
DATABASE VERSION CONTROL
A Software Configuration Management Approach to Database Version Control

Stephen Mc Kearney
Datatrust Software, Bournemouth, U.K.

Konstantina Lepinioti
School of Design, Engineering and Computing, Bournemouth University, Talbot Campus, Bournemouth, U.K.

Keywords: Databases, database schema, version control, source code control, change management.

Abstract: This paper introduces a database configuration management tool, calledDBVersion, that provides database
developers with many of the benefits of source code control systems and integrates with software configura-
tion tools such as Subversion. While there has been a lot of research in software configuration management
and source code control, little of the work has investigated database configuration issues.DBVersion’s main
contribution is to allow database developers to use working practices such as version control, branching and
concurrent working that have proved successful in traditional software development.

1 INTRODUCTION

Database refactoring has been proposed as one ap-
proach to making database design more agile (Ambler
and Sadalage, 2006). An important part of software
refactoring is tracking changes and being able to undo
actions easily. However, while there has been a lot of
research in software configuration management and
source code control (Conradi and Westfechtel, 1998),
little of the work has investigated database configura-
tion issues. This paper introduces a database config-
uration management tool, calledDBVersion, that pro-
vides database developers with many of the benefits
of source code control systems and integrates with
software configuration tools such as Subversion (Pi-
lato et al., 2004).

1.1 Current Approaches

Two approaches to database configuration manage-
ment are common. In the first approach, database
comparison software, such as DBGhost (Innovartis,
2008) or Oracle Change Management (Oracle, 2007),
compares two database instances and generates a list
of differences as an update script that can be applied
to the older database. This approach has been used
to introduce version control into database-centric ap-
plication development (Ploski et al., 2007). How-

ever, not all changes can be identified by compar-
ing schemas, for example, moving an attribute may
be recorded as more than one change rather than as a
single logical change. In the second approach, the de-
veloper writes change scripts to update the database
and may keep different change scripts for each mod-
ification made. This is a popular but more informal
approach that is simple to implement and can be in-
tegrated with existing software configuration tools.
However, when working with the database, develop-
ers do not benefit from many aspects of version con-
trol such as reverting changes or concurrent work-
ing. Also, change scripts tend to be database specific,
which limits their use to one database management
system (DBMS).

There are a small number of software tools that
take a more structured approach to the problem.
LiquiBase (LiquiBase, 2008), for example, manages
change scripts as XML files. Each change is imple-
mented using a database independent language and
so can be applied to different DBMSs. This is im-
portant as there are many different database systems
and developers can often be working on one system
but targeting another. LiquiBase supports basic ver-
sion control processes such as reverting changes and,
because it uses text files, it can be easily integrated
into existing source control systems. We believe our
approach is more closely integrated with standard de-

81
Mc Kearney S. and Lepinioti K. (2008).
DATABASE VERSION CONTROL - A Software Configuration Management Approach to Database Version Control.
In Proceedings of the Third International Conference on Software and Data Technologies - ISDM/ABF, pages 81-87
DOI: 10.5220/0001889000810087
Copyright c© SciTePress

velopment approaches as a DBVersion repository is
not only stored in the source code repository but DB-
Version uses the source code system to help manage
versioning, branching and conflicts. We have also im-
plemented a sandbox style of development that allows
the developer to checkout and manage a version of
the database in a similar manner to traditional source
code sandboxes (Vesperman, 2006).

1.2 Benefits of Configuration
Management

Software configuration management has been part
of software development best practice for many
years. Version control tools such as CVS (Vesper-
man, 2006), Subversion (Pilato et al., 2004) and Per-
force (Wingerd, 2005) provide sophisticated support
for managing changes, versions and branches. These
tools support concurrent working and conflict reso-
lution using sandboxed workspaces and automated
merging. Version control systems store a complete
history of the software which is invaluable for change
control and bug tracking. In addition, they are well
integrated with issue tracking and requirements col-
lection systems.

In application development, changes to the source
code can have corresponding changes that must be ap-
plied to the database schema. When a new software
version is released, it is important to apply the correct
sequence of changes to the live database. This can
often involve writing complex data scripts that must
update the schema and the data. A database configu-
ration management system would automatically gen-
erate upgrade and downgrade scripts from the history
of changes recorded during the development process.

1.3 Software Configuration
Management Concepts

In the following sections, we shall review the com-
ponents of a standard software configuration model
upon which DBVersion is designed (Conradi and
Westfechtel, 1998).

