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Abstract: Modelling manufacturing process of complex products like electronic ships is crucial to maximize the quality

1

of the production. The Process Mining methods developed since a decade aims at modelling such manufac-
turing process from the timed messages contained in the database of the supervision system of this process.
Such process can complex making difficult to apply the usual Process Mining algorithms. This paper proposes

to apply the Stochastic Approach framework to model large scale manufacturing processes. A series of timed
messages is considered as a sequence of class occurrences and is represented with a Markov chain from which
models are deduced with an abductive reasoning. Because sequences can be very long, a notion of process
phase based on a concept of class of equivalence is defined to cut up the sequences so that a model of a phase
can be locally produced. The model of the whole manufacturing process is then obtained with the concate-
nation of the model of the different phases. The paper presents the application of this method to model the
electronics chips manufacturing process of the STMicroelectronics Company (France).

INTRODUCTION times, the product is not in the same state: there is
thena priori no relations between the series of steps

IModeling manufacturing process of complex ob- following the first stepS and the series of steps fol-
jects like electronic ships is crucial to minimize the lowing the second stefs So the two series must be
scrapped objects and so to maximize the productionrepresented with two different models.

of objects. The methods and the algorithms developed  The section 2 recalls briefly the main approaches
in the "Process Mining” domain aims at modeling of the Process Mining area and the main characteris-
such manufacturing process with a graph of manufac- tics of the Stochastic Approach framework. Section
turing steps (treatments, operations or tasks) from the3 defines the notions alass of equivalencandpro-

timed messages contained in the database. (Cook andess phas¢hat we propose and describes the algo-
Wolf, 1998). The proposed algorithms generally gen- rithms that are required to this aim. Section 4 presents
erate complex model so that they are difficult to use the application of the algorithms to model the manu-
when the manufacturing process contains hundreds offacturing process of wafers (i.e. silicon plates where
steps. This paper proposes a modeling method andelectronic ships are engraved) of the Rousset (France)
the corresponding algorithms to model manufactur- plant of the STMicroelectronics Company. The paper
ing processes having hundreds of steps. The proposeaoncludes in section 5 with a summary of the pro-
method is based on the cutting up of the sequences inposed method and introduces of our current works.
sub-sequences callggtocess phasewhere there is

no cycle. The corresponding hypothesis is that when

a subsequence contains two occurrences of the sam® RELATED WORKS

stepSmade on the same machine but at two different

1This study has been made possible thanks to the finan-In the Process Mining framework, a series of mes-
cial support of STMicroelectronics Company (France). sages is considered as an ordered set of events from
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which a process model is to be inferred and repre- an arbitrary set of discrete evesmt= (x;, 6;), whereg;
sented with a formalism (workflows, state charts or is one of the discrete value of the varialsje When
Petri nets for examples) (van der Aalst and Weijters, the variablex; is not known, an abstract variabdge
2004). One of the first algorithm was proposed in is used to define the discrete event= (@, ;) cor-
(Agrawal et al., 1998). The algorithm aims at find- responding to the constadt A discrete event class
ing workflow graphs from a set of series of events is often a singleton because in that case, two discrete
contained in a workflow log. An event represents the event classe€' = {(x;,&;)} andC! = {(x;,9;)} are
start time of a task. To avoid the problem of poten- only linked with the variables; andx; when the con-

tial cycles (i.e. repeated events in a series), the algo-stantsd; andd; are independent (Le Goc, 2006). This
rithm first renames the repeated labels of task beforecondition is only concerned with the programs the
enumerating the binary dependency relations betweenMCA is made with. A sequence of discrete event
the tasks. This set of relations is then reduced with the class occurrences is then considered as the observ-
use of the transitivity property of the binary relations. able manifestation of a series of state transitions in
Labels are again renamed to merge the tasks, makinga timed stochastic automaton representing the cou-
possible the introduction of cycles in the model. Dif- ple (Pr,MCA). The BJT4Galgorithm represents a
ficulties arise with this approach when (i) the tasks are set of sequences of discrete event class occurrences
statistically independent and (ii) the number of tasks with a one order Markov chain and uses an abduc-
is large (Agrawal et al., 1998). Nevertheless, Pinter tive reasoning to identify the set of the most proba-
(Pinter and Golani, 2004) extends this algorithm no- ble timed sequential binary relations between discrete
tably with the introduction of events marking the end event classes leading to a given class. A timed se-
of the tasks. Similar issues in the context of software quential binary reIatiorR(C',CJ,[rﬁ,riij]) is an ori-
engineering processes are investigated in (Cook andented relation between two discrete event clagies

