemmerer, R.A., Dec 2001.
Evaluating the Security Of Three Java-Based Mobile
Agent Systems, MA 2001, 31-41 LNCS 2240,
Springer.

Karjoth, G., Lange, D.B., Oshima, M., Jul/Aug 1997. A
security model for Aglets IBM Res. Div., Zurich, IEEE
Internet Computing, Vol 1, Issue: 4, pp 68-77.

Vigna, G., Cassell, B., Fayram, D., 2002. An Intrusion
Detection System for Aglets, I. Conference on Mobile
Agents.

Mahmoud, Q.H., Yu, L., 2005. An Architecture and
Business Model for Making Software Agents
Commercially Viable, HICSS 2005, Track 3, Vol 03.

Mahmoud, Q.H., Yu, L., May 2004. Havana: a mobile
agent platform for seamless integration with the
existing Web infrastructure, Canadian Conference on
Electrical and Computer Engineering, Vol 3, 2-5 pp
1257 – 1261.

Mahmoud, Q.H., Yu, L., 2006. Havana agents for
comparison shopping and location-aware advertising
in wireless mobile environments, ECRA 06, 5(3): 220-
228.

Kadhi, N., Burstein, E., Barika, F., Ghedira, K., March
2003. Towards Agent IDS: agent platform security
features study, Congreso de Seguridad 03.

Altmann, J., Gruber, F., Klug, L., Stockner, W., Weippl,
E., 2001. Using Mobile Agents in Real World: A
Survey and Evaluation of Agent Platforms, W. on
Infrastructure for Agents, MAS, and Scalable MAS at
Autonomous Agents `01.

Baumer, C., Breugst, M., Choy, S., Magedanz, T., October
1999. Grasshopper – A Universal Agent Platform
Based on OMG MASIF and FIPA Standards, Ottawa
MATA'99, World Scientific Publishing, , pp. 1-18.

Feiertag, R., Rho, J., Rosset, S., 2004. Engineering
Security in a Multi-Agent System, Cougaar Software.

Feiertag R., Rho, J., Rosset, S., 2004. Using Security
Mechanisms in Cougaar, Cougaar Software.

Cougaar version 11.4, 23 December 2004.
Rosset, S., 2004. Cougaar Security Services, Cougaar

Software.

ICSOFT 2008 - International Conference on Software and Data Technologies

180

