PIPELINED PARALLELISM IN MULTI-JOIN QUERIESON
HETEROGENEOUS SHARED NOTHING ARCHITECTURES

Keywords:

Abstract:

Mohamad Al Hajj Hassan and Mostafa Bamha
LIFO, University of Orléans, BP 6759, 45067 Orléans cedex 2, France

PDBMS (Parallel Database Management Systems), Intra-transaction parallelism, Parallel joins, Multi-joins,
Data skew, Dynamic load balancing.

Pipelined parallelism was largely studied and successfully implemented, on shared nothing machines, in sev-
eral join algorithms in the presence of ideal conditions of load balancing between processors and in the absence
of data skew. The aim of pipelining is to allow flexible resource allocation while avoiding unnecessary disk
input/output for intermediate join results in the treatment of multi-join queries.

The main drawback of pipelining in existing algorithms is that communication and load balancing remain
limited to the use of static approaches (generated during query optimization phase) based on hashing to re-
distribute data over the network and therefore cannot solve data skew problem and load imbalance between
processors on heterogeneous multi-processor architectures where the load of each processor may vary in a
dynamic and unpredictable way.

In this paper, we present a new parallel join algorithm allowing to solve the problem of data skew while
guaranteeing perfect balancing properties, on heterogeneous multi-processor Shared Nothing architectures.
The performance of this algorithm is analyzed using the scalable portable BSP (Bulk Synchronous Parallel)
cost model.

1 INTRODUCTION and synchronizations in this architecture.

Many algorithms have been proposed to handle
data skew for a simple join operation, but little is

The appeal of parallel processing becomes very ynown for the case of complex queries leading to
strong in applications which require ever higher per- i iti-joins (Lu et al., 1994; DeWitt et al., 1992; Hua
formance and .partlculgr_ly in appl|cat|on§ such as: gng Lee, 1991).

data-warehousing, decision support, On-Line Analyt- o vever, these algorithms cannot solve load imbal-
ical Processing (OLAP) and more generally DBMS 5,06 nroblem as they base their routing decisions on

(Liu and Rundensteiner, 2005; Datta et al., 1998).

incomplete or statistical information.

However parallelism can iny maint.ain accep.ta}ble On the contrary, the algorithms we presented in
performance through efficient algorithms realizing (gamha and Hains. 1999° Bamha and Hains. 2000
complex queries on dynamic, wregulgr and distributed Bamha, 2005) for treating queries involving one join
data. Such algorithms must be designed to fully x- 5neration use a total data-distribution information in
ploit the processing power of multi-processor ma- {he form of histograms. The parallel cost model we
chines and the ability to evenly divide load among 45y allows us to guarantee that histogram manage-
processors while minimizing local computation and ment has a negligible cost when compared to the effi-
communication costs inherent to multi-processor ma- ciency gains it provides to reduce the communication

chines.

cost and to avoid load imbalance between processors.

Research has shown that the join operation is par-wever the problem of data skew is more acute with
allelizable with near-linear speed-up on Shared Noth- o, iti_joins because the imbalance of intermediate re-

ing machines only under ideal balancing conditions. gjts is unknown during static query optimization (Lu
Data skew can have a disastrous effect on perfor- o 5 1994).

mance (Mourad et al., 1994; Hua and Lee, 1991, De-

To this end, we introduced in (Bamha and

Witt etal., 1992; Bamha and Hains, 2000; Bamha and gyprayat, 2003) a pipelined version of OSFA-Join
Hains, 1999) due to the high costs of communications
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based on a dynamic data redistribution approach al- Wilschut et al., 1995). In these strategies intra-

lowing to solve the problem of Attribute Value Skew operator, inter-operator and pipelined parallelisms

(AVS) and Join Product Skew (JPS) and guaranteeingcan be used. These strategies are divided into four
perfect load balancing on homogeneous distributed principal categories presented thereafter.

