
ONTOLOGY FOR SOFTWARE CONFIGURATION
MANAGEMENT

A Knowledge Management Framework for Software Configuration Management

Nikiforos Ploskas
TELETEL SA, 124, Kifissias Avenue, 115 26 Athens, Greece

Michael Berger, Jiang Zhang, Lars Dittmann
COM·DTU, Technical University of Denmark, Oersteds Plads Bldg 343, DK-2800, Lyngby, Denmark

Gert-Joachim Wintterle
Alcatel-Lucent AG, Lorenzstr. 10, 70435 Stuttgart, Germany

Keywords: Knowledge Management, SCM, Ontology, OWL, Reasoner.

Abstract: This paper describes a Knowledge Management Framework for Software Configuration Management,
which will enable efficient engineering, deployment, and run-time management of reconfigurable ambient
intelligent services. Software Configuration Management (SCM) procedures are commonly initiated by
device agents located in the users gateways. The Knowledge Management Framework makes use of
Ontologies to represent knowledge required to perform SCM and to perform knowledge inference based on
Description Logic reasoning. The work has been carried out within the European project COMANCHE that
will utilize ontology models to support SCM. The COMANCHE ontology has been developed to provide a
standard data model for the information that relates to SCM, and determine (infer) which SW Services need
to be installed on the devices of users.

1 INTRODUCTION

The main objective of COMANCHE (COMANCHE,
2008) is to develop and validate a generic
framework for Software Configuration Management
(SCM), which will pave the way to the realization of
technically and commercially viable private spaces
incorporating ambient intelligence features. For this
purpose the project will specify and develop the
COMANCHE modular and scalable architecture
targeting the provision of consistent, secure, low-
cost (low-effort) SCM services across today’s
heterogeneous, and multi-vendor environments. The
realization of the COMANCHE SCM services
framework will be built on an adequate software
engineering and knowledge management
infrastructure that the project will deliver. The main
components of this infrastructure will be the
following:

i) The COMANCHE Knowledge Management
Framework, which will provide the means for
effectively conceptualising, organizing, discovering,
and exploiting the tremendous amounts of (currently
unorganised and scattered) attribute information,
pertaining to software configuration management.

ii) A modular component-based software
architecture and an adequate design methodology
and tool, which will effectively address the
engineering and run-time management of
reconfigurable software for ambient intelligent
networked services environments.

iii) A formal modelling methodology and a
consistency validation framework for capturing and
analysing the structure and run-time behaviour of
distributed software systems. This approach will aim
to preserve the integrity of the target networked
services environments in terms of allowing
software-configuration error detection and recovery

257
Ploskas N., Berger M., Zhang J., Dittmann L. and Wintterle G. (2008).
ONTOLOGY FOR SOFTWARE CONFIGURATION MANAGEMENT - A Knowledge Management Framework for Software Configuration Management.
In Proceedings of the Third International Conference on Software and Data Technologies - PL/DPS/KE, pages 257-264
DOI: 10.5220/0001887802570264
Copyright c© SciTePress

across present complex, and multi-vendor private
spaces.

This paper will mainly focus on i) The
COMANCHE Knowledge Management Framework
and furthermore it will present an innovative,
concrete methodology for performing SCM by
means of logical inference in the developed
COMANCHE ontology. The idea of using
ontologies for SCM is not new (Arantes, 2007),
(Asikainen, 2004), (Shahri, 2007), but this paper
proposes a novel procedure for SW configuration
using available of-the-shelf ontology inference
engines (reasoners).

The organization of the paper is as follows: In
the following section 2, a small example is provided
to illustrate the principles of knowledge inference
for software configuration management. The simple
examples provided in this section illustrate some of
the principles of the COMANCHE ontology
presented later. Following this, section 3 presents the
SCM provider Infrastructure that is responsible for
the coordination of SCM procedures and derivation
of SCM decisions. Section 4 describes the
Knowledge management framework which is
responsible for maintaining the COMANCE
ontology described in section 5. Finally, section 6 is
the conclusion.