Wolf, 1998) where the aim is to build a finite state and Ci that is timed constrained with the interval
machine from the set of the most frequent event pat- [t 1], [TfjaTiJ’j] is the time interval for observing

; . ; . ij> U] )
terns mined in a given log. In particular, thearkov an occurrence of th€! class after an occurrence of

?"go”‘hm IS t_;ased on a two order 'V'?f_"ov chain that theC' class. The set of timed sequential binary rela-

is canverted In states and state transitions, Cook andtion is an abstract chronicles model that is graphically
Wolf (Cook and Wolf, 2004) extend_th|s method to represented with thELP language (Event Language
con_current processes and_ uses a first order Markovfor Process) where the nodes are discrete event classes
Cha".] to this am. The d'ﬁ'C“'F'eS come _from thg and the links are timed sequential binary relations. In
pruning of the finite state machine to obtain a mini- . paper, we propose to tackle the two main prob-

mal model and the sensibility of pruning metrics to | - :
. .. ems of the Process Mining approaches with the ex-
the "noise” (van der Aalst and Weijters, 2004). Aalst : ,
4 \ tension of the Stochastic Approach framework.
(van der Aalst et al., 2004) defines the class of process PP

that can be modeled with tlee-algorithm but this al-

gorithm requires the series of events in the log to be

noise-free and complete. 3 EXTENSION OF THE

There is a consensus to consider that finite state ma- STOCHASTIC APPROACH FOR
chines are difficult to understand and tc_) \_/alid_ate. And PROCESS MINING

most of the proposed methods have difficulties when

(i) the process contains a lot of steps, (ii) the series in .

the log induce potential cycles in the models and (iii) 3-1 Motivation

the sequences are not noise-free and complete. The

Stochastic Approach framewotke Goc et al., 2005)  Let us take an example to illustrate the proposed ex-
for discovering temporal knowledge from timed ob- tensions with a manufacturing process having a set
servations provides a general framework for modeling S= {A,B,C,D,E} of 5 manufacturing steps. Sup-
dynamic processes that is based on a markovian reprePose the supervision system records the execution of
sentation but uses abstract chronicle models (Ghallab,a Step with a messag&tx) denoting the timé of the
1996) instead of finite state machines. This frame- beginning of the execution of the stép The three
work considers that the timed messages of a series aréeries of messages of table 1 is represented with the
written in a database by a program, called a monitor- abstract chronicle model of figure 1. In this model, if
ing Cogniti\/e agenMCA, that monitors a production the two nodes labeled with denote the same manu-
processPr. A timed message is represented with an facturing step, then the two nodes must be confused,

occurrence of a discrete event cl@s= {g} thatis  introducing a cycle in the model. The same reasoning
must be done with the other nodes, making the model
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difficult to read and to understand. 3.2 Class of Equivalence

Table 1: Three series of event. By definition, a large scale process is made with a lot

A(t1)B(t2)D(t3)C(ts) Ets)A(ts) E(t7)B(ts) of steps. _Sqme of the;e steps_differs only with some
A(tg)B(t10)C(t11)D(t12) E(t13)A(t14)Et15)B(t16) characteristics but realizes similar treatments.
A(t17)B(t18) C(t10) D(t20) E(t21) A(t22) E (t23) B(t24) Definition 1. Given a model M —

{R(C',Cl,[1;;,1{])} build with a setQ = {w}
of discrete event class occurrences, a class

i @ sl L) C? = {(.51),(@,82),-...(@,8n)} is an equiv-

- *]H» alence class of a sub set of classes=C{C'},

5 vt el T j=1...n,0 = {(x;,3j)}, of the set of classes,Cof
Nl [ o] a model M iff:
c —{ D

vC! eC,HR(C',CJ,[TE,Tfjr JEM

Figure 1: Model for the three Sequences. :
AIR(C,CK [T, Tj)) €M @
Suppose now that each of the three sequences is  Thjs definition means that every clasisof the
cut up when a label appears two times. The model of g setC C Cy are linked with the same classes
the first part of the sequences will be similarto the one jn M.  When this condition is verified, each oc-
of figure 1 but without the path —E —Batthe end  cyrrencesCi(k) of the classe€! in the sequences
of the model: the steps, B andE introduce nomore ¢, of Q can be rewritten as occurrenc€? (k)
cycle. This fact motivates the notionpfocess phase  of the equivalence clas€®. The abstract vari-
proposed in this paper. But this notion is not sufficient able @ has noa priori meaning: @ can be substi-

to solve the cycles that are introduced with the sS@ps  tyted with the corresponding concrete variaklén
andD. We consider that this problemis due to the fact any occurrence€® (k). Consequently, the set of