Shared Nothing architecture. Sequential Parallel Execution is the simplest strat-

In_homogeneous multi-processor architectures, gy 15 evaluate, in parallel, a multi-join query. It does
these algorithms are insensitive to data skew and guar-,4t induce inter-operator parallelism. Simple joins

antee perfect load balancing between processors dur,q evaluated one after the other in a parallel way.

ing all the stages of join computation because dataThus, at a given moment, one and only one simple

redistribution is carried out jointly by all processors join is computed in parallel by all the available pro-
(and not by a coordinator processor). Each processor.qggors.

deals with the redistribution of the data associated to . . .
This strategy is very restrictive and does not pro-

a subset of the join attribute values, not necessarily its vide efficient resource allocation owing to the fact that
“own” values. However the performance of these al- ; o e
A simple join cannot be started until all its operands

gorithms degrades on heterogeneous multi-processo are entirely available, and whenever a join operation
architectures where the load of each processor may. y ' J 3
is executed on a subset of processors, all the other

vary in a dynamic and unpredictable way. L 3 X ;
To this end we introduced in (Hassan and Bamha processors remain idle until the next join operation.
" Moreover this strategy induces unnecessary disk In-

2008) a paraliel join algorithm callédFA-Join (Dy- put/Output because intermediate results are written to
namic Frequency Adaptive parallel join algorithm) to disk and notimmediately used for the next operations.

handle join queries on heterogeneous Shared Noth- i i
ing architectures allowing to solve the problemofdata 10 reach acceptable performance, join algorithms
skew while guaranteeing perfect balancing properties. used in this strategy should reduce the load |m'balance
In this paper, we present a pipelined versioDEA- between all the processors and th(_a number of idle pro-
Joinalgorithm calledPDFA-Join(Pipelined Dynamic ~ C€SSOrs must be as small as possible.

frequency Adaptive join algorithm). The aim of parallel Synchronous Execution uses in addition to
pipelining in PDFA-Joinis to offer flexible resource intra-operator parallelism, inter-operator parallelism
allocation and to avoid unnecessary disk input/output (Chen et al., 1992b). In this strategy several simple

for intermediate join result in multi-join queries. We join operations can be computed simultaneously on
show thatPDFA-Joinalgorithm can be applied effi-  disjoint sets of processors.

ciently in various parallel execution strategies mak-  The parallel execution time of an operator depends
ing it possible to exploit not only intra-operator par- - o, the degree of parallelism. The execution time de-

allelism but also inter-operator parallelism. These al- e5ses by increasing the number of processors un-
gorithms are used in the objective of avoiding the ef- 4| the arrival at a point of saturation (called opti-
fect of load imbalance due to data skew, and to reduce 5| degree of parallelism) from which increasing the

the communication costs due to the redistribution of ,mper of processors, increases the parallel execution

the intermediate results which can lead to a significant e (Rahm, 1996: Chen et al., 1992b). The main dif-

degradation of performance. ficulty in this strategy lies in the manner of allocating
the simple joins to the available processors and in the
choice of an appropriate degree of parallelism to be

2 LIMITATIONS OF PARALLEL used for each join.
EXECUTION STRATEGIES Indthis sﬁraltegy, the (;bjectir\]/e olf EU(IIh aIIocgtion_ is
to reduce the latency where the global execution time
FOR MULTI-JOIN QUERI ES of all operators should be of the same order. This also

applies to the global execution time of each operator
Parallel execution of multi-join queries depends on inthe same group of processors where the local com-
the execution plan of simple joins that compose it. putation within each group must be balanced.
The main difference between these strategies lies in  This Strategy combines only intra- and inter oper-
the manner of allocating the simple joins to different ator parallelism in the execution of multi-join queries
processors and in the choice of an appropriate degreeand does not introduce pipelined parallelism and large
of parallelism (i.e. the number of processors) used to number of processors may remain idle if aren’t used
compute each simple join. in inter-operator parallelism. This constitutes the
Several strategies were proposed to evaluatemain limitations of this strategy for flexible resource
multi-join queries (Liu and Rundensteiner, 2005; allocation in addition to unnecessary disk/input oper-
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ation for intermediate join result. 3 PARALLELISM IN MULTI-JOIN
Segmented Right-Deep Execution. Contrary to a QUERIES USING PDFA-JOIN
parallel synchronous strategy, $egmented Right- ALGORITHM

Deep executiorfChen et al., 1992a; Liu and Run-

densteiner, 2005) employs, in addition to intra- pjpelining was largely studied and successfully im-
operator parallelism, pipelined inter-operator paral- plemented in many classical join algorithms, on
lelism which is used in the evaluation of the right- shared Nothing (SN) multi-processor machine in the
branches of the query tree. presence of ideal conditions of load balancing and
This strategy offers more flexible resource allocation jj the absence of data skew (Liu and Rundensteiner,
than parallel synchronous execution strategy : many 2005). Nevertheless, these algorithms are generally
joins can be computed on disjoint sets of processors topased on static hash join techniques and are thus very
prepare hash tables for pipelined joins. Its main lim- gensitive to AVS and JPS.