1.3.1 Repository and Workspace

The repository is a complete history of all objects un-
der version control (for example, source code files).
When a developer wishes to make changes to the soft-
ware, they check-out a version of the source code into
a local workspace containing all version controlled
objects. Workspaces allow developers to work inde-
pendently of each other. When the developer has fin-

ished a set of changes, they commit the workspace
back to the repository.

Conflicts occur when an object that is modified in
the workspace has also been modified and committed
by another developer. In this case, the version control
system tries to merge the second developer’s changes
into the workspace. When the workspace contains
conflicts, it is the responsibility of the developer to
resolve the problems before trying to commit their
changes to the repository. The repository should con-
tain an unconflicted version of the system and the de-
veloper can revert to a clean version of the software at
any time.

1.3.2 Versions, Revisions and Change Sets

How a version control system manages changes be-
tween versions depends on the version control model
used. Subversion assigns a single revision number
to each set of changes committed to the repository.
At each commit point the system calculates the set
of changes that have occurred since the last commit.
Each revision consists of a set of changes that can be
applied to the previous revision to produce the current
revision. For source code that is stored in text files a
set of changes is represented as a series of additions
and deletions to the previous version of the file. For
efficiency reasons, the latest version of a file is stored
in the repository with previous versions stored as re-
verse deltas (Tichy, 1985).

1.3.3 Branching and Merging

An important feature of version control systems is the
ability to create separate development branches. For
example, developers are often called upon to fix prob-
lems with a previous version of the software and to
do so without changing the current version. Projects
start with a single line of development called thetrunk
but the developer can create a branch of the trunk
that sits alongside the main development (see figure
1). Changes can be made to a branch without affect-
ing the trunk. This model allows different versions of
the software to be developed without interfering with
each other.

Figure 1: Trunk and Branches.

ICSOFT 2008 - International Conference on Software and Data Technologies

82

An important part of branching is the ability to
merge changes from one branch into another (see fig-
ure 2). For example, after fixing a bug in version 1
of an application it may be necessary to merge the fix
into version 2. Ideally, this process should be per-
formed automatically or with the minimum of user
intervention. Merging is an important part of concur-
rent development processes and is particularly impor-
tant for large teams.

Figure 2: Merging Branches.

2 DBVERSION

In this section, we explain how we applied soft-
ware configuration concepts to database configura-
tion management in the toolDBVersion. The bene-
fits of this approach include better concurrent work-
ing, improved history tracking and the ability to use
advanced development techniques such as branching
and merging. The current implementation uses Sub-
version but the approach can be applied to similar sys-
tems.

2.1 Tracking Changes

There are two approaches to tracking change in a
database schema. The first approach is to track
changes between versions by comparing a previous
version of the schema with a later version. This
is a state-based approach (Conradi and Westfechtel,
1998) that builds a list of differences and can be
used to generate a script which converts one database
schema to another. The state-based approach is used
by systems such as DBGhost (Innovartis, 2008) and
Oracle Change Management (Oracle, 2007). How-
ever, although differences can be identified, it is not
always possible to correctly describe the exact change
that occurred. For instance, renaming a table attribute
will not necessarily be tracked as arename operation
but as two operations:drop andcreate.

Instead of comparing schema versions,DBVersion
tracks individual schema modification commands.
Changes to the current version are written in a script
file and applied to the database using theapply com-
mand. This approach is similar to thealter com-
mand in standard SQL and has been used in Ruby
on Rails Database Migrations (Thomas et al., 2005).
Tracking individual changes has the advantage that

dbv = DBVersion.new(’test.dbv’)
DBI.connect(’test’, ’u’, ’p’) do | dbh |
dbv.apply(dbh) do

create_table :t4, :a1, ’varchar’, 10
add_attribute :t4, :a2, ’integer’
add_attribute :t4, :a3, ’varchar’, 20

end
end

Figure 3: Database Change Script.

more complex database refactorings can be imple-
mented. For example, themove-attribute com-
mand moves an attribute from one table to another
based on matching primary/foreign key values.

Theapply command reverts any changes made to
the database by a previousapply so that the change
script is always run on a clean version of the database.
Figure 3 shows a simple database change script.

2.2 Database Workspace

A database workspace is contained in the Subversion
workspace and provides a sandbox environment
for making schema changes. It consists of three
components:

Schema Descriptor File. A schema descriptor
file contains the commands to create one version
or branch of the database schema from an empty
database instance. The schema descriptor contains
a sequence of change sets each of which contains
a sequence of schema modification (or refactoring)
commands.

Database Instance.The database instance contains
the current version of the database schema and is used
to test the database. TheDBVersion synchronize
command modifies the database instance to match
the version of the database contained in the schema
descriptor file. If necessary, thesynchronize
command will (i) rollback a newer version of the
database, (ii) rollforward an older version of the
database, or (iii) switch one schema branch to
another.

