
ENSURING SAFE USAGE OF BUFFERS IN PROGRAMMING
LANGUAGE C

Milena Vujosevic-Janicic
Department for Computer Science, Faculty of Mathematics, University of Belgrade, Studentski trg 16, Belgrade, Serbia

Keywords: C programming language, buffer overflow, static analysis, automated bug detection.

Abstract: We consider the problem of buffer overflows in C programs. This problem is very important because buffer
overflows are suitable targets for security attacks and sources of serious programs’ misbehavior. Buffer over-
flow bugs can be detected at run-time by dynamic analysis, and before run-time by static analysis. In this
paper we present a new static, modular approach for automated detection of buffer overflows. Our approach
is flow-sensitive and inter-procedural, and it deals with both statically and dynamically allocated buffers. Its
architecture is flexible and pluggable — for instance, for checking generated correctness and incorrectness
conditions, it can use any external automated theorem prover that follows SMT-LIB standards. The system
uses an external and easily extendable knowledge database that stores all the reasoning rules so they are not
hard-coded within the system. We also report on our prototype implementation, theFADO tool, and on its
experimental results.

1 INTRODUCTION

A buffer overflow(or buffer overrun) is a program-
ming flaw which enables storing more data in a data
storage area (buffer) than it was intended to hold.
This problem is important because buffer overflows
are suitable targets for security attacks and source of
serious programs’ misbehavior.

Buffer overflows are very frequent because pro-
gramming language C is inherently unsafe. Namely,
array and pointer references are not automatically
bounds-checked. In addition, many of the string func-
tions from the standard C library (such asstrcpy(),
strcat(), sprintf(), gets()) are unsafe. Even
functions dealing with bounds (such asstrncpy())
can cause vulnerabilities when used incorrectly. Pro-
grammers often assume that calls to these functions
are safe, or do the wrong checks. The consequence
is that there are many applications that use the string
functions unsafely. Even experienced programmers
often use unsafe operations, sometimes with some
checks, or relying only on the hand audits of the code
being developed.

Buffer overflows are suitable targets for security
attacks and they are probably the best known form of
software security vulnerability. According to CERT,
buffer overflows account for up to 50% of vulnerabil-

ities, and this percentage seems to be increasing over
time (Wagner et al., 2000). Attackers have managed
to identify buffer overflows in a large number of prod-
ucts and components (Viega and McGraw, 2002). In
a classic scenario for buffer overflow exploit, the at-
tacker sends data to a program, which it stores in an
undersized stack buffer. The result is that information
on the call stack is overwritten, including the func-
tion’s return pointer. The data sets the value of the re-
turn pointer, so when the function returns, rather than
to the original caller, it transfers control to malicious
code contained in the attacker’s data. Unsafe oper-
ations over buffers allocated on the heap or the data
segment can also be maliciously exploited but usu-
ally harder. For a survey of security attacks based on
buffer overflow see, for instance, (Cowan et al., 2000).

Malicious exploiting of buffer overflows is not the
only potential problem. Buffer overflow can lead to
different sorts of bugs, some leading to program mis-
behavior, corrupted data, program crashes, and some
to quite involved bugs (e.g., contents of memory re-
served for one variable being rewritten only partially).

In handling and avoiding possible buffer over-
flows, standard testing is not sufficient, and more in-
volved techniques are required. Because of its impor-
tance, the problem of automated detection of buffer
overflows attracted a lot of attention and several tech-

29
Vujosevic-Janicic M. (2008).
ENSURING SAFE USAGE OF BUFFERS IN PROGRAMMING LANGUAGE C.
In Proceedings of the Third International Conference on Software and Data Technologies - PL/DPS/KE, pages 29-36
DOI: 10.5220/0001891200290036
Copyright c© SciTePress

niques for handling this problem were proposed, most
of them over the last ten years. Modern techniques
can help in detecting bugs that were missed by hand
audits. The approaches for detecting buffer overruns
are divided into dynamic and static techniques. A for-
mal account of analyzing buffer overflow problem is
given in (Simon and King, 2002).