that the three series of events provide no information ppj| reIations{R(Ci,Cj,[Tﬁ,rfjr])} of M will be-

about the order of the stesandD. Consequently, .. {R(CI,C?, [t ,T5])} and the set of down-

any solution of this problem must take into account = . e ,

somea priori knowledge about the process which we hill refations{R(C!,C¥, [t;,, T, ])} of M will become

want to avoid it. The notion gbotential cycles then {R(C% CK, [Tak,qk])}. In practice, an equivalence

defined to detect this kind of situation to be able to class can be used to represent discrete event classes

make further investigations (i.e. finding new series or having similar meanings. In the application presented

discussing with experts for examples). in the next section, a discrete event class represents
To illustrate the notion of class of equivalence, let a treatment made on a product with a particular ma-

us take theedit activity of the "writing a scientific pa-  chine. Equivalence classes are then used to represent

per” process that can be made by different studentsthe same treatment made on different machines: in

and professors. ThEdit activities can then be la-  that case, the machines are equivalents because the

beled differently according to the performer with a set same treatment can be done on each of the machines.

of classes of the fornC = {CF! = {(s;,8;)},CF? = Given a set of sequenc&s= {w }, the algorithm

{(s2,82)}, ...}, where the variables andp; denotes  for defining equivalence classes find all the equiv-

respectively students and professors. In this case, theglence classes and rewrite the corresponding occur-

resulting model of the process will be complex with-  rences in each sequenoe(Algorithm 1):

out necessity. One of the interesting features of the , )

Stochastic Approach framework is the notion of dis- 1 Build amodeM given a seQ2 of sequences

crete event class. This notion can be used to define ab-2. Find all the subset of class€s= {CJ} verifying

stract classes of the for@® = {(@,61),...,(@,0n)} the equation 1

where (¢ denotes an abstract variable and the set

{3;},j =1...n, is an arbitrary set of constants. This 3: Forall the sub ses

property allows defining classes of equivalence that o Create an equivalence claG%.

simplifies a process model. For example, an abstract

classC% be deflrled_a}s an eql_lea_Ignt class”of the set of in all the sequencess C Q with the rewriting

classe<C of the "writing a scientific paper” process. rule: Cl (k) = C® (K)

Doing this way allows constituting a set of sequences ' - '

coming from different students and professors. 4. Build a new modeM’ with Q.

e ForallCl € C, rewrite all the occurrenc& (k)
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3.3 Process Phase (Schimm, 2004) (van der Aalst et al., 2004), (Pin-
ter and Golani, 2004), (Weijters and van der Aalst,
The information contained in a series of manufactur- 2003) or (Agrawal et al., 1998) for examples). But
ing messages is concerned both with the state of thethese works make assumptions about the process or
manufactured object and the manufacturing processimpose constraints about the constitution of the se-
that make evolving this state from an initial state up quences. In all the case, this consists in having some
to a final state. But generally, the state of the manu- a priori knowledge about the process to be modeled
factured object is not provided with the messages. Soor the set of programs that write the messages in the
we propose to capture indirectly this dimension with process data base.
the notion ofprocess phase The aim of the Stochastic Approach is to provide
Definition 2. A process phase is a sub model M models of sequences without aayriori knowledge
{R(C.7CJ,[TH,W])} so that there is no path P- about the process and the set of programs that have
(RC,CHL [t T, ])} € M/, i = 1....n, where: generated the occurrences. One difficulty is that cy-
) s Lli+15 Y41 ' , cles often appear when mining a process because of
Vi<j<nt+1c =cl o) ';_he transitivity property of the sequential binary rela-
ions.

A process phase is then a sub model that does Notprgperty 1. The timed sequential binary relations
contqln two tlmes the same discrete event class. TheR(Ci Cl. [t:7,T1]) of a given abstract chronicle model
algorithm 2 aims at cutting up a sétof sequences '~ (RC JCi J[r-‘- T} are transitives
w in sub sequences that respects the equation 2 - i Ol > gl :

((:III;;A))::( does not contain two occurrences of the same vR(C',C/, [Tﬁ’fﬁ])_ eM /\VR(CJ,CK_, [T T €M
R(C',Cl,[t;, i) ARCLLC [1,, T/
1. V€ Qdo T K ok

e Removew from Q. - _ = 3RC.CL e Td) _(3)

e Cut upay in a setQ; = {w}} of sub sequences Definition 3. Given a process model M, twg discrete

oq‘( verifying the equation 2. event classes Gand C are not ordered when:

) T~ ) = 1+ Tl ol 1= +F
2. Vel € 0 do MERT(C.CL[t i) AMERT(CLC [T 18]) ()

ijotij ji
e Add an occurrence of the® andC? classes at
the beginning and the end af

Two classeC' andC! that can not be ordered in a
model will be denote@'||C! = Cl||C'.