2 KNOWLEDGE INFERENCE

A small example is provided here to illustrate the
principles of knowledge inference for software
configuration management. It is assumed that a VCR
device is going to be installed in a home
environment already equipped with a TV set and Set
Top Box (STB). The objective of the SCM
procedure is then to determine an appropriate
software configuration for the new VCR device. The
first step is to determine candidate SW services that
fulfil the needs of the new device. Available SW
services are described by a service Ontology. Figure
1 shows an example Ontology for a SW service
denoted VCR_Service_1.

The behaviour of the service is described by the
VCR_Service1_profile class. This class basically
defines the properties of the service in terms of
functionality, e.g. inputs and results. Furthermore,
the ontology specifies dependencies by the
dependsOn property and the supportsDevices
property indicates the hardware platforms
compatible with the service. The typeOfService
property specifies that VCR_Service_1 is a

VCRService and the property isDeliveredBy gives
the vendor of the SW service.

VCR_Service_1

Behaviour
VCR_Service1_

profile

TVServices

STBServices

VCR_vendor_1

VCR_vendor_2

VCRServices

Vendor

dependsOn

supportsDevices

typeOfService

isDeliveredBy

hasResult
hasInput

Parameters

Figure 1: Ontology for a specific VCR service:
VCR_service_1.

The behaviour of the service is described by the
VCR_Service1_profile class. This class basically
defines the properties of the service in terms of
functionality, e.g. inputs and results. Furthermore,
the ontology specifies dependencies by the
dependsOn property and the supportsDevices
property indicates the hardware platforms
compatible with the service. The typeOfService
property specifies that VCR_Service_1 is a
VCRService and the property isDeliveredBy gives
the vendor of the SW service.

In this example the Protégé OWL [5] Ontology
editor is used to manage the ontologies. It is
assumed that a new VCR SW service is going to be
installed. The VCR is delivered by Company_X and
it is a requirement that the service supports pause of
live TV transmissions. To obtain a list of available
candidate services, a new class
VCRAvailableServices is defined with an equivalent
class in Protégé syntax as shown in Figure 2.

Service
and supportsDevices some VCR_COMPANY_X
and behaviour some (ServiceProfile
 and hasResults some Pause_live_TV)
and typeOfService some VCRServices

Figure 2: Equivalent class definition for
VCRAvaliableServices.

ICSOFT 2008 - International Conference on Software and Data Technologies

258

The goal is to determine available candidate
services that fulfil the equivalent class definition
above. This is obtained by inference performed by a
Reasoner, in this case FaCT++ [6]. The reasoner
derives an inferred class hierarchy for the Ontology,
and in this case, the reasoner infers that
VCR_Service_1 and VCR_Service_2 are subclasses
of VCRAvaliable services, see Figure 3.

Figure 3: Inferred class hierarchy.

Based on the inferred class hierarchy it is
concluded that the two SW services VCR_Service_1
and VCR_Service_2 fulfils the requirements to be
installed on the actual VCR device.

Assuming that VCR_service_1 is selected, the
next step is to determine any services that need to be
installed on dependent devices i.e. the TV and STB.
In this example it is assumed that the STB is
provided by Company_Y and the TV is provided by
Company_Z. In order to determine dependent
services for the STB and TV, a new class is defined
in the Ontology. The class name is
VCR_Service_1_dependencies and the equivalent
class definition is shown in Figure 4. Note that an
invDependsOn property has been defined as the
inverse of the DependsOn property.

Service and
(supportsDevices some STB_COMPANY_Y) or
(supportsDevices some TV_COMPANY_Z)
and typeOfService some (ServiceType
and invDependsOn some VCRService_1)

Figure 4: Equivalent class definition for
VCR_Service_1_dependencies.

Again, the reasoner is activated to infer classes
representing services that must be installed on the
dependent devices. The inferred class hierarchy that
the reasoner calculates is shown in Figure 5. Based

on the inferred class hierarchy it is concluded that
the SW services STBService_1, STBService_3,
TVService_1 and TVService_2 should be installed
on STB_COMPANY_Y and TV_COMPANY_Z
respectively. These inferred services may have been
installed already or they may have further
dependencies that have to be resolved by similar
procedures. The following section will provide
details on the framework in which the inference
takes place.