Dynamic analysis examines the program while it
is being executed. These techniques can be very use-
ful as addition to standard debugging tools. Systems
based on dynamic analysis can be very successful in
detecting all buffer overflows that occur during a par-
ticular execution. However, that still does not mean
that there are no other bugs in other branches of the
program. Some of the tools based on dynamic anal-
ysis are intended to be used during program develop-
ment and testing, while some aim at preventing buffer
overflows during program execution, often with se-
rious performance overhead. For a survey and com-
parison of dynamic analysis tools see, for instance,
(Zhivich et al., 2005; Wilander and Kamkar, 2003).

Methods based on static program analysis aim at
detecting potential buffer overflows before run-time.
They analyze source code and check critical com-
mands in different ways: by simple pattern matching,
or by generating and checking constraints over integer
variables. A major advantage of static analysis is that
bugs can be eliminated before the code is deployed.
More details about tools based on static analysis are
given in Section 2.

In this paper we present a new static, flow-
sensitive and inter-procedural system for detecting
buffer overflows, with modular architecture (and also
our prototype implementation, calledFado). The sys-
tem analyzes the code, generates correctness condi-
tions for commands, and invokes external automated
theorem prover (for linear arithmetic1) to test the gen-
erated conditions. The system is modular and very
flexible — it is built from building blocks that can be
easily changed or updated. For instance, the condi-
tions are generated based on the external database, an
external prover can be chosen among available ones
(as long as it has the SMT-LIB interface2), etc.

1Linear arithmetic(over reals) is a decidable fragment
of arithmetic (over reals) that involves addition, but not mul-
tiplication, except multiplication by constants. Linear arith-
metic is widely used in software verification.

2Satisfiability modulo theory (SMT)is a problem of de-
ciding if a given first-order formula is satisfiable with re-
spect to a background theory. The SMT-LIB initiative
(http://www.smt-lib.org/, (Ranise and Tinelli, 2003))
provides a library of SMT benchmarks and all required
standards and notational conventions. Most state-of-the-art
SMT solvers have support for linear arithmetic and can deal
with extremely complex conjectures coming from industry.

2 TOOLS BASED ON STATIC
ANALYSIS

There is a number of tools for detection of buffer over-
flows based on static analysis. Here we briefly discuss
some of them, mostly those related to our approach.
For an empirical comparison between different tools
see (Wilander and Kamkar, 2002; Zitser et al., 2004;
Kratkiewicz and Lippmann, 2005).

ARCHER (Xie et al., 2003) symbolically executes
the code and performs path-sensitive, inter-procedural
symbolic analysis to bound the values of both vari-
ables and memory sizes. It requires no annotations
(although it can use them). For checking generated
correctness conditions, ARCHER uses a custom built
constraint solver (which is neither sound nor com-
plete).

BOON (Wagner et al., 2000) generates integer
range constraints for critical commands (by using
a model extracted from the source code) and then
checks them by a custom built range solver. The ap-
proach uses flow-insensitive and context-insensitive
analysis and considers only unsafe functions from the
standard C library.

CSSV (Dor et al., 2003) parses the code and trans-
forms it to a simplified version. It requires annotating
the code by preconditions and postconditions of func-
tions. Correctness assertions are included in the out-
put program. The tool uses a conservative static anal-
ysis algorithm to detect faulty integer manipulations.
The approach is not very efficient, but is sound (with
a small number of false alarms). iCSSV (Ellenbogen,
2004) is a new, more efficient, version of CSSV that
is inter-procedural and does not require manual anno-
tations.

Caduceus (Fillitre and March, 2007) is a tool for
deductive verification of C code. The system requires
annotations in the source code. The tool allows for-
mally proving that a function implementation satis-
fies its specification and that it does not involve null
pointer dereferencing or buffer overflows. It can use
different theorem provers.

ITS4 (Viega et al., 2000) works on syntactical
level only — it scans the source code and tries to
match its fragments with critical calls stored in a
special-purpose library (Viega et al., 2000). Although
this approach is rather simple, it can detect many bugs
(but with many false alarms).

PolySpace (PolySpace Technologies, 2003) is a
commercial tool using algorithms that are not publicly
available in full detail.3 It uses symbolic analysis, or

3There are also other related commercial tools, such
as AsTree (www.astree.ens.fr), Parfait (http://research.sun.-
com/projects/), Coverty (www.coverity.com/), and CodeS-

ICSOFT 2008 - International Conference on Software and Data Technologies

30

abstract interpretation (Cousot and Cousot, 2004), es-
cape analysis for determining inter-procedural side ef-
fects, and inter procedural alias analysis for pointers.