For examples the three sequences of the Table 1
3. Q=Qi. do not provide any order between the claggesand

An occurrence of an abstract start cl&sand  CP (Figure 1). Consequentl||CP = C€||CP.
an occurrence of an abstract final cl@sare added Property 2. The set of discrete event classeb-€
at the beginning and the end of each sub sequence%cl C2,...,C"} can not be ordered when:
), so that theBJT4G algorithm automatically iden- o _ o
tifies the process phases. For example, when ap- vc'ecl wcl ecl cijcl. (5)
plying the algorithm 2 on the three sequences of |, the theory of graphs, the classes of a @bt
Table 1, theBJTAG algorithm will find two pro- 46 sirongly connected components. The algorithm

cess phases: _the first phase _starts from the eveng 5ims at detecting a potential cycle (i.e. a@ktis
classC” and finishes at the first event clag¥, defined):

the algorithm add the start cla€8 and finish class , ,
C! at this phase. The second process phase pe-1. Build a process modéd from Q with theBJTAG

ing: { R(C%CA,[toa,Tgal) » R(CACE, [Tag, TAL]), algorithm.
R(CE,CB, [tgs, TEgl), R(CB,CY, [15, Th4) }- 2. Build the seC|| = {C} of the setC/ of classes
| without order with the equation 4
4 Potenti I
3 otential Cycles 3. vcl el do
When looking the model of figure 1, it is clear that e Remove the relationR(C',C!, [1;;,7;{]) of M
the classe<c® and CP introduce a cycle. Cycles whereC' e cll orci e c.

present a strong problem of interpretation, making Il _ ; _
hard to understand the resulting models. This explains * Generatela _the Eathd% {Rd -Wlth Hpk
{R(C',C"}, [15,1,Ti4])} whereC' € C' and

why there is a lot of works aiming at avoiding cy- _
cles in process models (cf. (Cook and Wolf, 2004), Ctle C,H
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e Insert the relations of the pathBsn M M represents a manufacturing road with a series of

To avoid the adding of priori knowledge about the equipments. For this application, the initial set of se-

process or the programs, the algorithm 3 computesdU€nces2 contains 45 sequences of occurrences
all the paths linking the classes @ (cf. model of of 235 discrete event classes. Each sequence has 6

Figure 1 with the classe8 andD). Itis clear thatif [0 220 event classes occurrences and is 1 to 75 days
Card(Cl) = n, there isn! possible paths. Butitisa |0Ng: Aclassis defined with a singletah= {(@.i)}

simple way to put the emphasis on potential cycles. where the constamis a natural number in the interval
[100Q...,12864 which denote a particular equipment

To illustrate the application of the extension of the
Stochastic Approach proposed in this paper, the algo-
rithms will be applied with the subsequences of two
different sequences of the Figure 2. Naturally, the
products (i.e. the wafers) follow the same series of
state with these two subsequences. BA&4G algo-
rithm produces the model of Figure 3.

3.5 Modeling a Large Scale Process

The algorithm 4 aims at modeling a large scale manu-
facturing process. It simply uses the three algorithms
provided in the preceding sub sections. Given a set of
sequence® = {w }, the algorithm 4 finds a process
modelM with the BIJT4G algorithm:

1. Rewrite the sequences@fwith the algorithm 1. ~ @® @ @ @&» @& @& @& @&

2. Produce the sef3 of sub sequences, with the @ @&» E» @& E& @@ & @&

algorithm 2 Figure 2: TheQ set of sequenceas; (up) andw, (down).

3. VQx do
e Build a process modeVly of the phase with @ @» @ -GH G -G @D @
the algorithm 3.
4. M= UM, = o @ @

Applied to the sequences of the Table 1, this al- Figure 3: Model made with thBJT4G algorithm withQ.

gorithm provides the model of the Figure 1. This al-

gorithm has also been used to model the wafer manu- gz @ @» @ & & B &
facturing process of the Rousset (France) plantofthe g @2 @ @@ &

STMicroelectronics company.
Figure 4: Process Phaseq((Subsequences).

