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Abstract: In this paper, we describe extensions to the OnLine Analytical Processing (OLAP) framework for business 
analysis. This paper is part of our continued work on extending multi-dimensional databases with novel 
functionality for diagnostic support and sensitivity analysis. Diagnostic support offers the manager the 
possibility to automatically generate explanations for exceptional cell values in an OLAP database. This 
functionality can be built into conventional OLAP databases using a generic explanation formalism, which 
supports the work of managers in diagnostic processes. The objective is the identification of specific 
knowledge structures and reasoning methods required to construct computerized explanations from multi-
dimensional data and business models. Moreover, we study the consistency and solvability of OLAP 
systems. These issues are important for sensitivity analysis in OLAP databases. Often the analyst wants to 
know how some aggregated variable in the cube would have been changed if a certain underlying variable is 
increased ceteris paribus (c.p.) with one extra unit or one percent in the business model or dimension 
hierarchy. For such analysis it is important that the system of OLAP aggregations remains consistent after a 
change is induced in some variable. For instance, missing data, dependency relations, and the presence of 
non-linear relations in the business model can cause a system to become inconsistent.  

1 INTRODUCTION 

Today’s OLAP databases have limited capabilities 
for diagnostic support and sensitivity analysis. The 
diagnostic process is now carried out mainly 
manually by business analysts, where the analyst 
explores the multi-dimensional data to spot 
exceptions visually, and navigates the data with 
operators like drill-down, roll-up, and selection to 
find the reasons for these exceptions. It is obvious 
that human analysis can get problematic and error-
prone for large data sets that commonly appear in 
practise. For example, a typical OLAP data set has 
five to seven dimensions and average of three levels 
hierarchy on each dimension and aggregates more 
than a million records. The goal of our research is to 
largely automate these manual diagnostic discovery 
processes (Caron and Daniels, 2007). This func-

tionality can be provided by extending the 
conventional OLAP system with an explanation 
formalism, which supports the work of human 
decision makers in diagnostic processes. Here 
diagnosis is defined as finding the best explanation 
of unexpected behaviour (i.e. symptoms) of a system 
under study (Verkooijen, 1993). This definition 
captures the two tasks that are central in problem 
diagnosis, namely problem identification and 
explanation generation. It assumes that we know 
which behaviour we may expect from a correctly 
working system, otherwise we would not be able to 
determine whether the actual behaviour is what we 
expect or not. 

In addition, we describe a novel OLAP 
operator that supports the analyst in answering 
typical managerial analysis questions in an OLAP 
data cube. For example, an analyst might be 
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interested in the questions: How is the profit on the 
aggregated year level affected when the profit for 
product P1 is changed in the first quarter in The 
Netherlands? Or how is the profit in the year 2007 
for a certain product affected when its unit price is 
changed (c.p.) in the sales model? Such questions 
might be ‘dangerous’, when the change is not caused 
by a variable in the base cube, but by a variable on 
some intermediate aggregation level in the cube. The 
latter situation makes the OLAP database inconsis-
tent. Our novel OLAP operator corrects for such 
inconsistencies such that the analysts can still carry 
out sensitivity analysis in the OLAP database. Our 
research shows that consistency and solvability of 
OLAP databases are important criteria for sensitivity 
analysis in OLAP databases. 

1.1 OLAP Introduction 

OLAP databases are a popular business intelligence 
technique in the field of enterprise information 
systems for business analysis and decision support. 
OLAP not only integrates the management 
information systems (MIS), decision support 
systems (DSS), and executive information systems 
(EIS) functionality of the earlier generations of 
information systems, but goes further and introduces 
spreadsheet-like multi-dimensional data views and 
graphical presentation capabilities (Koutsoukis  et 
al., 1999). OLAP systems have a variety of 
enterprise functions. Finance departments use OLAP 
for applications such as budgeting, activity-based 
costing, financial performance analysis, and 
financial modelling. Sales analysis and forecasting 
are two of the OLAP applications found in sales 
departments. 