Splint (Larochelle and Evans, 2001) is annotation-
driven tool. It uses a flow-sensitive, intra-procedural
program analysis. Splint uses a lightweight static
analysis and generates correctness conditions that de-
pend on postconditions of the commands that precede
a certain command. It is very efficient, but it is not
sound and can produce a large number of false alarms.

UNO (Holzmann, 2002) is a tool designed to find
three sorts of bugs in C programs:uninitialized vari-
ables,null-pointer dereferencing, andout-of-bounds
array indexing. UNO deals only with simple indexes
of buffers (e.g., single constants or scalars), so it can-
not check if an index which is compound expression
is within bounds.

3 PROPOSED APPROACH

In this section we describe our new, static, flow-
sensitive and inter-procedural, modular system for de-
tecting buffer overflows. The code is parsed, trans-
formed to a simpler (but equivalent) code, and an-
alyzed line by line. For generatingpreconditions
and postconditions(denotedprecondand postcond)
for individual commands, a knowledge database (or a
database of conditions) is used. The database stores
reasoning rules, in the form of preconditions and post-
conditions, for critical programming constructs and
for the unsafe functions from the standard C library.
Preconditions and postconditions for the user-defined
functions are generated automatically in some simpler
cases, while in remaining cases, the user can add them
to the database (if the user fails to do that, the sys-
tem can still detect bugs, but with decreased power).
Preconditions and postconditions are then used for
generating correctness conditions for individual com-
mands. These conditions are then checked by an ex-
ternal theorem prover.

The system is built from the building blocks that
can be easily changed or updated. The overall system
architecture is given in Figure 1. Descriptions of the
building blocks of the system in more details are given
in the following subsections.

3.1 Modelling Semantics of Programs

For modelling the data-flow and semantics of pro-
grams, in formulation of the constraints we use the
function valueand two functions with pointers (i.e.,

onar (www.grammatech.com/products/codesonar/).

buffers, allocated either statically or dynamically) as
arguments,sizeandused:

• valuegives a value of a given variable,

• sizegives a number of elements allocated for the
given buffer, and

• used, relevant only for string buffers, gives a num-
ber of elements used by the given buffer (i.e., the
number of used bytes including the terminating
zero).

All these functions have an additional (integer)
argument calledstateor timestamp, capturing data-
flow, i.e., the temporal nature of variables and mem-
ory space.4 So,value(k,0) gives a value of the vari-
ablek in state 0,used(s,1) gives a number of elements
used by the string buffers in state 1, etc. These times-
tamps provide the basis for a flow sensitive analysis
and a form of pointer aliasing.

3.2 Parser, Intermediate Code
Generator, and Code Transformer

The parser reads code from the source files, parses it,
and builds a parse tree. The parse tree is then exported
to a specific intermediate code that is simpler for pro-
cessing and enables easily changing the used parser.

The code transformer reads the intermediate code
and performs a range of steps (e.g., eliminating mul-
tiple declarations, eliminating all compound conjunc-
tions and disjunctions, etc.). The output of the code
transformer is a program, represented via intermedi-
ate code, in a subset of C, that is equivalent to the
original program, i.e., it preserves its semantics. This
transformation significantly simplifies and speeds-up
further processing stages. Our motivation, transfor-
mation and the target language are similar to the ones
described in (Yorsh and Dor, 2003).

3.3 Database and Conditions Generator

The role of the database of conditions is in generating
preconditions and postconditions of individual com-
mands in the transformed code. Taking into account
the context of the command, these preconditions and
postconditions are processed and used for generating
correctness conditions.

The database stores triples(precondition, com-
mand, postcondition). The semantics of a database
entry (φ,F,ψ) is as follows: in orderF to be safe,
the conditionφ must hold; in orderF to be flawed,
the condition¬φ must hold; afterF, the conditionψ

4There are no absolute values for states, instead there
are relative values for each variable.

ENSURING SAFE USAGE OF BUFFERS IN PROGRAMMING LANGUAGE C

31

C source code
↓

Parser and intermediate code generator
– parsing
– intermediate code generating

↓

Intermediate code
↓

Code transformer
– eliminating multiple declarations
– reducing all loops todo-while loops
– eliminating all compound conditions
– etc.