4 APPLICATION

&&WQ 0@
The aim of the STMicroelectronics Company is to
improve the control of the wafer manufacturing pro- Phase 1 Phase 2

cess through the definition of human scale process
models and a better knowledge of the timed con-
straints between the different steps of manufacturing.
A "wafer” is a silicon plate on which are engraved The equivalence classes created with the algo-
electronic chips.A wafer manufacturing process is a rithm 1 are singletons of the for@ = {(@,i)} with
series of elementary treatments called "receipts” that i € [6012...,6065. For example, the class of equiv-
are made on a particular machine called "equipment”. alenceC®3 = {(@013 6013} contains 15 classes:
An "operation” is a particular series of receipts asso- C0013= { c1031 C1032 ' C1045}  This algorithm
ciated with an equipment. A complete series of oper- rewrites the two subsequencesd{Figure 2) to pro-
ations is called manufacturing "road”. The Rousset duce the sub sequences of Figure 4. It is easy to
(France) plant of the STMicroelectronics Company see that the equivalence class of the clags€$*and
counts more than 5.200 receipts, 1.400 operations andC1%4tis C6%13 when the equivalence class of 0¥%°
more than 310 equipments. The supervision systemis theC®924 With the rewritten sequences, the algo-
of the wafer manufacturing process describes a man-rithm 2 identifies the two process phases= { w},
ufacturing road with messages providing the name of w? } andQ, = { w3}, w3 } of Q (Figure 4). The algo-

a receipt, the machine on which the receipt is per- rithm 3 is then used witl2 = { Q1, Q» } to build the
formed, the corresponding operation and the start andmodelsM; andM; of Figure 5. The process model
finish times of the receipt. The algorithm 4 is ap- is simply provided with the union of the two models:
plied at the equipment level so that a process modelM = M; M.

Figure 5: Model of each phase.
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Figure 6: The first part of the process model.

Applied to the 45 sequences, the algorithm 4 Cook, E. J. and Wolf, A. L. (1998). Discovering models
builds a process model that contains 439 classes of  of software processes from event-based daA@M
equivalence (i.e. nodes): this process model repre- Trans:_alctlons on Software Engineering and Methodol-
sents a wafer manufacturing road under the form of a 0ay, 7.2485249.
set of timed sequential binary relation between equip- €00k, E. J. and Wolf, A. L. (2004). Event-based detec-
ments. The Figure 6 shows the beginning of this tion of concurrency. IrProceedings of the 6th ACM
modell Each of the 45 sequences is an instance of SIGSOFT international symposium on Foundations of

) : . ) software engineeringzolume 53, pages 35-45.
this model. The STMicroelectronics experts are cur- 9 A pagd

rently analvzing this model to validate the meaning of Ghallab, M. (1996). On chronicles: Representation, oa-lin
ently analyzing this model {o validate the meaning o recognition and learningProc. Principles of Knowl-

aroad represented at the equipment level of granular-  gdge Representation and Reasoning, Aiello, Doyle
ity. This validation task is difficult because of the size and Shapiro (Eds.) Morgan-Kauffmampages 597—
of process model. 606.

Le Goc, M. (2006)Notion d’observation pour le diagnostic
des processus dynamiques: Application a Sachem et
a la découverte de connaissances temporelldsir,
S5 CONCLUSIONS Faculté des Sciences et Techniques de FS)aint Jerbme.
. r _ Le Goc, M., Bouchg, P., and Giambiasi, N. (2005). Stochas-
This paper presents an extension of the Stochastic Ap- tic modeling of continuous time discrete event se-
proach framework to the modeling of manufacturing quence for diagnosid.6th International Workshop on
processes from the timed data contained in the super-  Principles of Diagnosis (DX'05) , California, USA
vision system database. One of the interesting fea-Pinter, S. and Golani, M. (2004). Discovering workflow
tures of the Stochastic Approach framework of mod- models from activities’ lifespans. I8pecial issue:
eling is the notion of discrete event class. This no- Process/workflow miningolume 53, pages 283-296.
tion is used to define a process phase concept andSchimm, G. (2004). Mining exact models of concurrent
discrete event classes of equivalence that are required ~ workflows. InComputers in Industryvolume 53(3),
large scale manufacturing processes. The definition ~ Pages 265-281.
of these concepts leads to a global algorithm that hasvan der Aalst, W., Weijters, T., and Maruster, L. (2004).
been applied to the modeling of the electronics plates ~ Workflow mining: Discovering process models from
manufacturing process of the Rousset plant of the eD"ent logs. INEEE Transactions on Knowledge and
X . . . ata Engineeringvolume 16, pages 1128-1142.
STMicroelectronics Company. This concrete appli- N
cation shows the operational flavor of the extensions Van der Aalst, W. M. P. and Weijters, A. J. M. M. (2004).

. Process miningSpecial issue of Computers in Indus-
of the Stochastic Approach Framework. try, 53:231-244.
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workflow models from event-based data using little
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