Figure 5: Inferred Class hierarchy.

3 SCM PROVIDER
INFRASTRUCTURE

The SCM Engine is the heart of the COMANCHE
architecture. The SCM Engine is responsible for the
coordination of SCM procedures and the derivation
of SCM decisions.

Service Selector

SCV InterfaceSCV Interface

SCMC InterfaceSCMC Interface EC InterfaceEC Interface

KMF InterfaceKMF Interface

UIC InterfaceUIC Interface

SCM Engine

SCM Flow Manager

Service Composer

Service C
onsistency

V
alidator

K
now

ledge
M

anagem
ent

Fram
ew

ork

SCM Provider Infrastructure

Home Service
Provider

Home Service
ProviderSCM GWSCM GW

Web Server
Home GW

SCV: Service Consistency Validator

KMF: Knowledge Management Framework

EC: Event Collection

UIC: User Input Collection

SCMC: SCM Coordination
Figure 6: Functional architecture and interfaces of SCM
Engine.

An SCM procedure is treated as what is commonly
known as a service composition procedure. The

ONTOLOGY FOR SOFTWARE CONFIGURATION MANAGEMENT - A Knowledge Management Framework for
Software Configuration Management

259

intelligence of the SCM Engine will largely depend
on the use of the COMANCHE ontology. In this
context, the SCM Engine will select service
components (i.e. SW Services and Internet Services)
and will synthesise Composite Service Descriptions
(CSDs). A Composite Service Description (CSD) is
the specification of the software configuration of a
Home Environment. It specifies which SW Services
(SW Components) will need to be installed on which
devices of the Home Environment, and how these
services will need to be configured on each device.
SCM procedures are typically triggered by device
agents on the SCM GW. Configuration is done
through the Device Agent entity that realises a web
service based interface towards the SCM engine.

The main functional purpose of the Service
Selector is the matching of SCM needs to Service
Profiles. SCM requirements will be represented by
the instantiations of the Home Environment and
Context Ontology (integrated in the COMANCHE
ontology). Service Profiles will be represented by
the instantiations of the Service Profile Ontology
(also integrated in the COMANCHE ontology).

The main functional purpose of the Service
Composer is the synthesis of Composite Service
Descriptions (CSDs). A successful, executable
composition correctly combines and configures a set
of compatible components to achieve the
composition’s overall goal. Full automation of
composition is still the object of ongoing, highly
speculative research with little short-term hope
(Kim, 2004). However, partial automation of
composition, with a human controller as the most
significant decision mechanism, seems a feasible
goal. The Service Composer will adopt a user
interactive approach for service composition and
configuration. Relatively simple, fully automated
SCM cases will only be considered for a limited set
of remote diagnostics and repair applications. The
Service Composer functionality will be primarily
based on the use of the Service Process Model. User
input as well as instantiations of the Home
Environment and Context Ontology and User and
Business Domain Ontology will be queried and
exploited for this purpose.

The SCV (Service Consistency Validator)
Interface will be used for interacting with the
Service Consistency Validator of the SCM Provider
Infrastructure. The SCV Interface will be internal to
the SCM Provider infrastructure. The SCM Engine
will make use of this interface in order to request the
execution of off-line consistency validation tests
with regard to a formulated CSD. The output of

these tests will be communicated by the Consistency
Validator to the SCM Engine.

The UIC (User Input Collection) Interface will
serve interactions with users. The UIC Interface will
be external to the SCM Provider infrastructure. It
will be based on the use of Web Services (WSDL,
SOAP). The UIC Interface will allow the interaction
of the SCM Engine with the back-end of a Web
Server or a Home Gateway or any other network
element exposing a user interface.