itation remains in the fact that pipelined parallelism The pipelined algorithm we introduced in (Bamha
cannot be started until all the hash tables are com- 5nq Exbrayat, 2003) solves this problem and guaran-
puted. Moreover no load balancing between proces- tees perfect load balancing on homogeneous SN ma-
sors can be performed whenever pipelined parallelism chines. However its performance degrades on hetero-

begins. geneous multi-processor architectures.

Full Parallel Execution. (Wilschut et al., 1995; Liu ~ In this paper, we propose to adapFA-Join to

and Rundensteiner, 2005) uses inter-operator paral-PiPelined multi-join queries to solve the problem of
lelism and pipelined inter-operator parallelism in ad- data skew and load imbalance between processors on
dition to intra-operator parallelism. In this strategy, heterogeneous multi-processors architectures.

all the simple joins, associated to the multi-join query, DFA-Joinis based on a combination of two steps :

are computed simultaneously in parallel using dis- o a static step where data buckets are assigned to
jOint sets Of prOCGSSOI’S. |nter-0perat0r parallelism and each processor according to |ts actua| Capacity,
pipelined inter-operator parallelism are exploited ac- : .
cording to the type of the query tree. e thena dy_namlc step executed throughout the join
The effectiveness of such strategy depends on the =~ COMPUtation phase to balance load between pro-
quality of the execution plans generated during the ~ €€SSors. When a processor finishes join process-
query optimization phase and on the ability to evenly "9 Of its assigned buckets it asks a local head
divide load between processors in the presence of node for untreated buckets of another processor.
skewed data. This combination of static and dynamic steps allows
All existing algorithms using this strategy are US to reduce the join processing time because in par-
based on static hashing to redistribute data over theallel systems the total executing time is the time taken
network which makes them very sensitive to data DY the slowest processor to finish its tasks.
skew. Moreover pipelined parallelism cannot startun- ~ To ensure the extensibility of the algorithm, pro-
til the creation of hash tables of build relations. We cessors are partitioned into disjoint sets. Each set has
recall that all join algorithms used in these strategies @ designed local head node. Load is first balanced
require data redistribution of all intermediate join re- inside each set of processors and whenever a set of
sults (and not only tuples participating to the join re- processors finishes its assigned tasks, it asks a head
sult) which may induce a high cost of communication. node of another set of processors for additional tasks.
In addition no load balancing between processors can
be performed when pipelined parallelism begins, this 3.1 Detailed Algorithm
can lead to a significant degradation of performance.

In the following section we will preserfPDFA- In this section, we present a parallel pipelined exe-
Join (Pipelined Dynamic Frequency Adaptive Join): cution strategy for the multi-join querg, = (R xa,
a new join algorithm which can be used in different S) xp, (U x4, V), given in figure 1 (this strategy can
execution strategies allowing to exploit not only intra- be easily generalized to any bushy multi-join query)
operator but also inter-operator and pipelined paral- whereR, S, U andV are source relations arad, a;
lelism. This algorithms is proved to induce a mini- andb; are join attributes.
mal cost for communication (only relevant tuples are We will give in detail the execution steps to
redistributed over the network), while guaranteeing evaluate the join query; = R x5, S (the same
perfect load balancing properties in a heterogeneoustechnique is used to evaluage = U x5, V).
multi-processor machine even for highly skewed data.
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§4<] Algorithm 1. Parallel PDFA-Join computation steps to
evaluate the join of relation® and S on attributea; and
/ \ preparing the next join on attribuke.