Change Script. The change script is the set of
schema modification commands to be applied to
the current database version as described in section
2.1. The database instance is modified using the
DBVersion apply command that also updates the
workspace schema descriptor file if the changes are
successful (see section 2.1).

Changes to the database schema can be commit-
ted to the Subversion repository using the standard
Subversioncommit command or reverted using the

DATABASE VERSION CONTROL - A Software Configuration Management Approach to Database Version Control

83

revert command.

2.3 Database Repository

The database repository consists of one or more
schema descriptor files with each descriptor repre-
senting one branch of the database. The database
repository is stored in a version control system
such as Subversion where schema descriptors can be
branched and merged alongside the source code.DB-
Version understands the Subversion command inter-
face and manages the database repository as part of
the Subversion repository.DBVersion uses the Sub-
versionstatus andinfo commands to track the sta-
tus of the database repository. WhenDBVersion is
asked to perform any actions on the repository, it
can identify whether the repository is unchanged, has
been modified or is in conflict.

2.4 Concurrent Changes

An important function of a version control system is
the ability to merge other users’ changes into the cur-
rent workspace and resolve any conflicts that might
occur. In DBVersion, we have adopted a simple
method of merging that outputs the set of changes that
have to be merged and allows the developer to resolve
any conflicts the merge may cause.

There are two circumstances under which differ-
ent development paths have to be combined: (i) merg-
ing changes on the current workspace branch that
have been made by another developer, calledupdat-
ing and (ii) merging changes on another branch into
the current workspace branch, calledmerging.

2.4.1 Updating a Branch

DBVersion uses Subversion to identify merges. The
DBVersion repository is stored as a single binary file
in the Subversion repository. When the developer
tries to commit a set of changes to the repository, a
check is made to see if the file has been changed. The
alternatives are:

No Changes in the Source Code Repository.If no-
one has committed changes in the current branch then
the DBVersion repository can be committed without
conflict.

Changes in the Source Code Repository.If some-
one has committed changes in the current branch
then the Subversion will produce a conflict. Because
the DBVersion repository is a binary file, Subver-
sion will not attempt to resolve the conflict but will
generate two additional files for the conflicted file

test.dbv labeledtest.dbv.merge-left.rXXX and
test.dbv.merge-right.rYYY where XXX is the re-
vision of the database before the latest changes and
YYY is the revision of the database after the latest
changes.

The next step depends on the developer but the
normal process would be:

1. Execute theDBVersion resolve command on the
conflictedDBVersion repository. This will roll-
back the developer’s current changes and rollfor-
ward the database so that it matches the latest
database revision.

2. Apply the developer’s change script to the newly
updated version of the database instance and fix
any problems or issues that occur. For example,
the update may have deleted an attribute that the
developer assumes still exists. This process can be
done by editing the change script and reapplying
it.

3. Commit the current workspace as a new revision.

2.4.2 Merging From a Different Branch

In this scenario, the main development branch,b1, has
been branched at some stage in the past and another
developer has been making changes on the alternative
branch,b2. At some point the changes on branchb2
must be pulled into the branchb1 and merged into the
final version of the database.

Merging changes made on branchb2 into another
branchb1 requires taking each of the change sets from
branchb2 and adding them to branchb1. DBVersion
does not attempt to identify conflicts that might oc-
cur when changes fromb2 are added tob1. Instead,
the DBMS itself is used to identify problems when
the merged changes are applied to the database in-
stance.DBVersion writes achange script for branch
b1 that contains all the changes fromb2. This new
change script can be applied to the database instance
and any errors identified and fixed. When the devel-
oper is happy that the newchange script is valid, they
commit the changes to branchb1.

As with updating, merging uses the source
code system to process the merge. The de-
veloper requests Subversion to merge a differ-
ent branch into the current one and, because
the DBVersion repository is a binary file, two
files are created, test.dbv.merge-left and
test.dbv.merge-right representing the original
version of the database and the version of the
database that is to be merged into the current version.

The merge process is as follows:

1. Execute the Subversion merge command to merge
one Subversion branch into another. In the case

ICSOFT 2008 - International Conference on Software and Data Technologies

84

of a DBVersion repository, this will produce two
additional files. The files represent the two sides
of the merge process, the right hand side and the
left hand side (Pilato et al., 2004).

2. Execute theDBVersion merge command. This
takes the right-hand side of the merge and com-
pares it to the base and then compares the left-
hand side to the base. It extracts the set of changes
that are in either the right-hand side of the merge
or the left-hand side of the merge. These changes
are applied to the current branch to bring it up-to-
date with the merged branch.DBVersion writes
out a merge script that describes the sequence of
changes to be applied to the target branch.