The EC (Event Collection) Interface will allow
the collection of SCM-related events. These events
will be collected from Home Service Providers (e.g.
a device fault event reported by a remote diagnostics
service provider, a request for a service upgrade,
etc), home gateways (e.g. a malfunction detection
event), and SCM Gateways (Service Execution
Errors). Apart from the interface with the SCM
Gateways allowing the notification of Service
Execution Errors, all other interfaces with Home
Service Providers, and Home Gateways will be
considered as proprietary and out of the scope of the
present specification.

The KMF Interface is the Knowledge
Management Framework interface. All requests that
need to be done to the KMF will be carried out by
this interface. This includes fetching ontology
instantiations and the update of the Knowledge Base
according to events received by the SCM Engine’s
EC Interface.

The SCM Flow Manager is responsible for the
coordination of the operations performed by the
SCM Engine. All messages and flows are controlled
by this component, so that the procedures the SCM
Engine is responsible for can be carried out
successfully.

4 KNOWLEDGE MANAGEMENT
FRAMEWORK

The Knowledge Management Framework (KMF) is
responsible for formulating and maintaining valid
and consistent instantiations of the COMANCHE
ontology. These instantiations are created through
discovering and collecting/importing knowledge
from Attribute Providers and Context Providers as
depicted in Figure 7. The KMF is composed of a
number of components that are described in detail
bellow:

Attribute Providers. The Attribute Providers
publish and supply persistent knowledge
instantiations relating to services, user profiles, and

ICSOFT 2008 - International Conference on Software and Data Technologies

260

business domain relations. This knowledge
instantiations are structured (by the Attribute
Providers) using the Service Ontology and User
Profile and Business Domain Ontology. Attribute
Providers can be SW Providers publishing
knowledge about their SW, Service Providers
publishing knowledge about their Services, Device
Manufacturers publishing knowledge about their
Devices, etc

Knowledge
Manager

Knowledge
ManagerAttribute

Providers
Attribute
Providers

SCM Provider Infrastructure

Knowledge
Registry

Knowledge Publishing
Attribute

Knowledge
Base

Attribute
Knowledge

Base

Context
Knowledge

Base

Context
Knowledge

Base

SCM Engine

Requests for knowledge
instantiations

Conflict-free
knowledge delivery

Context
Providers
Context

Providers
Events

SCM Knowledge Repository

Knowledge
Discovery

Downloading
of Ontology
instantiations

Figure 7: Functional architecture of the COMANCHE
Knowledge Management Framework.

Context Providers. The Context Providers supply
dynamic context information regarding Home
Environments. This information is communicated in
the form of appropriately structured event messages
and mapped on the Home Environment and Context
Ontology. Within the COMANCHE framework,
Context Providers are the SCM Gateways, home
gateways, and Service Providers (e.g. a Remote
Diagnostics & Maintenance Provider may report the
event of a device fault).

Knowledge Manager. The Knowledge Manager is
a key component to the implementation of the SCM
Knowledge Repository. It is responsible for the
following main tasks:
• Receive (by the SCM Engine) and process

requests for the delivery of conflict-free
knowledge instantiations.

• Discovery of knowledge instantiations across
different Attribute Providers based on the
aforementioned requests. For this purpose, the
Knowledge Manager will need to formulate
appropriate queries to the Knowledge Registry.

• Mapping of the information contained in event
messages received by Context Providers onto
the Home Environment and Context Ontology.

• Resolving of potential conflicts identified in the
knowledge instantiations discovered across
different Attribute Providers and Resolving of

potential conflicts identified in the information
received by Context Providers. The
trustworthiness of the different Attribute
Providers will be the key criterion for achieving
this. In addition, the Knowledge Manager will
need to be capable of inference. An off-the-self
inference engine (reasoner) will be used for this
purpose (e.g. FaCT++ Reasoner).

• Importing of conflict-free knowledge
instantiations in the Attribute and Context
Knowledge Bases.

• Delivery of consistent knowledge instantiations
to the SCM Engine in order to be exploited for
SCM.

Attribute and Context Knowledge Base. The
Attribute Knowledge Base consists of the Service
Ontology, User Profile and Business Domain
Ontology, the parts of the Home Environment and
Context ontology that contain static information on
software and devices, as well as their conflict-free
instantiations.