DC%M In Parallel  (on each processor)i € [1,p] do
/ \ 1 » Create local histogramdlist® (R} ) of R and, on the fly,
: hash the tuples of relatidR into different buckets
. X, according to the values of join attribuse,
/ \ / \ I> Create local histogramdlist? (§) of § and, on the fly,
hash the tuples of relatio® into different buckets,
S 2 > Create global histogram fragmenl‘skisti:l (R) of R,
Figure 1: Parallel execution of a multi-join query using ™ Create global histogram fragmentsist™ (S) of §
PDFA join algorithm. > MergeHiStial(R) andHiStial(S) to creatd-listial(R X S),
3 » Create communication templates for only relevant tuples,
> Filter generated buckets to create tasks to execute on

We_first assume that each relatiore {R,SU,V}is each processor according to its capacity,
horizontally fragmented amongprocessors and: > Create local histograrﬁslistbl(Ri X §) of join result
° -|-I is the frag ment of pIaced on processQr on attributeb; of the next join using histograms and

. . . communication templates (See Algorithm 2.),
e H 'StX(T) denotes the h|St09 ra?m)f T with respect 4 » Exchange data according to communication templates,

to the join attributex, i.e. a list of pairs(v,ny) 5 B Execute join tasks and store join result on local disk.
whereny # 0 is the number of tuples df having Loop until no task to execute
valuev for x. The histogram is often much smaller B> Ask a local head node for jobs from overloaded
and never larger than the relation it describes, RR-CSS0rS, , .
> Steal a job from a designated processor and execute it,
e Hist*(T;) denotes the histogram of fragmeft D> Store the join result on local disk.
placed on processor End Loop

e Hist*(T) is processoi's fragment of the global Ene,

histogram of relatiorT,
o Hist*(T)(v) is the frequencyry,) of valuevin T, TiMeyhasa = O(ma)q:lmpcir/w* (IR[+1S]).

e HistX(Ti)(v) is the frequency of valuein T;, Phase 2. Computing the Histogram of R x S
| T|| denotes the number of tuplesdf and In this phase, we computgist™ (R x S) on each pro-

e |T|is the size (in bytes or number of pagesylof ~ cessori. This helps in specifying the values of the
Our algorithm Qlgorithm 1) can be divided into join attribute that participate in the join result, so only

the following five phases. We give for each phase an :ﬁrb):,ﬁz dO]i‘r?;?Srtsh;?Iathe;séovm?ciea\lﬁ\lfjvisugr'?o rri?rlﬁ
upper bound of the execution time using BSP (Bulk mize th mmuni F:I ncost. The histoarankef S
Synchronous Parallel) cost model (Skillicorn et al., € the communication cost. 1he nistogra

\/ali . ] is simply the intersection afist® (R) andHist® (S), so
1997; Valiant, 1990). Notatio®(...) only hides small : ; ; N
constant factors : they depend only on the implemen- we must first compute the global histograHist™ (R)

a P
tation, but neither on data nor on the BSP machine a.ndH'Sti ‘(S bY redistributing the tuples (.)f the local
histograms using a hash function that distributes the
parameters. - ; .
values of the join attribute in a manner that respects
Phase 1. Creating L ocal Histograms the processing capacity of each processor.
In this phase, we create in parallel, on each proces-The cost of this step is:
sori, the local histograndist®(R;) (resp. Hist%(S)) _ _ .
(i=1,...,p) of block R (resp.S) by a linear traver- Timeshase.a = O(m'”(i:"fyaxp‘“ +Px (g [Hist™ (R)[ +

sal of R (resp. S) in time max—y_ p(c| , * [R) Vi [Hist™ (R)]), max o= (9[Rl -+ + IRI)

read/write a page of data from disk on procegsor " ti=L.,

While creating the histograms, tuplesRf(resp. S) _max (g[S 4+ *[|S]])) +|)~

are partitioned on the fly intdl buckets using a hash =1

function in order to facilitate the redistribution phase. \yherey is the fraction of the total volume of data

The cost of this phase is: assigned to processbsuch thatw = (3)/(5/_; ).
Histograms are implemented as balanced trees (B-tree):Yi IS the execution time of one instruction on proces-

a data structure that maintains an ordered set of data to allowSOr i, g is the BSP communication parameter dnd
efficient search and insert operations. the cost of synchronization (Skillicorn et al., 1997;
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Valiant, 1990) (reviewproposition 1of appendix A
for the proof of this cost (Hassan and Bamha, 2008)).
Now we can easily creat¢ist™ (R S) by comput-
ing in parallel, on each processopthe intersection of

Hist™ (R) andHist™(S) in time of order:Timgnase.b =

p (vi +min(|[Hist™ (R)[|, \lHiStaal(S)l\))>-

While creatingHist™(R x S), we also store for
each valuev € Hist*(R x S) an extra information
indexv) € {1,2} such that:

{

The used threshold frequencyfis= p = log(p).
This information will be useful in the phase of the
creation of communication templates.
The total cost of this phase is the sumTomenase a
andTimephase.b-

We recall that the size of a histogram is, in general,
very small compared to the size of base relations.