The core component of an OLAP system is 
the data warehouse, which is a decision-support 
database that is periodically updated by extracting, 
transforming, and loading data from several On-Line 
Transaction Processing (OLTP) databases. The 
highly normalized form of the relational model for 
OLTP databases is inappropriate in an OLAP 
environment for performance reasons. Therefore, 
OLAP implementations typically employ a star 
schema, which stores data de-normalized in fact 
tables and dimension tables. The fact table contains 
mappings to each dimension table, along with the 
actual measured data. In a star scheme data is 
organized using the dimensional modelling 
approach, which classifies data into measures and 
dimensions. Measures like, for example, sales, 
profit, and costs figures, are the basic units of 
interest for analysis. Dimensions correspond to 

different perspectives for viewing measures. 
Examples dimensions are a product or a time 
dimension. Dimensions are usually organized as 
dimension hierarchies, which offer the possibility to 
view measures at different dimension levels (e.g. 
month ≺  quarter ≺  year is a hierarchy for the Time 
dimension). Aggregating measures up to a certain 
dimension level, with functions like sum, count, and 
average, creates a multidimensional view of the data, 
also known as the data cube. A number of data cube 
operations exist to explore the multidimensional data 
cube, allowing interactive querying and analysis of 
the data. 

The remainder of this paper is organized as 
follows. Section 2 introduces our notation for multi-
dimensional models, followed by a description of 
models appropriate for OLAP problem identification 
in Section 3. In Section 4 the explanation formalism 
is extended for multi-dimensional data in order to 
automatically generate explanations. In section 5 we 
show that systems of OLAP equations are consistent 
and have a unique solution. Subsequently, we apply 
this result for sensitivity analysis in the OLAP 
context. Finally, conclusions are discussed in 
Section 6. 

2 NOTATION AND EQUATIONS 

Here we use a generic notation for multi-
dimensional data schemata that is particularly 
suitable for combining the concepts of measures, 
dimensions, and dimension hierarchies as described 
in (Caron and Daniels, 2007). Therefore, we define a 
measure y as a function on multiple domains: 

1 2 1 2
1 2:n ni i i ii i

ny D D D× × × →… … R  (1) 
Each domain iD has a number of hierarchies ordered 

by max0 1 i
k k kD D D≺ ≺…≺ , where 0

kD  is the lowest 

level and maxi
kD  is the highest level in maxi

kD . A 
dimension’s top level has a single level instance 

{ }max Alli
kD = . For example, for the time dimension 

we could have the following hierarchy 0 1T T≺  
2T≺ , where { }2T All-T= , { }1T 2000,2001= , and 

{ }0 Q1,Q2,Q3,Q4T = . A cell in the cube is denoted 
by 1 2( , , , )nd d d… , where the 'skd  are elements of 
the domain hierarchy at some level, so for example 
(2000, Amsterdam, Beer) might be a cell in a sales 
cube. Each cell contains data, which are the values 
of the measures y like, for example, 211sales (2000, 
Amsterdam, Beer). The measure’s upper indices 
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indicate the level on the associated dimension 
hierarchies. If no confusion can arise we will leave 
out the upper indices indicating level hierarchies and 
write sales(2000, Amsterdam, Beer). Furthermore, 
the combination of a cell and a measure is called a 
data point. The measure values at the lowest level 
cells are entries of the base cube. If a measure value 
is on the base cube level, then the hierarchies of the 
domains can be used to aggregate the measure 
values using aggregation operators like SUM, 
COUNT, or, AVG.  

By applying suitable equations, we can alter 
the level of detail and map low level cubes to high 
level cubes and vice versa. For example, aggregating 
measure values along the dimension hierarchy (i.e. 
rollup) creates a multidimensional view on the data, 
and de-aggregating the measures on the data cube to 
a lower dimension level (i.e. drilldown), creates a 
more specific cube.  

Here we investigate the common situation 
where the aggregation operator is the summarization 
of measures in the dimension hierarchy. So y is an 
additive measure or OLAP equation (Lenz and 
Shoshani, 1997) if in each dimension and hierarchy 
level of the data cube: 

1 1 1

1
( , , ) ( , , )q n q n

Ji i i i i i
j

j
y a y a+

=
= ∑… … … …… … … …  (2) 

where 1q
ka D +∈ , q

j ka D∈ , q is some level in the 
dimension hierarchy, and J represents the number of 
level instances in q

kD . An example equation 
corresponding to two roll-up operations reads: 

212

4 20
102

1 1

sales (2001,All-Locations,Beer)

sales (2001.Q ,Country ,Beer).j k
j k= =

=

∑∑
 

Furthermore, we assume that a business model M is 
given representing relations between measures. 
These relations can be derived from many domains, 
like finance, accounting, logistics, and so forth. 
Relations are denoted by 

1 2

1 2

1 2

1 2

( , , , )

( ( , , , ))

n

n

i i i
n

i i i
n

y d d d

f d d d

=

x

…

…

…
…

 (3) 

where 1( , , )nx x=x … , and y  are measures defined 
on the same domains. Business model equations 
usually hold on equal aggregation levels in the data 
cube, therefore we may leave out upper indices if no 
confusion can arise. In Table 1, the business model 
with quantitative relations from an example financial 
database is presented. 