The Context Knowledge Base consists of the
dynamic part of the Home Environment and Context
Ontology, as well as its conflict-free instantiations.

Knowledge Registry. This component enables the
discovery of the different Attribute Providers by the
SCM Services Providers. Attribute providers use the
registry interface for publishing attribute knowledge.
Semantically enhanced UDDI (Universal
Description, Discovery, and Integration) services are
employed for this purpose as it is detailed in the
following section:

5 THE COMANCHE ONTOLOGY

The purpose of the ontology is to provide a standard
data model for the information that relates to SCM,
and determine (infer) which SW Services need to be
installed on the devices of users. The inference is
based on a number of selection principles as
described in the following:

Selection of a SW Service depending on a Desired
Device Function. The actual device in question is
defined as an individual, e.g. the individual
Bob_Washing_Machine belongs to the class
Bob_devices. The desired device functions are
described by the needsToSupport property as object
properties of the device, e.g needsToSupport
Washing_Of_Silk_Clothes and needsToSupport
Washing_Of_Colored_Clothes, where
Washing_Of_Silk_Clothes and

ONTOLOGY FOR SOFTWARE CONFIGURATION MANAGEMENT - A Knowledge Management Framework for
Software Configuration Management

261

Washing_Of_Colored_Clothes are also defined as
individuals in the ontology.

Selection of a SW Service depending on
Compatibility with a Device SW Platform. The
SW service configuration will depend on the device
vendor, i.e. the vendor of Bob_Washing_Machine.
The actual device model is described by the
hasDeviceModel property as object properties of the
device, e.g. hasDeviceModel
CompanyX_Washing_Machine_0001. Changing the
device model would lead to new SW services to be
installed on the device.

Selection of a SW Service depending on the
Subscriptions of the Device Owner. The owner
Bob of Bob_Washing_Machine is defined as an
individual in the Ontology. A property
holdsUserSubscription is used to describe which SW
services that the user Bob is subscribed to. SW
services that the user does not subscribe to would
not be installed on the device.

Selection of a SW Service depending on whether
the Software Provider is Trusted by the Device
Manufacturer. As in the example above it is
assumed that the device model of
Bob_washing_Machine is
CompanyX_Washing_Machine_0001. This is also
an individual that will connect to the vendor, in this
case CompanyX, through a hasManufactorer
property. Trusted SW providers for CompanyX is
declared by a hasTrustedThirdParty property.

Selection of SW Services for Gateway Devices.
The target device of a SW_Service is the device that
will make use of its functionality. The previous
examples referred to SW Services that are installed
on the target device (i.e. Bob_Washing_Machine). It
may be the case that a SW Service is not installed on
the target device but on a different device (e.g. a
Home Gateway or a Control Point) that connects to
it. This type of devices that host SW Services to be
used by other devices are termed as Gateways in the
ontology.

Selection of SW Services in Accordance with
known Dependencies between SW Services.
Dependencies between software services are
described by the dependsOn property, e.g.
SW_service_7 dependsOn SW_service_5.
Dependencies could be organised in a dependency
tree but due to the transitiveness of the dependsOn
property, the tree can be automatically flattened by
the inference procedure.

5.1 Equivalent Class Definition

Based on the SW service selection principles above,
the main achievement has been the equivalent class
definition in the Ontology that allows the reasoner to
infer SW service configuration, see Figure 8.