O(max;:l

,,,,,

indexv) =1 if Hist® (R)(v) > f, or Hist® (S)(v) > fo

(i.e. values associated to high frequencies)

indexv) =2 elsewhere (i.e. values of low frequencies).

Phase 3. Creating the Communication Template

In homogeneous systems workload imbalance may
be due to uneven distribution of data to be joined
among the processors, while in heterogeneous sys
tems it may be the result of allocating to processors
an amount of tuples that is not proportional to actual
capabilities of used machines (Gounaris, 2005).

So in order to achieve an accepted performance,
the actual capacity of each machine must be taken
into account while assigning the data or tasks to each
processor. Another difficulty in such systems lies
in the fact that available capacities of machines in
multi-user systems may rapidly change after load
assignment:
may fastly become underloaded while computing
the join operation and vice-versa. Thus to benefit
from the processing power of such systems, we must

QUERIES ON HETEROGENEOUS SHARED NOTHING
ARCHITECTURES

After that all processors send the computed value
to a designated head node which in its turn calculates
the total number of tuples iR x S (i.e. ||R x S|) by
computing the sum of all received values in time of
order:O(pxg—+1).

Now the head node uses the valug|Bfx §| and the
information received earlier to assign to each proces-
sori a join volume (ol x||R x §|) proportional to its
resources where the valuewdl; is determined by the
head node depending on the actual capacity of each

processor such thathoII =1

Finally, the head node sends to each processm
value ofvol; #||R x | in time of order:O(g* p+1).
The cost of this step is:

TiMhasg.a = O( max y *||Hist™ (R x S)||+ pxg+1).

3.b. Communication Templates Creation St&nm-
munication templates are list of messages that con-
stitute the relations redistribution. Owing to fact that
values which could lead to AVS (those having high
frequencies) are also those which may cause join
product skew in "standard” hash join algorithms, we
will create communication templates for only values
v having high frequencies (i.éndexv) = 1). Tuples
associated to low frequencies (iirdexv) = 2) don't

"have effect neither on AVS nor on JPS. So these tuples

will be simply hashed into buckets in their source pro-
cessors using a hash function and their treatment will
be postponed to the dynamic phase.
So first of all, Hist* (R x ) is partltloned on each
processon into two sub- hlstogramsHusq (R x S
and H|st1 (R x S) such that: v e Histi(l)(R x 9 if
indexv) =1 andve Histi(2>(R x ) if indexv) =

This partitioning step is performed while comput-

the state of an overloaded processoring y, Hist*(R x S)(v) in step 3.a in order to avoid

reading the histogram two times.
We can start now by creating the communication tem-
plates which are computed, in a fist time, on each pro-

not have idle processors while others are overloadedcessori for only valuesv in Hist*(R x S) such that

throughout all the join computation phase.

To this end, we use, as IDFA-join algorithm, a
two-step (static then dynamic) load assignment ap-
proach which allows us to reduce the join processing
time.

3.a. Static Load Assignment Stefdn this step, we
compute, in parallel on each processprthe size
of the join which may result from joining all tuples
related to values € Hist™ (R x S). This is simply the
sum of the frequenciesist™ (R x S)(v) for all values
v of the join attribute inHist™(R x S). This value
is computed by a linear traversal Bfst™ (R x S) in
time: O(. max v *||Hist™ (R x S)||).

the total join size related to these values is inferior
or equal tovol; x||R x §| starting from the value that
generates the highest join result and so on.

It is important to mention here that only tuples
that effectively participate in the join result will be
redistributed. These are the tuplesRpf= R, x Sand
S =S x R These semi-joins are implicitly evaluated
due to the fact that the communication templates are
only created for values that appear in join result
(i.e.ve Histt(Rx 9)).

