
MODELS FOR INTERACTION, INTEGRATION AND
EVOLUTION OF PRE-EXISTENT SYSTEMS AT

ARCHITECTURAL LEVEL
Designing Systems for Changing Conditions

Juan Muñoz López, Jaime Muñoz Arteaga, Francisco Javier Álvarez Ramírez, Manuel Mora Tavarez
Universidad Autónoma de Aguascalientes, Av. Universidad 1309, Fracc. Campestre, 20190, Aguascalientes, Mexico

Ma. Lourdes Y. Margain Fernández
Universidad Politécnica de Aguascalientes, Av. prol. Mahatma Gandi Km. 2, Sn. Fco. del Arenal, Aguascalientes, Mexico

Keywords: Software architectures, architectural models, architectural patterns, integration, interaction, evolution.

Abstract: This paper describes a set of models that may serve as the basis for the creation of architectural patterns for
interaction, evolution and integration of pre-existent systems. Proposed models are based on an
identification of system’s specialized components for operation, control and direction making easier to find
connecting points between systems. This set of models covers some rationality needed to adapt pre-existent
systems to an evolving environment where organization and technologies are under continuous change.

1 INTRODUCTION

New systems must be integrated into heterogeneous
computational environments in continuous change
and coexist with pre-existent systems. Under this
precept, architectural design must incorporate
capacities of interaction, integration and evolution
into the systems; this has been a preoccupation of
many works in software engineering area.

Interaction refers to information exchange
between systems. An effective interaction needs of
certain basic conditions: 1, all participating systems
must understand information in the same way; 2, one
or more systems must answer with adequate
information to requests from other systems; and 3,
information must be recovered without distortion.

Integration occurs when some degree of control
yielding from one or more systems is added to the
interaction operation. An integrator system will get
some kind of control over the integrated systems
modifying their execution flow.

Evolution of a system is produced by applying
maintenance to its components modifying or
replacing them. Evolution is used to increase or
decrease functionality adapting the system to new
environmental and organizational requirements.

An architectural structure may promote or
impede system’s capacities of interaction,
integration an evolution. This paper proposes a set of
models that will provide some criteria to ensure the
incorporation of such qualities.

Rest of the paper has been organized as follows:
Section 2 shows the challenges that must be solved
to get interaction, integration and evolution in a
defective architectural design. In section 3 we make
a review of related works which deals with these
problems. Section 4 shows a proposal of a set of
models oriented to help to include the mentioned
qualities in architectural models. In section 5 we
present a system which applies the models. Finally,
section 6 contains some conclusions and
recommendations for future work in this mater.

2 CHALLENGES

Almost always, design of systems that will be
incorporated into a computing environment should
consider their interaction with existing systems.
Many of them are legacy systems: “large systems
delivering significant business value today from a

220 Muñoz López J., Muñoz Arteaga J., Javier Álvarez Ramírez F., Mora Tavarez M. and Lourdes Y. Margain Fernández M. (2008).
MODELS FOR INTERACTION, INTEGRATION AND EVOLUTION OF PRE-EXISTENT SYSTEMS AT ARCHITECTURAL LEVEL - Designing Systems
for Changing Conditions.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 220-227
DOI: 10.5220/0001891702200227
Copyright c© SciTePress

substantial pre-investment in hardware and software
that may be many years old” (O’Callaghan, 2000).

Sooner or later, legacy systems must be taken off
because their architectural constitution will make
their adaptation very costly and difficult. However,
since those systems have an important role for the
organization, we need to provide a framework to let
them work while we gradually replace them.

An architect must have a wide vision to model
systems that will grow up along with user’s
requirements. System qualities are part of
stakeholders’ requirements and they are in a
continuous evolution too. A lot of systems lack of a
good design because they has been built to
accomplish only a set of initial requirements.

As time passes by, users will require more
functionalities and communication capacities from
the system. Also, as the computational environment
grows, it becomes more complex, so we need to
increase governability and usability in each system.