↓

Transformed code
↓

Database and conditions generator
– unifying with a matching record in the database
– generating conditions for individual commands
– evaluation
– updating states for sequences of commands

↓

Hoare triples
↓

Generator and optimizer for correctness
and incorrectness conditions
– resolving preconditions and postconditions

of functions
– eliminating irrelevant conjuncts
– abstraction

↓

Conjectures
↓

Automated theorem prover
– processing input formulae inSMT-LIB format

↓

Status of commands
↓

Presentation of results
– providing explanations for status of the commands

Figure 1: Overall system architecture.

holds. These Hoare-style triples are similar tocon-
tracts used in CSSV system. However, these triples
describe not only functions, but can describe any spe-
cific (potentially unsafe) language construct.

For example, the database may contain the fol-
lowing entry: (size(x,0) ≥ used(y,0), strcpy(x,y),
used(x,1) = used(y,0)). Note the modelling of
changing of buffers via states in this example:
size(x,0) ≥ used(y,0) says something about the state
beforeexecuting the command (in the state 0), while

used(x,1) = used(y,0) says thatafter executing the
command (in the state 1),x will use the same number
of bytes asybefore executing the command. In subse-
quent phases, these relative states will be transformed
to absolute states within the relevant function.

The database is external and open, so can
be easily changed by the user. Initially, the
database stores entries related to some specific
reasoning rules (e.g.,a[k]=’\0’ has a precondi-
tion value(k,0)<size(a,0) and a postcondition
used(a,1)<=value(k,0)). Also, the database stores
information about operators and functions from the
standard C library. Therefore, the underlying rea-
soning is not hard-coded into the system (unlike the
of most other related systems). The user can add or
remove specific rules, obtaining a wider scope (with
higher detection rate) or a narrower scope (with less
false alarms). While processing an input C program,
the database may temporarily expand with entries that
correspond to the user-defined functions of the pro-
gram being processed.

The database is used for generating preconditions
and postconditions for single commands. The pre-
condition for a single commandΦ (obtained by code
transformation) is constructed as follows: if there is
a database entry(φ,Ψ,ψ) such thatΨ matchesΦ,
i.e., there is a substitutionσ such that5 Φ = Ψσ, then
precond(Φ) = φσ. Postconditions are constructed by
analogy.

When preconditions and postconditions are con-
structed, ground expressions are evaluated (e.g.,
size(” test” , .) is replaced by 5) and expressions
involving pointer arithmetic are simplified (e.g.,
size(a + k, .) is replaced bysize(a, .) − value(k, .),
wherea is a pointer, andk is an integer). This sim-
plifies and speeds-up further processing.

After computing preconditions and postconditions
for individual commands, states in functionsvalue,
size, andusedare updated (in order to take into ac-
count the wider context). The updating is performed
command by command:

• for each variablev, the initial state forvalueis 0;
for each pointer variablev, the initial state forsize
is 0; for each variablev of typechar*, the initial
state forusedis 0; since size and number of used
bytes can be changed independently, and indepen-
dently of changing the value of the pointer, current
states for these functions are kept separately;

• if the current state forv for valueis S, then in the
subsequent command,value(v,0) is replaced by

5If Ψ matchesΦ, the substitutionσ can be computed by
one-way matching, a restricted form of unification in which
all variables inΨ are considered to be constants.

ICSOFT 2008 - International Conference on Software and Data Technologies

32

value(v,S), value(v,1) is replaced byvalue(v,S+
1); if value(v,1) occurs in the postconditions of
the command, then the current stateS is incre-
mented; the same rules are applied forsizeand
for used;

• whenever the value of the pointerp is changed,
current states forsize(p, .) andused(p, .) are in-
cremented (sincep points to another location).

Preconditions and postconditions for commands
within if command (else parts are eliminated within
transformation) are constructed as follows:

precondition command postcondition
– if(p)
– { p
precond(C1) C1; postcond(C1)
precond(C2) C2; postcond(C2)

...; ...
– } (p∧ postcond(C1)

∧postcond(C2)...)
∨(¬p∧updatestates)

C;

The formulaupdatestatesstands for conjunction
of conditions obtained from updating states. States
within if commands are updated as follows: let
S be the state ofv for value(v, .) before command
if(p); conditions for the commands withinif are
updated as described above, leading to the current
stateS′; finally, value(v,S) = value(v,S′) is added
to updatestates. Thanks to this, the current state
of v after theif construction is alwaysS′, no mat-
ter if p was true or not. This is done for all vari-
ables with states changed withinif. States forsize
and usedare updated by analogy. Therefore, after
if command (like after individual commands), each
variable has uniquely determined states (forvalue,
size, and used), which enables further processing.
In dealing with commands that follow anif com-
mand, theif command is treated as a single com-
mand and(p∧ postcond(C1) ∧ postcond(C2)...) ∨
(¬p∧updatestates) is used as its postcondition.