In addition, the number of received tuplesP{resp.
S) must not exceeslol; « |[R| (resp. voli * ||§|). For
each valuev in Hist*(R x S), processor creates
communicating messagesorderto_send j,i,V)
asking each processpholding tuples oR or Swith
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valuesv for the join attribute to send them to it. (equivalent to a search in a B-tree) is performed in a
If the processing capacity of a processodoesn’t constant time, the cost of the creation of the histogram
allow it to compute the join result associated to all of join resultis :O(max-1__pVi *||R|)-

valuesv of the join attribute inHist® (R » S) 2, then The global cost for this step:

it will not ask the source processojsholding the Ti B .

remaining valuess to redistribute their associated iMepnase.c = (MaX-1....p¥ * ([|Ril] +[1Si]]))-
tuples but to partition them into buckets using a

hash function and save them locally for further join ‘Ajgorithm 2. Join result histogram’s creation algorithm on
processing step in the dynamic phase. Hence it sendsitributeby .

an order_to_save(j,v)message for each processor

holding tuples having valuasof the join attribute. Par ,(OgleaCh node) i< L,p] do
The maximal complexity of creating the communi- > HISP!(Ri X §)=NULL (Create an empty B-tree)
i X (1) For each tuple of faach bucket of relatioR; do
cation templates |Q<ma)q (wi * P yio* | [Hist'™ (R x > freql = Hist® (S)(t.a1) (i.e. frequency of.a; of tuplet)

If (fregl > 0) (i.e. tuplet will be presentinR x S Then
> freq2 = Hist? (R x §)(t.by)
If (fre2 > 0) (i.e valuet.by € Hist? (R x §)) Then

S)H)), because each process$ds responsible of cre-
ating the communication template for approximately

o * [[HistY(R x S)|| values of the join attribute and I UpdateHistP (R @ §)(t.by) = freql+ freqe
for a given valuev at most(p — 1) processors can Else

send data. D> Insert a new couplé.by, freql) into Histbl(Ri X S)
After creating the communication templates, End If

on each processoi, orderto.sendj,i,.) and End If

orderto_savej,.) messages are sent to their EndFor
destination processojswvhenj # i in time: Egger

O( mav (g a = pr[Hist D (Rx 9)[) +1). Phase 4. Data Redistribution

According to communication templates, buckets are
sent to their destination processors.

It is important to mention here that only tuples®f
andSthat effectively participate in the join result will
be redistributed. So each processoeceives a par-
ition of R (resp. S) whose maximal size igol; x||R|
resp. vol « ||R]|). Therefore, in this algorithm, com-
munication cost is reduced to a minimum and the
global cost of this phase is:

The total cost of this step is the sum of the above
two costs.
3.c. Task Generation Stepfter the communication
templates creation, each processorobeys the
orderto_send.,.,.) messages that it has just received
to generate tasks to be executed on each processor. S
it partitions the tuples that must be sent to each pro-
cessor into multiple number of buckets greater than
using a hash function. This partition facilitates task
reallocation in the join phase (phase 5) from over- Timq)hasd_zo<g* max; (voli = (|R| +[S]) +I)
loaded to idle processors if a processor could not fin-
ish its assigned load before the others. After this parti-
tion step, each bucket is sent to its destination proces-

Phase 5. Join Computation

Buckets received by each processor are arranged in a
queue. Each processor executes successively the join
““““ operation of its waiting buckets. The cost of this step

HS”))' o P> - of local join computation is:
In addition, each processorwill partition tu-

ples whose join attribute value is indicated in , S
order_to_save) messages into buckets using the same TiM8ocal.join = O<miaX(CIr/W*V0|i *(IRI+[9+[Rx 3)))-
hash function on all the processors. However, these
buckets will be kept for the moment in their source

processors where their redistribution and join pro-

cessing operations will be postponed till the dynamic
phase.

During this step, local histogram of the join result,
(Hist” (R x ), on attributeb; is created directly from
Hist®(R;) andHist®(S) using Algorithm 2.