Table 1: Example business model M. 

1. Gross Profit = Revenues - Cost of Goods 
2. Revenues = Volume Unit Price 
3. Cost of Goods = Variable Cost + Indirect Cost 
4. Variable Cost = Volume · Unit Cost 
5. Indirect Cost = 30% · Variable Cost 

3 PROBLEM IDENTIFICATION 

There are many ways to identify exceptional cells in 
multidimensional data with normative models. The 
simplest way is pairwise comparison between two 
cells. In general, only the cells on the same 
aggregation levels will be used for obvious reasons, 
like the measurement scale of the variable. For 
example, we can compare sales (2000,Germany,All-
Products) with the sales of the previous year, norm( 
sales(1999,Germany,All-Products)), as an historical 
norm value. Another common norm values is the 
expected value y  of a cell computed using a context 
of the cell: 

1

1( , , ) ( , , )
J

j
jJ

y y a
=

+ = ∑… … … …  (4) 

and for the average over all domains we write 
( , , , )y + + +… . Expected values are based on 

statistical models. A huge variety of statistical 
models exists for two-way tables, three-way tables, 
etc., see Scheffé (1959) and Tukey (1988). Here we 
only consider two models namely the additive multi-
way ANOVA model for continuous data and the 
model of independence for category data. For a 
continuous data set, in the situation of only two 
dimensions, we can write the expected value as an 
additive function of three terms obtained from the 
possible aggregates of the table:  

1 2 1 2ˆ( , ) ( , ) ( , ) ( , ).y d d y d y d y= + + + − + +  (5) 
The residual of a model is defined as yΔ =  

ˆnormy y y y− = − . If we normalize the residual of the 
model by the standard deviation of the cell, we get 
the normalized residual /s y σ= Δ , where ŷ  is com-
puted with the same statistical model applied to a 
certain context of the cell and  σ  is the standard 
deviation in the same context. The problem of 
looking for exceptional cell values is equivalent to 
the problem of looking for exceptional normalized 
residuals, also known as symptom identification.  
The actual data point is ay , and ry  is the norm 
object. When a statistical model is used as a 
normative model ˆry y= . Furthermore, the larger 
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the absolute value of the normalized residual, the 
more exceptional a cell is. A data point is a symptom 
or surprise value (Sarawagi, 1998) if s  is higher 
than some user-defined threshold δ . When s δ> , 
the cell is a “high” exception; and when s δ< − , the 
cell is a “low” exception. 

4 EXPLANATION 

4.1 Explanation Method 

Our exposition on diagnostic reasoning and causal 
explanation is largely based on Feelders and Daniels 
(1993) notion of explanations, which is essentially 
based on Humpreys’ notion of aleatory explanations 
(1989) and the theory of explaining differences by 
Hesslow (1983). The canonical form for causal 
explanations is taken from Feelders and Daniels 
(1993, 2001): 

, ,  because , despite .a F r C C+ −〈 〉  (6) 

where , ,a F r〈 〉  is the symptom to be explained, C+ 
is non-empty set of contributing causes, and C– a 
(possibly empty) set of counteracting causes. The 
explanation itself consists of the causes to which C+ 
jointly refers. C– is not part of the explanation, but 
gives a clearer notion of how the members of C+ 
actually brought about the symptom. The 
explanandum is a three-place relation between an 
object a (e.g. the ABC-company), a property F (e.g. 
having a low profit) and a reference class r (e.g. 
other companies in the same branch or industry). 
The task is not to explain why a has property F, but 
rather to explain why a has property F when the 
other members of r do not. This general formalism 
for explanation constitutes the basis of the 
framework for diagnosis in an OLAP context. 

4.2 Influence Measure 

If y is a symptom we want to explain the 
difference a ry y yΔ = −  where ry  is a reference 
value of the cell under study. An explanation is 
given using relations of the business model or 
relations of the dimension hierarchies. Then the 
influence of ix  on yΔ  is defined as (Feelders and 
Daniels, 1993): 

inf( , ) ( , )r a r
i i ix y f x y−= −x  (7) 

where ( , )r a
i if x−x  denotes the value of ( )f x  with all 

variables evaluated at their norm values, except the 

measure ix . Here r
ix  is a reference value for the 

measure ix . The correct interpretation of the mea-
sure depends on the form of the function f; the 
function has to satisfy the so-called conjunctiveness 
constraint. This constraint captures the intuitive 
notion that the influence of a single variable should 
not turn around when it is considered in conjunction 
with the influence of other variables.  