When we add new capacities to a system, we
provoke an evolution on it. The system is adapted to
new circumstances and requirements by applying
maintenance. Maintenance adds complexity to the
system, so later adaptations will be harder and more
expensive to do.

Software reengineering is used to reduce
complexity and to increase evolution capacity of a
system by refactoring software code; but, it doesn’t
help to change its architecture or functionality
(Sommerville, 2004). This strategy is associated
with some kind of preventive or perfective
maintenance; it’s a costly and difficult evolution
strategy (Pressman, 2004).

Re-engineering of legacy systems will not
always be possible because of different factors such
as absence of source code, lack of tools to recompile
it, lack of skills and knowledge to do it, etc.

A similar situation applies to interoperability.
Many systems have been designed to work
separately, so their communication capacity is very
limited. Systems that aren’t prepared to interoperate
must incorporate complex and inefficient
mechanisms to exchange information.

We add interaction capacities to exchange
information and functionality between independent
systems in a more effective way.

Integration adds an additional coordination
element to interaction. In this case a system takes
partial or total control over functionality and
information of other systems. System integration can
bring us various benefits such as reduction of
software complexity, increment of systems
governance and establishment of a framework for
evolution of the computational environment.

System integration is a way to simplify a
computing environment. This strategy helps to
improve software qualities like: efficiency,
governability, maintainability and usability.

To achieve an extensive capacity of interaction,
integration and evolution of systems using any
available technology requires models to support the
design of software architectures.

If we don´t have a good architectural design
since the beginning, we will need to change the core
structure of the system to add or expand functional
and non-functional characteristics in critical systems
that cannot be replaced in a short time. This is a
difficult task because software architects will find
complex structures, different programming styles,
ignorance and lack of documentation of how the
whole system works, among other problems.

With architectural models we can share
conceptual rules to develop new patterns that will
help to make easier the task of designing and
redesigning software systems.

Creation of reference architectural models to
facilitate designing efforts will require establishing a
practical method for identifying generic architectural
elements in existing systems to develop decision
rules and to decide which will be the best suited
model under certain conditions.

3 BACKGROUND AND RELATED
WORK

Evolution is required to maintain systems operating
in a changing environment. Robertson applies
Dynamic Object Oriented Programming, specific
domain programming languages and reflection to
change system’s behaviour at runtime (Robertson,
1997). He also says that connecting legacy systems
helps to replace them by doing parallel deployments.

In the work of Ziegler and Dittrich (Ziegler &
Dittrich, 2004) we can find a set of approaches that
have been used to integrate information from
different systems; such as: common user interfaces,
applications, middleware, global views of data,
common data storage, and so on. This work makes
special emphasis on the need for adequacy of
semantics, which certainly is a problem to be solved
because we need to establish a comprehensive way
to integrate components into an architectural model
that will carry out contextualization tasks, a topic
that is not addressed in that document.

Architectural integration of large systems has
been studied by Garland and Antony (Garland &
Antony, 2003). They recommend two strategies, one

MODELS FOR INTERACTION, INTEGRATION AND EVOLUTION OF PRE-EXISTENT SYSTEMS AT
ARCHITECTURAL LEVEL

221

based on data integration and the other based on
executable components integration. However, they
don’t describe an architectural model to help us to
figure out how such integration must be done.

Cornella (Cornella-Dorda et al., 2001) has
proposed a method to modernize legacy systems
code. It’s based in a graphical diagram which puts in
a tree every element of a program. Purpose of the
map is to classify software parts as roots, leaves,
nodes or isolated elements and make easier to
develop a plan to carry out their migration.

Spaghetti code of legacy systems may make us
fall into a tough identification job. It will be not easy
to determine is a portion of code makes calls or if
it’s called, but often occurs that both things happens.
Cornella’s technique focuses on code migration, but
not in architectural evolution.

The three tier architecture pattern has been
extensively used for building a lot of systems
(Trowbridge et al., 2004). This style identifies
presentation, business logic and data as specialized
components. Separation of data and presentation
from business logic is convenient when we want to
integrate different commercial components like
browsers or database management systems (DBMS)
that can be exchanged in a quite easy way.