Like in some other tools, loops are processed only
in a limited manner. Currently, following ideas and
motivation from (Larochelle and Evans, 2001), our
system tests only the first iteration of a loop (which
is reasonable and sufficient in some cases), within
loops covers function calls with constant arguments,
and applies several other simple heuristics for deal-
ing with commands within loops. This restriction can
also limit, after a loop, detection of buffer overflows
in the rest of the function.

Preconditions and postconditions for user-defined
functions can be constructed automatically only in
some simpler cases. For other functions, the user
can add their preconditions and postconditions to the
database. If the user fails to add the conditions for

some user-defined functionf, the system can still
go on and potential references forprecond(f) and
precond(f) in all constraints are just abstracted and
replaced by new variables (seeabstractingstep in
subsection 3.4). So, our system can work (although
with decreased power) even without user’s annota-
tions. Many tools based on static analysis also require
annotating user-defined functions in some form, and
this limitation is not critical — many (or even most)
of buffer overflows do not depend on complex con-
trol flow and on inter-procedural communication, but
are due to the unsafe usage of standard C functions
(Larochelle and Evans, 2001).

3.4 Generator and Optimizer for
Correctness and Incorrectness
Conditions

For each command, correctness and incorrectness
constraints are generated as follows. For a command
C, let Φ be conjunction of postconditions for all com-
mands that precedeC (within its function), the com-
mandC is:

• Safe, i.e. it never causes an error during execu-
tion, if Φ ⇒ precond(C) (universal closure is as-
sumed) is valid;

• Flawed, i.e. when encountered, it always causes
an error during execution, if Φ ⇒ ¬precond(C)
(universal closure is assumed) is valid;

• Unsafe, i.e.when encountered, it can cause an er-
ror during execution, if neither of above;

• Unreachable, i.e. the command is not reachable,
if proved to be both safe and flawed (this happens
when the preconditions that precede the command
are inconsistent).

Before sending conditions to the prover, conjec-
tures are preprocessed via the following phases:

Resolving all references to preconditions and post-
conditions of functions are resolved; this is done
in iterations, while there are no such conditions;
in the case of mutually recursive functions and in
case of unresolved preconditions and postcondi-
tions for functions (both standard or user-defined),
such conditions cannot be eliminated, so they are
abstracted to new variables (seeabstractingstep).

Eliminating Irrelevant Conjuncts from a conjec-
ture Φ ⇒ C, all irrelevant conjunctsare deleted;
a conjunct fromΦ is irrelevant for C if it is not
relevantfor C; whether a conjunct fromΦ is rel-
evantfor C is defined recursively: a conjunct is
relevant forC if it involves some variable occur-
ring in C; also, a conjunct is relevant if it involves

ENSURING SAFE USAGE OF BUFFERS IN PROGRAMMING LANGUAGE C

33

a variable occurring in some relevant conjunct or a
function call occurring in some relevant conjunct
with same arguments;

Abstracting terms that do not belong to linear arith-
metic are abstracted; for instance,size(t,2) is
abstracted tosizet 2 (for the sake of brevity,
value(x,N) is abstracted tox N); this transforma-
tion is not complete, but it is sound: if abstracted
formula is valid, then the original formula is valid
too, but the opposite does not hold (this means
that the system is not complete for commands that
involve abstracted terms from, say, abstracted un-
resolved function calls).

Notice that system can prove that some commands are
not safe, but can also prove that some commands are
safe. This feature can limit the number of false alarms
— one of the main concerns for most approaches.

3.5 Automated Theorem Prover

The generated correctness conditions are checked for
validity by an automated theorem prover. A theorem
prover for linear fragment of arithmetic is suitable for
this task as many (or most) of conditions belong to lin-
ear arithmetic (namely, pointer arithmetic is based on
addition and subtraction only, so it can be well mod-
eled by linear arithmetic).