(toBeInstalledOnDeviceType some
(inverse_of_isOfDeviceType value
Bob_Washing_Machine))
or (inverse_of_dependsOn some
(toBeInstalledOnDeviceType some
(inverse_of_isOfDeviceType value
Bob_Washing_Machine)))
and (inverse_of_dependsOn some
(inverse_of_containsService some
(inverse_of_holdsUserSubscription some (owns value
Bob_Washing_Machine))))
 or (inverse_of_containsService some
(inverse_of_holdsUserSubscription some (owns value
Bob_Washing_Machine)))
and (inverse_of_dependsOn some (compatibleWith
some (inverse_of_hasSWPlatform some
(inverse_of_hasDeviceModel value
Bob_Washing_Machine))))
 or (compatibleWith some
(inverse_of_hasSWPlatform some
(inverse_of_hasDeviceModel value
Bob_Washing_Machine)))
and (hasTargetDeviceModel some
(inverse_of_hasDeviceModel value
Bob_Washing_Machine))
 or (inverse_of_dependsOn some
(hasTargetDeviceModel some
(inverse_of_hasDeviceModel value
Bob_Washing_Machine)))
and (hasServiceProvider some
(inverse_of_hasTrustedThirdParty some
(inverse_of_hasManufacturer some
(inverse_of_hasDeviceModel value
Bob_Washing_Machine))))
 or (inverse_of_dependsOn some
(hasServiceProvider some
(inverse_of_hasTrustedThirdParty some
(inverse_of_hasManufacturer some
(inverse_of_hasDeviceModel value
Bob_Washing_Machine)))))
and (inverse_of_dependsOn some
(supportsDeviceFunction some
(inverse_of_needsToSupport value
Bob_Washing_Machine)))
 or (supportsDeviceFunction some
(inverse_of_needsToSupport value
Bob_Washing_Machine)

Figure 8: Equivalent class definition for
Bob_washing_machine.

ICSOFT 2008 - International Conference on Software and Data Technologies

262

The equivalent class definition might look rather
complicated, but it also has to include all the above
selection principles. On the other hand the definition
is rather generic and provided that the devices are of
same type, they only differ in the name of the
specific device. By invoking the reasoner (e.g.
FaCT++), the required SW configuration will be
obtained, i.e. a list of all SW services to be installed
on the device.

5.2 Demo Architecture

A shown in the following Figure 9, the functional
entities under development will be hosted on three
PCs. These PCs will be connected to a LAN.
The functional entities to be developed are the
following:
- Knowledge Manager (KM) that will quire and

update the SCM Knowledge Base.
- Identity Provider (IDP) that will quire the

Policies Repository.
- Knowledge Registry (KR).
- Attribute Provider (AP) that will quire the

Attribute Base.
The SCM Knowledge Base, Policy Repository, and
Attribute Base will be different versions (instances)
of the COMANCHE ontology.

Figure 9: KMF demonstration architecture and placement
in the COMANCHE framework - KMF entities are
represented by the shaded boxes.

5.3 Functional Roles of the
Architecture Entities

Knowledge Manager. The Knowledge Manager
performs the following main tasks:
- Responds to the queries of the SCM Engine and

provides information relating to the selection of
SW for devices, service dependencies, and
software configuration actions. For this purpose

the KM accesses and process data (attribute
information) that resides in the SCM
Knowledge Base. The data contained in the
SCM Knowledge Base is modelled through the
use of the COMANCHE Ontology.

- In case that the data (attribute information)
contained in the SCM Knowledge Base is not
sufficient (i.e. some data fields in the SCM
Knowledge Base are empty), and due to this fact
the KM is not able to respond to a query from
the SCM Engine, then it will discover the URI
of the missing data by querying the Knowledge
Registry, and then acquire the data by querying
the Attribute Provider. The Identity Provider
(IDP) entity appropriately authorises these
actions towards ensuring that user privacy
preferences and policies are respected.

Knowledge Registry. The Knowledge Registry
(KR) provides to the Knowledge Manager (KM) the
URIs of data elements (attribute information) that
need to be acquired by the latter. These data
elements will reside at Attribute Providers (AP). So
the KR in fact provides each time to the KM the URI
of the AP that holds the data in question.

Identity Provider. The Identity Provider (IDP) will
authorize access to attribute information. For this
purpose, the IDP will issue authorization tokens to
the KM. The Policy Repository at the IDP will
contain policy information that will serve as input
for determining whether access to data should be
granted or not.

Attribute Provider. The Attribute Provider will
supply to the KM the requested attribute
information, provided that the KM has been
authorized for this by the IDP. The attribute
information in question will be contained in the
Attribute Base at the AP.