Owing to the fact that the access to the histogram

If a processor finishes computing the join related to
its local data and the overall join operation is not fin-
ished, it will send to the head node a message asking
for more work. Hence, the head node will assign to
this idle processor some of the buckets related to join
attribute values that were not redistributed earlier in
the static phase. However, if all these buckets are al-
ready treated, the head node checks the number of non
treated buckets in the queue of the other processors

2This is the case iol; * ||R x S| < 3, Hist™ (Rx S)(V) and asks the processor that has the maximal number
on processor. of non treated buckets to forward a part of them to the
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idle one. The number of sent buckets must respect thethen each generated tuple in queryis immediately

capacity of the idle processor. used to build the hash table. However the join result
And thus, the global cost of join computation of of queryQ is stored on the disk.
two relationsR andS usingPDFA-Joinalgorithm is: At the end of the execution af;, the join result of
Timeppra—join = O max c;',/w*(|R,-\+|Sl»|)+l+ queryQ: is used to probe the hash table. This induces
Thep unnecessary disk input/output. Existing approaches
min (izr?ﬁfpwf*p* (g |Hist™ (R)| +;  ||Hist" (R)|]), require data redistribution of all intermediate join re-

' sult (not only relevant tuples) this may induce high
i:f{lﬁfpwi*(g*|R|+Yi*HRH))+i:ffl{?§[,Yi*(HRiHJrIISiII) communication cost. Moreover data redistribution
+min( max o p (g |Hist® ()| 4y || Hist (S in these algorlthms is based on hashing which make

(max @k px (x| Hist™ (S)] 4y || His™ (S]], them very sensitive to data skew.

“max wi*(g*|S|+Yi*||SH)) +g* max (volyx(|R|+1S]) + In PDFA-Join algorithm, we first compute in par-
i=lp i=lep allel the histograms dR andSon attributea;, and at
Joax (o % px (g |Hist ™D (R % )|+ | | Hist D (R » S)][]) the same time we compute the histogram&Joénd

’ V on attributea,. As soon as these histograms are
+i:rrllg>§p (cj/w*vol,-*qm +[S]+|R x S\))). available, we generate the communication templates

for Q1 and Q@2 and by the way the histograms of the
join results ofQ; andQ> on attributeb, are also com-
puted. Join histograms on attribldgare used to cre-
ate the communication templates fgrwhich makes

Remark
Sequential evaluation of the join & andS on pro-
cessol requires at least the following lower bound:

bound.s. — O(d R R it possible to immediately use Fh_e tuples generated by
undhy, = Q( \;/WJI(ILH:'Ij |++| |:NS|;|F)) Q1 andQ, to evaluate the final join query .
| * . 4 . .
Therefore, parallel join processing gm heteroge- PDFA-Join algorithm achieves several enhance-
Neous Processors requires: ments compared to pipelined join algorithm presented

in the literature : During the creation of communica-

— i
bounda, = Q<ma)q (Cr/W*wi *(R+S+Rx )+ tion templates, we create on the fly the histograms for

vix i ([|RI[+]]9] +||R % SH))). the next join, limiting by the way the number of ac-

PDFA-Join algorithm has optimal asymptotic com- cesses to data (and to the disks). Moreover data re-
plexity when: distribution is limited to only tuples participating ef-
“max_(w # px|HistY (Rx §)[) < fectively to join result, this reduces communication
1=1.-.p : costs to a minimum. Dynamic data redistribution in

max (C'r/w « w + max(|R}, (8], R % S)), PDFA-Join makes it insensitive to data skew while
this is due to the fact that the other terms in guaranteeing perfectload balance during all the stages
Timerpra- join are bounded by those bbundhr,,. of join computation.

Inequality(1) holds if the chosen threshold frequency
fo is greater tham (which is the case for our thresh-
old frequencyf, = p=+log(p)).

PDFA-Joincan be used in various parallel strate-
gies, however in the parallel construction of the his-
tograms for source relations, we can notice that the
. X degree of parallelism might be limited by two fac-
3.2 Discussion tors : the total number of processors available, and

the original distribution of data. A simultaneous con-
To understand the whole mechanismRIDFA-Join struction of two histograms on the same processor
algorithm, we compare existing approaches (based on(which occurs when two relations are distributed, at
hashing) to our pipelined join algorithm using dif- least partially, over the same processors) would not be
ferent execution strategies to evaluate the multi-join really interesting compared to a sequential construc-
query Q = (Rxa ) Xp, (U xg, V) . tion. This intra-processor parallelism does not bring

A Full Parallel execution of DFA-Join algorithm  acceleration, but should not induce noticeable slow-
(i.e. a basic use of DFA-Join where we do not use down : histograms are generally small, and having
pipelined parallelism) requires the evaluationyaf= several histograms in memory would not necessitate
(Rxg S) and Q= (U x4, V)ontwodisjointset  swapping. On the other hand, as relations use to be
of processors, the join results qf and Q2 are then much bigger than the available memory, we have to
stored on the disk. The join result of quagy andQ» access them by blocks. As a consequence, accessing
are read from disk to evaluate the final join query one or several relations does not really matter. Our