Formulae produced by conditions generator are
translated toSMT-LIB format and passed to the
prover. These conjectures can be tested by anySMT

solver/prover that covers linear arithmetic. The prover
can check whether or not the given formula is valid
(unless the time limit was exceeded), yielding an
information whether a corresponding command is
safe/flawed. If a command was proved to be flawed or
unsafe (i.e., it was not proved to be safe), the theorem
prover can generate a counterexample for the corre-
sponding correctness conjecture, used for building a
concrete example of a buffer overflow, which can be
very helpful to the user.

Communication with a theorem prover is per-
formed through external files containing conjectures
in SMT-LIB format, so any prover supporting this stan-
dard can be simply plugged-in and used.

3.6 Presentation of Results

Each command carries a line number in the original
source file and the prover’s results are associated to
these line numbers and reported to the user. The com-
mands that are markedflawedcause errors in any run
of the program and they must be changed. The com-
mands that are markedunsafeare possible causes of

commands conditions

char *buf_alias;

char buf[10]; postcondition:

size(buf,1)=value(10,0)

buf_alias=buf; postcondition:

value(buf_alias,1)=value(buf,0)

and size(buf_alias,1)=size(buf,0)

and used(buf_alias,1)=used(buf,0)

buf_alias[10]=’A’; precondition:

size(buf_alias,0)>value(10,0)

Figure 2: Example code with conditions for the individual
commands.

errors and they also must be checked by human pro-
grammers. Explanations given by the system (in a
form of a model, i.e., a set of variable values that lead
to buffer overflow) can help the programmer to fix the
error.

3.7 Scope

It is impossible to build a complete and sound static
system for detecting buffer overflow errors (a system
that detects all possible buffer overflows and has no
false alarms). One of the reasons for this is undecid-
ability of the halting problem. Our system has the
following restrictions: it deals with loops in a limited
manner; for computing preconditions and postcondi-
tions of user-defined functions, our system may re-
quire human’s assistance (although it can also work
without it); the generated conjectures belong to linear
arithmetic, so the other involved theories are not con-
sidered. The system uses the prover for linear arith-
metic over rational numbers, which is sound but not
complete for integers (i. e., some valid conditions may
not be proved). Despite the above restrictions, our
system can detect many buffer overflow errors.

The power of our system is also determined by the
contents of the database. The database is external and
open so the user can extend it by additional reasoning
rules, extending that way the scope of the tool.

3.8 Worked Example

We will illustrate the proposed approach on one sim-
ple fragment of C code (extracted from one bench-
mark given in (Kratkiewicz and Lippmann, 2005)).
The fragment involves pointers and pointer aliasing
and has one buffer overflow bug. In this simple case,
the transformed code is same as the original. The
code, and the preconditions and postconditions of the
individual commands (based on the default contents
of the database) are given in Figure 2.

After evaluation and adjustments of the states, the

ICSOFT 2008 - International Conference on Software and Data Technologies

34

correctness condition for the last command is:

size(bu f,1) = 10∧value(bu f alias,1) = value(bu f,1)∧

size(bu f alias,1) = size(bu f,1)∧used(bu f alias,1) = used(bu f,1)

⇒ size(bu f alias,1) > 10 (1)

This formula is not valid, so the corresponding com-
mand is not safe. Moreover, it can be similarly proved
that the command is flawed — namely, the above
formula with size(buf_alias,1)>10 replaced by
size(buf_alias,1)<=10 is valid.

4 PROTOTYPE
IMPLEMENTATION AND
RESULTS

We have made a prototype implementation of the
approach presented in Section 3. The implemented
system is calledFado (from Flexible Automated
Detection of bufferOverflows).6

The Fado tool is implemented in standard C++.
It consists of around 13000 lines of code organized
in 35 classes. Fado uses the parserJSCPP7 and the
simplex-based solver for linear arithmetic (Dutertre
and De Moura, 2006) fromARGO-LIB .8

Architecture of the implementation of the system
is very flexible: the mentioned parser can be replaced
by some other parser, the implementation of the sim-
plex method can also be easily replaced by some other
implementation. Moreover, the simplex method can
be replaced by some other proving method with a
wider domain (thus leading to a more powerful over-
all system).