5.4 Demonstration Scenario

A simple indicative scenario is presented in the sequel.

Figure 10: KMF representative scenario.

ONTOLOGY FOR SOFTWARE CONFIGURATION MANAGEMENT - A Knowledge Management Framework for
Software Configuration Management

263

The scenario involves the following steps:

1. An event occurs in the home network: e.g. a
new device is connected or a fault occurs on a
device. A message is passed from the device to
the SCM GW and then to the SCM Engine. The
event is communicated by the SCM Engine to
the Knowledge Manager using the
sendEventNotification() Web service. The
ontology is updated accordingly: e.g. the newly
connected device is included in the ontology or
the error is logged.

2. The previous event had as a consequence the
triggering of an SCM procedure. The SCM
Engine starts to issue requests for SCM-related
info to the Knowledge Manager. The requested
information may concern service dependencies,
SW selection for devices, configuration actions,
etc.

3. The Knowledge Manager quires the SCM
Knowledge Base and finds out that a previous
request by the SCM Engine cannot be served
due to information missing.

4. The Knowledge Manager uses the
getPropertyValueURI() Web service to request
from the Knowledge Registry the URI of the
missing attribute information. The Knowledge
Registry replies by providing the URI (or URL
of the Attribute Provider).

5. The Knowledge Manager uses the
getPropertyValue() Web service to request from
the Attribute Provider the missing information.
The Attribute Provider replies that authorisation
from the Identity Provider is required.

6. Authentication and authorisation procedures
using the services of the Identity Provider take
place.

7. Once authorised, the Attribute Provider quires
the Attribute Base and supplies the requested
information to the Knowledge Manager.

8. The Knowledge Manager updates the SCM
Knowledge Base with the above attribute
information.

9. The logic (property restrictions and rules)
contained in the ontology are put in force . The
ontology is classified and the inferred types of
the concept instances are computed.

10. The Knowledge Manager quires the inferred

knowledge base and supplies to the SCM
Engine the requested information.

6 CONCLUSIONS

Based on the COMANCHE specification of a
Knowledge Management framework for Software
Configuration Management, the COMANCHE
ontology has been designed to facilitate organisation
of attribute information related to SCM, and to
facilitate automated configuration specifications
based on a novel procedure for knowledge inference
using available of-the-shelf ontology inference
engines (reasoners). The Knowledge Management
Framework (KMF) provides the means for
managing the Ontology through external attribute
providers and derives knowledge to the SCM engine
for the calculation of Composite Service
Descriptions.

ACKNOWLEDGEMENTS

This work has been performed in the framework of
the IST-034909 project COMANCHE, which is
partly funded by the European Commission. The
authors would like to acknowledge the contribution
of their colleagues from Gorenje, Intracom, Indesit
Company, Alcatel-SEL, Solinet, APEX,
CERFRIEL, Technical University of Denmark –
COM, Teletel and RWTH Aachen University.

REFERENCES

The COMANCHE Project, www.ist-comanche.eu, 2008
L. Arantes, R. Falbo and G. Guizzardi. Evolving a

Software Configuration Management Ontology.
WOMSDE 2007, Brazil.

T. Asikainen, T. Männistö, and T. Soininen. Representing
Feature Models of Software Product Families Using a
Configuration Ontology. Presented at the ECAI 2004
Configuration Workshop, Valencia, Spain

H. Shahri, J. Hendler, A. Porter. Software Configuration
Management Using Ontologies. SWESE 2007, Austria.

http://protege.stanford.edu/plugins/owl/, 2008
FaCT++, owl.man.ac.uk/factplusplus/, 2008.
J. Kim, Y. Gil, and M. Spraragen. A Knowledge-Based

Approach to Interactive Workflow Composition. Proc.
Int’l Conf. Automated Planning and Scheduling,
Workshop Planning and Scheduling for Web and Grid
Services, AAAI Press, 2004.

ICSOFT 2008 - International Conference on Software and Data Technologies

264