3. Execute theDBVersion apply command to ap-
ply the new merged change script to the current
database instance. This rolls back the current set
of changes and applies the merged set of changes.

4. Fix any conflicts that occurred trying to run the
merged script. As with the update, the merge may
conflict with the developer’s script. For example,
the developer may have changed an attribute that
the merged branch deleted.

5. Commit the new database workspace to theDB-
Version repository and then commit the Subver-
sion repository.

Note that, as with source code versioning, the
merge happens in the database workspace and the
DBVersion schema descriptor is only updated if the
apply command is successful. This means that the
repository cannot contain an invalid version of the
database.

3 DATA MIGRATION

One of the issues raised by applying version control
principles to database schema configuration is how
to migrate the data between versions. This section
discusses some of these issues and introduces the ap-
proach used inDBVersion.

3.1 Migration Problems

For development and test databases, data migration
is a convenience that can make working with the
database easier. For production databases data mi-
gration is a necessary component of any schema ver-
sion control solution. The most common method of
data migration is to write dedicated software to per-
form the upgrade. These programs often use a form
of “dump and load” between versions. For exam-
ple, each version of the Subversion software can read

dump files produced by any previous version of the
software (Pilato et al., 2004). This is an interesting
example of a source control system trying to manage
a data versioning problem.

A recent development is the Ruby on Rails Frame-
work’s Database Migrations that formalise the pro-
cess of migrating one version of a database to another
(Thomas et al., 2005). Ruby on Rails Database Mi-
grations is a simple but powerful form of schema ver-
sion control and, because it allows almost any algo-
rithm to be executed during the up and down migra-
tion phases, it can support data instance migration as
well.

The approach used inDBVersion is based on
database refactoring (Ambler and Sadalage, 2006).
Database refactorings describe specific database
changes and provide developers with a library of
changes they can perform. The main advantage of
refactoring is that the results are well known and can
be easily tested. The LiquiBase (LiquiBase, 2008)
database version control system uses simple refactor-
ings to describe schema changes. It is our proposal to
use refactoring to control changes to both the schema
and data.

3.2 Schema Modifications and
Refactorings

Schema modification refers to the process of adding,
changing or removing elements in the database
schema. Simple modifications include:

• Create relation

• Drop relation

• Add attribute

• Delete attribute

These modifications have a direct correspondence to
standard relational database modification commands
such as the SQL ALTER commands.

During the software development process, a sin-
gle change in the software may require a number of
modifications to be made to the database, for exam-
ple, moving an attribute from one entity to another
requires creating a new attribute in a relation, moving
the data from the original attribute to the new attribute
and, finally, dropping the original attribute. Many of
these changes can be expressed as higher level refac-
torings.

Refactoring is the process of changing the struc-
ture of a program while maintaining the same result
from the algorithm. In database refactoring, the struc-
ture of the data is changed to improve the database
design. Refactorings can be expressed as sequences

DATABASE VERSION CONTROL - A Software Configuration Management Approach to Database Version Control

85

of schema modification commands and in many cases
the data can be migrated appropriately. However,
more complex schema modifications can cause data
migration problems.

In the current work, we have limited our interest
to the set of refactorings necessary to normalise a re-
lational database. For example, some of the refactor-
ings that we currently offer include:

• Convert an attribute to a table

• Convert a table to an attribute

• Extract dependent attributes to a new table

• Move attributes to an existing table

• Merge two tables

• Split a table

Each refactoring is defined in terms of two opera-
tions: (i)rollforward, which applies the refactoring to
an existing version, and (ii)rollback, which reverses
the refactoring process. Of course, some refactorings
lose data when they are applied and reversing them
does not reconstruct the data.

DBVersion is implemented in Ruby and refactor-
ing operations are simple Ruby plugins, which makes
it easy to add new refactorings. A refactoring can use
any sequence of SQL statements but it is important
that eachrollforward operation has a corresponding
rollback operation. As figure 3 shows, the change
scripts are also written in Ruby which isolates the de-
veloper from database-specific SQL code embedded
in the plugins.

Database researchers have investigated similar
problems while studying how to map a given database
to an alternative schema, called Schema Mapping
(Yan et al., 2001). We are currently investigating the
best combination of schema modifications and refac-
torings for different development scenarios.

3.3 Database Releases

The final part ofDBVersion is the release management
process. Unlike source control systems, in which ex-
tracting and compiling a version of the source code
produces a version of the software, database version-
ing is more akin to patching source code. A database
version control system must generate a patch to an
existing database.