Formulae produced by conditions generator are
translated toSMT-LIB format and passed to the Ar-
goLib prover. Since external files are used for com-
munication, it is possible to use any theorem prover
that can parseSMT-LIB format. The system could be
more efficient if the ArgoLib API was used for com-
munication instead of using externalSMT-LIB files,
but this would reduce the flexibility of the system be-
cause theorem prover could not be changed.

The implementation has been successfully tested
on a range of examples. Here we present eval-
uation results obtained on the benchmarks from

6Fado is available upon request from the first author.
7Developed by Jörg Schön, available from

http://www.die-schoens.de/prg
8ARGO-LIB , developed by Filip Marić, is a generic

platform for using decision procedures. It is available
at http://argo.matf.bg.ac.yu. Concerning the back-
ground logic, underlying theories, description of theo-
ries, and format,ARGO-LIB follows theSMT-LIB initiative
(Ranise and Tinelli, 2003).

(Kratkiewicz and Lippmann, 2005) (one of the very
few benchmark sets used for evaluation of more static
analysis tools). On these benchmarks, our system
detected (without any human intervention or annota-
tions) 57% of the flaws. From the remaining flaws,
around 35% are due to the loops that cannot be cur-
rently processed, but could be handled with several
heuristics. Around 3% flaws were not detected be-
cause the current implementation still does not cover
some programming constructs. The remaining 5%
flaws are substantially beyond the reach of our sys-
tem. Over this set of benchmarks, the false alarm rate
was 6.5% and the confusion rate was 12.5%. With
human-annotations used, the false alarm rate was 3%
and the confusion rate was 6%. The remaining false
alarms were due to the incomplete coverage of the C
language in the prototype implementation — 1.5%,
and to inherent limitations of the approach — 2%.

Tool Detec- False Confu- avg.CPU
tion Alarm sion time

Rate Rate Rate spent
PolySpace 99.7 2.4 2.4 172.53s
ARCHER 90.7 0.0 0.0 0.25s
FADO 57.0 6.5 12.5 0.16s
Splint 56.4 12.0 21.3 0.02s
UNO 51.9 0.0 0.0 0.02s
BOON 0.7 0.0 0.0 0.06s

Figure 3: Experimental results of tools ARCHER, BOON,
Splint, UNO i PolySpace C Verifier according to the cor-
pus from (Kratkiewicz and Lippmann, 2005), with results
of FADO added.

According to (Kratkiewicz and Lippmann, 2005),
these results position the current version of our sys-
tem behind Archer and PolySpace, and before UNO
and BOON. Our system’s results are similar to the re-
sults of Splint, but with better false alarm rate and
confusion rate.

Concerning the execution time, our tool processed
291 examples in 46.8s (experiments were run on PC
2.4GHz). The times spent by different phases were:
1.2% for parsing the code, 0.5% for code transfor-
mation, 51.8% for generating conditions, 46.4% for
exporting to SMT files and for checking conditions,
and 0.1% for processing and formatting results. The
execution time of our tool is comparable to the results
of other tools given in (Kratkiewicz and Lippmann,
2005) (although this source does not specify the com-
puter used for testing). A summary of results is given
in Figure 3.

ENSURING SAFE USAGE OF BUFFERS IN PROGRAMMING LANGUAGE C

35

5 CONCLUSIONS AND FUTURE
WORK

In this paper we presented a new, modular system for
automated detection of buffer overflows in programs
written in C. Our system performs flow-sensitive and
inter-procedural static analysis. The system gener-
ates correctness and incorrectness conditions for in-
dividual commands, which are then tested for validity
by an automated theorem prover for linear arithmetic.
Some of the main novelties and advantages of our sys-
tem are: its modular and flexible architecture (so its
building blocks can be easily changed and updated),
an external and open database of conditions (so the
underlying reasoning rules are not hard-coded into
the system so the user can vary them), buffer over-
flow correctness conditions given explicitly in logical
terms, using external theorem provers. We presented
the current prototype implementation of the proposed
system, the Fado tool, that gives promising results.

The presented system is a subject of further, more
detailed evaluation, improvements, and development.
For instance, although heuristics for dealing with
loops are efficient and can have a wide range, for
the next stage of development, we are planning to ex-
tend our system to preform full analysis of loops (in
a similar manner as proposed in some modern sys-
tems (Dor et al., 2003)) and of user-defined functions,
so the system will be sound and its inter-procedural
analysis will be fully automatic. In addition, we are
planning to use theorem provers with more expres-
sive background theories. Our goal is to make Fado
efficiently applicable to long, real-world critical pro-
grams. Thanks to the tool’s flexible architecture, we
are also planning to extend it for other sorts of pro-
gram analysis (e.g., testing for memory leaks).