However, using this approach doesn’t give us
sufficient elements to explain how to reuse
functionality and data from different applications.
We can create a common interface or use a single
SMBD, but we need to explain who they will
structure and contextualize information that must be
understood by participating systems.

The work of Keshav et al. (Keshav et al., 1999)
depicts some interesting elements needed for the
architectural interaction of systems. He classifies
them as: translator, controller and extender. The
first element converts data and functionality between
systems without changing their context; the second,
coordinates movements of information under a
predefined process; and the third one adds new
functionality and features.

 Elements described by Keshav et al. are
necessary for interaction and integration; however,
their work doesn’t show how these components must
be combined in a system. The work also shows how
to make information exchange but it doesn’t deals
with systems integration.

The pattern established by the Model View
Controller (MVC) makes a classification of
interactive applications based on three areas:
process, entries and exits (Buschman, 1996). For its
implementation, the system is divided into three
components: A model that contains functionality,

data views that display information to the user and
drivers that handle input from the user.

The MVC pattern is widely used to explain
behaviour of interactive applications based on events
reaction, but non interactive legacy applications
cannot easily be defined under this logic.

A methodology that addresses integration of
legacy systems is MEDARISH (Muñoz et al., 2006).
This methodology describes a method that goes from
a validated and structured set of requirements and
constraints to a reference architecture model. Also, it
covers the design of software architectures based in
previous reference architectures, reference models
and patterns, and makes emphasis in the integration
of pre-existent systems.

4 A SET OF ARCHITECTURAL
MODELS

Our proposal describes analysis criteria elements
and a set of models to help rationalization tasks for
interaction, integration and evolution of pre-existent
systems when designing new architectural models.
These rationalization tools have been conceived to
be incorporated into MEDARISH methodology to
be used in the architectural design process. These
conceptual tools used in combination with other
architectural artefacts reinforce system adaption
capacities to meet future stakeholder requirements
and environmental conditions.

4.1 System and Components
Characterization

We can find three basic functions in a system:
control, direction and operation. Control is needed to
coordinate all elements of a system. Direction sets
behavioural rules and constraints in the system as
response to internal and external conditions.
Operation is the group of elements which develop
and deliver system products. These functions will be
called “specializations” in this paper.

We can represent these specializations with
UML stereotypes (see Figure 1) to represent basic
components in the design of software architectures.

A component can represent a broker, a web
service, a COTS application, a wrapping component,
a class, a set of libraries or any other artefact.
Components represented in this paper are
independent of any existent technology or standard.

ICSOFT 2008 - International Conference on Software and Data Technologies

222

Figure 1: Generic System types.

Control components are in charge of managing
logical conduction of a system, per example menus
calling each system option. Direction components
provide operational parameters and context
information to control components; configuration
modules, dialog boxes and menus are examples of
them. Operation components collect data, make
processes and deliver systems products, examples
are: input screens, processing methods, output
screens and reports, among others.

Permanent and semi-permanent data stored in
files or database structures are taken in a separate
way; they are used by functional components to
develop its operations. For abstraction purposes, a
database management system (DBMS) is not
explicit showed in the diagrams used in this paper
because it’s considered only as a mean to access
information. Stored procedures and functions would
be considered part of operation components.

It is worth mentioning that each component
could be composed by more than one architectural
element in a real design.

Proposed taxonomy can be used in a recursive
way. At a program level, an OOP application has a
main method which exercises control when calling
other methods; constructors and attributes can be
perceived as direction elements; and finally, rest of
methods are for operation. The model can also be
applied to programming language elements at a
lower abstraction level or to functions of systems
that integrates big computational environments when
working at a high rationalization level.

In figure 1A we have represented a generic
system with separated and modular specialization of
its main components, its structure makes easier to
find connection points, necessary to implement
interaction and integration.

System’s logic for decisions resides in the
“System Control”; it will make calls to
“Functionality Components” to develop tasks and
deliver products. Behaviour and decisions are based
in pre-programmed rules from the “Configuration
Component” and from the environmental feedback
obtained from its “Navigation Interface”.