Our current solution to this problem is to distribute
DBVersion with an application upgrade. When the
synchronise command is executed,DBVersion will
identify the current version of the database instance
and generate the correct database script to upgrade the
database to the current version.

4 RELATED WORK

As discussed, there are a small number of software
products that help to manage database changes, for
example, LiquiBase (LiquiBase, 2008) and DBGhost
(Innovartis, 2008). None of these systems is widely
used. Compared to these systems,DBVersion’s main
contribution is to provide a closer integration with
source control systems and to support database devel-
opment practices that are similar to traditional soft-
ware development good practice.

There are three database research areas that deal
with database configuration issues (Roddick, 1995):
(i) schema modification, which allows changes to
existing database instances, (ii) schema evolution,
which supports changes the schema without losing
any data, and (iii) schema versioning, which allows
access to previous versions of the database schema
and data.

Although these techniques deal with changing the
database schema, they focus on managing change
within live databases rather than tracking change dur-
ing the development process. For example, the Mi-
crosoft Repository supports versioning in an SQL
Server database (Bergstraesser et al., 1999) with some
performance and storage costs. Similar approaches
have been applied in object database systems that
must persist data objects and also manage different
versions of those objects as the code changes (Sciore,
1994; db4objects Inc., 2008). However, most object
databases do not provide the developer with a history
of changes.

Temporal databases record a time dimension with
data and track (i) the real world time of an event and
(ii) the transaction time in the database (Conradi and
Westfechtel, 1998). Temporal databases do not han-
dle schema versioning or evolution and so do not pro-
vide support for database developers.

5 CONCLUSIONS

In this paper, we have described the problem of
database version control. We have distinguished
database version control from other database-oriented
methods such as schema modification, schema evolu-
tion and schema versioning by focusing on develop-
ing a method that integrates well with standard soft-
ware development processes and tools. The system
we have described,DBVersion, is an experimental
prototype that integrates with the Subversion source
control system. Close integration with existing source
control systems is one of the characteristics ofDBVer-
sion.

ICSOFT 2008 - International Conference on Software and Data Technologies

86

We plan to implement a wider range of database
refactorings and formalise the refactoring process.
We are currently testing the software in a small soft-
ware development team.

REFERENCES

Ambler, S. W. and Sadalage, P. J. (2006).Refactorings
Databases: Evolutionary Database Design. The
Addison-Wesley Signature Series. Addison-Wesley.

Bergstraesser, T., Bernstein, P., Pal, S., and Shutt, D. (1999).
Versions and workspaces in microsoft repository. In
Proceedings of the ACM SIGMOD, pages 532–533,
Philadelphia. Microsoft Corporation.

Conradi, R. and Westfechtel, B. (1998). Version models for
software configuration management.ACM Computing
Surveys, 30(2):232–282.

db4objects Inc. (2008).db4o. db4objects Inc.

Innovartis (2008).DB Ghost. Innovartis.

LiquiBase (2008).LiquiBase. LiquiBase.

Oracle (2007).Oracle Change Management Pack for Ora-
cle Database 11g. Oracle.

Pilato, C. M., Collins-Sussman, B., and Fitzpatrick, B. W.
(2004). Version Control with Subversion. O’Reilly
Media, Inc.

Ploski, J., Hasselbring, W., Rehwinkel, J., and Schwierz,
S. (2007). Introducing version control to database-
centric applications in a small enterprise.IEEE Soft-
ware, 24(1):38–44.

Roddick, J. F. (1995). A survey of schema versioning is-
sues for database systems.Information and Software
Technology, 37(7):383–393.

Sciore, E. (1994). Versioning and configuration manage-
ment in an object-oriented data model.VLDB J.,
3(1):77–106.

Thomas, D., Heinemeier, D., and Breedt, L. (2005).Ag-
ile Web Development with Rails: A Pragmatic Guide.
Pragmatic Bookshelf.

Tichy, W. F. (1985). RCS — a system for version control.
Software Practice and Experience, 15(7):637–654.

Vesperman, J. (2006).Essential CVS. O’Reilly Media, Inc.

Wingerd, L. (2005). Practical Perforce. O’Reilly Media,
Inc.

Yan, L. L., Miller, R. J., Haas, L. M., and Fagin, R. (2001).
Data-driven understanding and refinement of schema
mappings. InSIGMOD ’01: Proceedings of the 2001
ACM SIGMOD international conference on Manage-
ment of data, pages 485–496, New York, NY, USA.
ACM.

DATABASE VERSION CONTROL - A Software Configuration Management Approach to Database Version Control

87