Existing approaches allowing pipelining first start pipeline strategy will really be efficient if different
by the evaluation of the join queriegy andQ,, and join operators are executed on disjoint (or at least par-
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tially disjoint) sets of processors. This brings us to
limit the number of simultaneous builds. As a conse-

guence, we have to segment our query trees, similarly

Bamha, M. and Hains, G. (1999). A frequency adaptive
join algorithm for Shared Nothing machineBDCP
Journal, Volume 3, Number 3, pages 333-345

to segmented right-deep trees, each segment (i.e. &hen, M.-S., Lo, M. L., Yu, P. S, and Young, H. C. (1992a).

set of successive joins) being started when the former
is over. Once the histograms are produced for both
tables, we can compute the communication template,

then distribute data, and finally compute the join. Un-
fortunately, the computation of the communication
template is the implicit barrier within the execution
flow, that prohibits the use of long pipeline chains.

4 CONCLUSIONS

In this paper, we presentd@DFA-Join a pipelined

parallel join algorithm based on a dynamic data re-
distribution. We showed that it can be applied effi-
ciently in various parallel execution strategies offer-
ing flexible resource allocation and reducing disks in-
put/output of intermediate join result in the evaluation
of multi-join queries. This algorithm achieves several

enhancements compared to solutions suggested in the

literature by reducing communication costs to only

Using segmented right-deep trees for the execution of
pipelined hash joinsProc. of VLDB'92 International
Conference, 1992, Vancouver, Canadages 15-26.

Chen, M.-S., Yu, P. S., and Wu, K.-L. (1992b). Scheduling
and processor allocation for the execution of multi-
join queries. Irinternational Conference on Data En-
gineering pages 58-67, Los Alamos, Ca., USA.

Datta, A., Moon, B., and Thomas, H. (1998). A case for
parallelism in datawarehousing and OLAP. Rroc.
of DEXA 98 International WorkshotEEE Computer
Society, pages 226-231, Vienna.

DeWitt, D. J., Naughton, J. F., Schneider, D. A., and Se-
shadri, S. (1992). Practical Skew Handling in Parallel
Joins. InProceedings of the 18th VLDB Conference
pages 27-40, Vancouver, British Columbia, Canada.

Gounaris, A. (2005). Resource aware query processing on
the grid. Thesis report, University of Manchester, Fac-
ulty of Engineering and Physical Sciences.

Hassan, M. A. H. and Bamha, M. (2008). Dynamic data re-
distribution for join queries on heterogeneous shared
nothing architecture. Technical Report 2, LIFO, Uni-
versité d’Orléans, France.

relevant tuples while guaranteeing perfect balancing Hua, K. A. and Lee, C. (1991). Handling data skew in mul-

properties on heterogeneous multi-processors shared

nothing architectures even for highly skewed data.

The BSP cost analysis showed that the overhead
related to histogram management remains very smal

compared to the gain it provides to avoid the effect

of load imbalance due to data skew, and to reduce

|L|u, B. and Rundensteiner, E. A. (2005).

tiprocessor database computers using partition tun-
ing. InProc. of VLDB 17th International Conference
pages 525-535, Barcelona, Catalonia, Spain.
Revisiting
pipelined parallelism in multi-join query processing.
In Proc. of VLDB'05 International Conferencpages
829-840.

the communication costs due to the redistribution of Lu, H., 00i, B.-C., and Tan, K.-L. (1994)Query Process-

the intermediate results which can lead to a significant

degradation of the performance.

ing in Parallel Relational Database SystemtEEE
Computer Society Press, Los Alamos, California.

Our experience with the BSP cost model and the \ourad, A. N., Morris, R. J. T., Swami, A., and Young,

tests presented in our previous papers (Bamha and
Hains, 1999; Bamha and Hains, 2000; Hassan and

H. C. (1994). Limits of parallelism in hash join algo-
rithms. Performance evaluatiqr20(1/3):301-316.

Bambha, 2008) prove the effectiveness of our approachrahm, E. (August 1996). Dynamic load balancing in par-

compared to standard hash-join pipelined algorithms.
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