Initialization data is stored in “Configuration
Files”. Some systems allow modifications of these
parameters at runtime in answer to user feedback or
changing environment variables as perceived by
system’s interfaces.

A monolithic system (Figure 1B) is composed
only by an executable with mixed specializations
and data files; it doesn’t have modular components.
This is a common architecture of legacy systems.

 Some big sized legacy systems have libraries to
implement part of its functionality (Figures 1C and
1D); this technique helps to put operation functions
into a separate component. In the first case, the
system has a main module with mixed direction and
control and a separate module with all operational
functionality. The second one represents a more
common practice; part of the operation resides in the
libraries and the rest in the main program.

Libraries have been commonly used since
structured programming epochs to develop
functionalities managing resources like memory, or
making some kind of reuse in different programs.

4.2 Architectural Models

The set of models explained in the document address
some cases of systems evolution, interaction and
integration. For practical reasons we have classified
them as:

1. Interaction with legacy monolithic systems using
data transformation components.
2. Integration of legacy systems that have libraries.
3. Evolution of legacy systems using replacement
libraries.
4. Transparent modular systems interaction.
5. Evolution by shared use of components with
enhanced functionality.
6. Integration of systems by direct calls to functions
in operation components.
7. Integration by coordination of pre-existent
systems.
8. Full integration and evolution of pre-existent
systems.

Proposed taxonomy is based in some common
cases where evolution, interaction and integration is
needed; but, this is a first approach and in a future

MODELS FOR INTERACTION, INTEGRATION AND EVOLUTION OF PRE-EXISTENT SYSTEMS AT
ARCHITECTURAL LEVEL

223

the set might be expanded with new cases that
probably are not listed here.

4.2.1 Interaction with Legacy Monolithic
Systems using Data Transformation
Components

When dealing with a monolithic system, if we don’t
have access to source code or tools used for its
compilation we will not have practical means to
modify it. We only can interact with the system
through its information files.

Figure 2: Interaction between a new and a monolithic
system.

To obtain interaction it’s necessary to create a
bridge component to communicate information from
the legacy system to the new one. This architectural
element can be generically called “Data
Transformation Component” (see Figure 2).

Data transformation component converts data
from the legacy system file structure to the data
structure of the new system. Perhaps this work will
go far from adjusting structures because we must
transform and standardize information semantics to
adapt data from the context of one system to the
other in order to make it useful.

This component could also have additional
capacities like information transport between files
and databases from both systems; and information
enrichment, mixing and contextualization of data to
support new functionalities. Also, when sending
information to the legacy system it would be
necessary to make arrangements to respect legacy
validation rules to avoid future errors at runtime.
This could be not feasible if we don’t know
validation rules for data of the legacy system.

This interaction mechanism gives us some
advantages, like: creation of functionalities in the
new system to substitute those similar in the legacy
one; expansion of capacities in the new system to
answer to users’ and organization’s needs; and
establishment of a practical path for gradual
replacement of legacy systems, by implementing
“parallel” functionalities.

4.2.2 Integration of Legacy Systems that
Have Libraries

Figure 3: Integration of a legacy system using replacement
libraries.

We can make a replacement library to include
new functionalities in a legacy system. If we share
control of this library between both systems (see
Figure 3); this will result as an integration
mechanism because the legacy system is yielding
control of its functionality to the new system.

Replacement libraries can make unnecessary to
develop a transformation component, because their
operations can be integrated in the library.

4.2.3 Evolution of Legacy Systems using
Replacement Libraries

If operative specialization of a legacy system totally
resides in its libraries, then the replacement libraries
mechanism could allow total integration of the
legacy system by eliminating its main module.

From a practical point of view, to consider
libraries like specialized components is necessary to
be sure that we have knowledge skills and tools to
make rebuild these elements and make any
modification to the software; or else, we must
aboard this legacy system as a monolithic one with
no separate libraries.

If specializations are partially mixed in the main
module of the legacy system, replacement of
functions using the new library will limited to those
located in the library; nevertheless, some enhanced
functionalities in the replacement libraries could be
used by the old allowing it to evolve.