REFERENCES

P. Cousot and R. Cousot. (2004) Basic Concepts of Abstract
Interpretation. InBuilding the Information Society.
Kluwer, 2004.

Cowan, C., Wagle, P., Pu, C., Beattie, S., and Walpole, J.
(2000). Buffer overflows: Attacks and defenses for
the vulnerability of the decade. InProceedings of the
DARPA Information Survivability Conf. and Expo.

Dor, N., Rodeh, M., and Sagiv, M. (2003). Cssv: Towards
a realistic tool for statically detecting all buffer over-
flows in c. InProceedings of the ACM SIGPLAN 2003
conference on Programming language design and im-
plementation. ACM Press.

Dutertre, B. and De Moura, L. (2006). A fast linear-
arithmetic solver for dpll(t). InCAV 2006, vol. 4144
of LNCS. Springer.

Ellenbogen, R. (2004). Fully automatic verification of ab-
sence of errors via interprocedural integer analysis.
Master’s thesis, University of Tel-Aviv, Israel.

Fillitre, J.-C. and March, C. (2007). The why/-
krakatoa/caduceus platform for deductive program
verification. InCAV, vol. 4590 ofLNCS. Springer.

Holzmann, G. (2002). Static source code checking for user-
defined properties. InProceedings of 6th World Con-
ference on Integrated Design and Process Technology.

Kratkiewicz, K. and Lippmann, R. (2005). Using a diagnos-
tic corpus of c programs to evaluate buffer overflow
detection by static analysis tools. InWorkshop on the
Evaluation of Software Defect Detection Tools.

Larochelle, D. and Evans, D. (2001). Statically detecting
likely buffer overflow vulnerabilities. InUSENIX Se-
curity Symposium.

PolySpace Technologies (2003). Polyspace c verifier. Paris,
France. http://www.polyspace.com.

Ranise, S. and Tinelli, C. (2003). The SMT-
LIB Format: An Initial Proposal. on-line at:
http://goedel.cs.uiowa.edu/smt-lib/.

Simon, A. and King, A. (2002). Analyzing String Buffers
in C. In International Conference on Algebraic
Methodology and Software Technology, volume 2422
of LNCS. Springer.

Viega, J., Bloch, J., Kohno, Y., and McGraw, G. (2000).
Its4: A static vulnerability scanner for c and c++ code.
In 16th Annual Computer Security Applications Con-
ference (ACSAC’00).

Viega, J. and McGraw, G. (2002).Building Secure Soft-
ware. Addison-Wesley.

Wagner, D., Foster, J., Brewer, E., and Aiken, A. (2000). A
first step towards automated detection of buffer over-
run vulnerabilities. InSymposium on Network and
Distributed System Security.

Wilander, J. and Kamkar, M. (2002). A comparison of pub-
licly available tools for static intrusion prevention. In
Proceedings of the 7th Nordic Workshop on Secure IT
Systems (Nordsec 2002).

Wilander, J. and Kamkar, M. (2003). A comparison of pub-
licly available tools for dynamic buffer overflow pre-
vention. InProceedings of the 10th Network and Dis-
tributed System Security Symposium.

Xie, Y., Chou, A., and Engler, D. (2003). Archer: us-
ing symbolic, path-sensitive analysis to detect mem-
ory access errors. InProceedings of the 9th European
software engineering conference. ACM Press.

Yorsh, G. and Dor, N. (2003). The Design of CoreC. on-line
at: http://www.cs.tau.ac.il/ gretay/GFC.htm.

Zhivich, M., Leek, T., and Lippmann, R. (2005). Dynamic
buffer overflow detection. InWorkshop on the Evalu-
ation of Software Defect Detection Tools.

Zitser, M., Lippmann, R., and Leek, T. (2004). Testing static
analysis tools using exploitable buffer overflows from
open source code. InProceedings of the 12th ACM
SIGSOFT international symposium on Foundations of
software engineering. ACM.

ICSOFT 2008 - International Conference on Software and Data Technologies

36