4.2.4 Transparent Modular Systems
Interaction

Another form of interaction can be implemented by
developing a common navigation interface for two
or more systems. All systems will continue working
in a separate way, but users will perceive them as
only one system (see Figure 4).

ICSOFT 2008 - International Conference on Software and Data Technologies

224

Figure 4: Transparent modular systems interaction.

We have interaction instead of integration,
because none of the two systems have conceded
partial or total loss of control over their components.
A component with enhanced functionality will serve
to achieve contextualization, enrichment and
exchange of information among both systems.

Mechanism for interaction between two systems
can be extended to more systems. Acquired benefits
of getting information from a pre-existent system
can be extended by adding similar components or
sharing this one with more than one system.

4.2.5 Evolution by Shared Use of
Components with Enhanced
Functionality

An enhanced functionality component integrated in
the new system can interchange information from
each one of the participating systems.

When more than two systems share the same
components, as illustrated in Figure 5, we can
reduce implementation efforts and enhance usability
by introducing standardized behaviour. Functionality
enhancement sharing new functionality with all
interconnected systems could be considered as a
form of evolution.

4.2.6 Integration of Systems by Direct Calls
to Functions in Operation Components

We can have certain integration between systems
that have been developed under compatible,
transparent or portable technologies if the new
system’s control component makes direct calls to
functions of the pre-existent system. New system
overrides the control component of the pre-existent
one and directly executes operation components to
use their functionalities (see Figure 6).

Figure 5: Shared use of an Enhanced Functionality
Component.

Figure 6: Direct calls to operation components.

This kind of interaction could be useful for
critical response systems if it’s well managed, but if
not, it can cause introduction of inconsistencies.

4.2.7 Integration by Coordination of
Pre-existent Systems

A kind of partial control yielding from one system to
other can be given through coordination. Control
component of the new system can make these
coordination tasks; and navigation interface can be
used to guide execution flows of both systems.

Figure 7: Coordination of pre-existent systems.

MODELS FOR INTERACTION, INTEGRATION AND EVOLUTION OF PRE-EXISTENT SYSTEMS AT
ARCHITECTURAL LEVEL

225

As can be seen in Figure 7, calls are made
indirectly by making requests to the control
component of the pre-existent system. This approach
sets a logic that is subject to the decision making
process of the new system above decisions taken by
the control component in the pre-existent one.

Difference established by a schema of decision
taking under the coordination mechanism may seem
subtle to the naked eye, but it takes relevance when
integrating more than one system. This mechanism
becomes common and necessary to ensure that
information update movements in different systems
is carried out in an appropriate manner avoiding or
solving problems of synchronization, integrity, etc.

4.2.8 Full Integration and Evolution of
Pre-existent Systems

As in the case of legacy systems integration,
evolution of a pre-existent system may result in
elimination of its control and direction components
by replacing them with components from the new
system. This approach provides a full integration of
the pre-existent system (see Figure 8).

Figure 8: Full integration and evolution of pre-existent
systems.

Full integration means that only operation
components and information from the pre-existent
system will be used in the new system. Evolution
will give a path to eliminate the pre-existent system
avoiding the risk of letting it become a legacy one.

5 CASE STUDY

To exemplify how the set of models could be used to
facilitate design of different architectures we have
included an example to describe its application.

We describe an application that is part of a
nationwide statistical and geographical information
network (RNI) defined in a Federal Law in Mexico
(DOF, 2008) that is under construction. It must solve

statistical information requests from various systems
located in different institutions members of the
SNIEG (in Spanish for National Statistical and
Geographical Information System). The Statistical
Information System of SNIEG must integrate
information to show results to the user without
modifying existent systems.

Figure 9: Conceptual diagram of the integration
mechanism.

A total summarizing of all information will not
be always possible to produce, because it’s needed
to have a script describing a statistical valid
procedure to make this task, if this is not possible,
only individual results that have been sent by each
institution will be showed. Each institution also
needs to integrate information from its own systems
to send these results.

As it can be seen in Figure 9, integration must be
made in a distributed mode, first each institution will
standardize, summarize and structure individual
results with extracted data from different
information systems; later a main integration
component will deal with all individual answers and
compose an integrated one to solve user’s request.

System will control each institution’s integration
module by applying the model number seven for
“integration by coordination of pre-existent
systems”, and for calling web services, the sixth
model for “Integration of systems by direct calls to
functions in operation components” will be
developed (See Figure 10).

The component: “RF1. 3 QueriesProcessing”
asks for information in each “O1-1 Institution’s
Integration Module” and composes the full
aggregated answer to requests.

With this architectural design, architects solved
the problem of integration without modifying any
pre-existent system, a critical condition because
participating institutions didn’t want to do it. Now
the mechanism can be implemented in each
institution to integrate information and functionality
from any statistical system and let the system grow
nationwide with a controlled effort.

ICSOFT 2008 - International Conference on Software and Data Technologies

226

Figure 10: Architectural detail of SNIEG's Statistical Information System.

6 CONCLUSIONS AND FUTURE
WORK

Direction, control and operation are abstract
specialized functions which enables a new approach
to system’s modularization. These specializations
could be the basis for designing architectural
structures with enhanced non functional
characteristics like: maintenability, interoperability
and governability.

 Using these abstractions, we have proposed a set
of models for systems evolution, interaction and
integration that could help to explain, rationality for
developing architectural solutions that can be
implemented under different technological
approaches.

This set could be used as a starting point to
classify different kinds of architectures and compare
systems under similar contexts.

Also, identification of specialized components,
described in this document may be used as a basis
for the conversion of architectural patterns into a set
of rules that could be applied to develop tools to
assist software architecture design tasks.

REFERENCES

O’Callaghan, A., 2000, Focus issue on legacy information
systems and business process change: Migrating large
scale systems to component-based and object
technology: The evolution of a pattern language,
Communications of the Association for Information
Systems, Volume 2, Article 3, AIS

Buschman, F., Meunier, R., Rohnert, H., Sommerland, P.,
Stal, M., 1996, Pattern-Oriented Software
Architecture. A System of Patterns. Volumen 1, Willey,
USA

Cornella-Dorda, S., Lewis, G., Place, P., Plakosh, D.,
Seacord, R., 2001, Incremental Modernizing of Legacy
Systems, CMU/SEI-2001-TN-006, Software
Engineering Institute, Carnegie Mellon University

DOF, 2008, Ley del Sistema Nacional de Información
Estadística y Geográfica, Diario Oficial de la
Federación 17 de abril de 2008, Secretaría de
Gobernación, México

Garland, J., Anthony, R., 2003, Large-Scale Software
Architecture, Willey, USA

Keshav, R., Gamble, R., Payton, J., Frasier, K., 1999,
Architecture Integration Elements, Technical Report
UTULSA-MCS-16-99, Department of Mathematical
and Computer Sciences, University of Tulsa

Muñoz, J. Muñoz, J., Arévalo, C., 2006, Building a
Methodology for the Design of Reference
Architectures That Integrates Legacy Systems,
IRMA2006, IDEA Press

Pressman, R. S., 2004, Software Engineering. A
Practitioner’s Approach, McGraw Hill, USA, 6th
Edition

Robertson, P., 1997, Integrating Legacy Systems with
Modern Corporate Applications, Communications of
the ACM, Vol. 40, No. 5, ACM Press

Sommerville, I., 2004, Software Engineering., Addison
Wesley, USA, 7th Edition

Trowbridge, D., Roxburg, U., Hohpe, G., Manolescu, D.,
Nadghan, E., 2004, Information Patterns. Patterns &
Practices, Microsoft Corporation, USA

Ziegler, P., Dittrich, K., 2004, Three Decades of Data
Integration – All Problems Solved?, WCC2004,
University of Zurich

MODELS FOR INTERACTION, INTEGRATION AND EVOLUTION OF PRE-EXISTENT SYSTEMS AT
ARCHITECTURAL LEVEL

227