In the dimension hierarchy, f is additive by 
definition, it follows from (2) that: 

1 1 1

1 1; ;

inf( ( , , ), ( , , ))

( , , ) ( , , ).

q n q n

q n q n

i i i i i i
j

a i i i r i i i
j j

y a y a

y a y a

− =

−

… … … …

… … … …

… … … …

… … … …
 (8) 

When explanation is supported by a business model 
equation the set of contributing (counteracting) 
causes C+ (C–) consists of measures xi of the 
business model with: inf( , ) 0ix y y× Δ >  ( 0)< . In 
words, the contributing causes are those variables 
whose influence values have the same sign as ∂y, 
and the counteracting causes are those variables 
whose influence values have the opposite sign. If 
explanation is supported by the dimension hierarchy, 
the set of contributing (counteracting) causes C+ 
consists of the set of child instances ja  of 
dimension level qi  out of the hierarchy of a specific 
dimension with:  

1 1 1inf( ( , , ), ( , , )) 0q n q ni i i i i i
jy a y a y− × Δ >… … … …… … … …  

4.3 Filtering Explanations 

Because every applicable equation yields a possible 
explanation, the number of explanations generated 
for a single symptom can be quite large. Especially 
when explanations are chained together to form a 
tree of explanations we might get lost in many 
branches. In order to leave insignificant influences 
out of the explanation we introduce three methods.  

Firstly, in the problem identification phase the 
analyst distillates a set of symptoms. This means that 
if a cell does not have a large deviating value – 
based on some statistical model or defined by a user 
– it is not identified as a symptom and therefore not 
considered for explanation generation. Secondly, 
small influences are left out in the explanation by a 
filter. The set of causes is reduced to the so-called 
parsimonious set of causes. The parsimonious set of 
contributing causes pC+  is the smallest subset of the 
set of contributing causes, such that its influence on 
y exceeds a particular fraction (T+) of the influence 
of the complete set. The fraction T+ is a number 
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between 0 and 1, and will typically 0.85 or so. A 
third way to reduce the number of explanations is by 
applying a measure of specificity for each applicable 
equation. This measure quantifies the “interesting-
ness” of the explanation step. The measure is 
defined as: 

# possible causesspecificity = 
#  actual causes

 (9) 

The number of possible causes is the number of 
right-hand side elements of each equation, and the 
number of actual causes is the number of elements in 
the parsimonious set of causes. Using this measure 
of specificity we can order the explanation paths 
from specific to general and if desired only list the 
most specific steps. 

4.4 Multi-level Explanation 

The explanation generation process for multidimen-
sional data is quite similar to the knowledge mining 
process at multiple dimension levels. Especially, the 
idea of progressive deepening seems very “natural” 
in the explanation generation process; start symptom 
detection on an aggregated level in the data cube and 
progressively deepen it to find the causes for that 
symptom at lower levels of the dimension hierarchy 
or business model. This idea we will adopt for so-
called multi-level explanations. In the previous parts, 
we have discussed “one-level” explanations; 
explanations based on a single relation from the 
business model or dimension hierarchy. For 
diagnostic purposes, however, it is meaningful to 
continue an explanation of ∂y = q, by explaining the 
quantitative differences between the actual and norm 
values of its contributing causes. In multi-level 
explanation this process is continued until a 
parsimonious contributing cause is encountered that 
cannot be explained further because:  
• the business model equations do not contain an 

equation in which the contributing cause appears 
on the left-hand side. 

• the dimension hierarchies do not contain a drill-
down equation in which the contributing cause 
appears on the left-hand side. 

The result of this process is an explanation tree of 
causes, where y is the root of the tree with two types 
of children, corresponding to its parsimonious 
contributing and counteracting causes respectively. 
A node that corresponds to a parsimonious 
contributing cause is a new symptom that can be 
explained further, and a node that corresponds to a 
parsimonious counteracting cause has no successors. 
In the explanation tree there are numerous 

explanation paths from the root to the leaf nodes. 
This implies that many different explanations can be 
generated for a symptom. In most practical cases one 
would therefore apply the pruning methods 
discussed above yielding a comprehensive tree of 
the most important causes. 

4.5 Making Hidden Causes Visible 

The phenomenon that the effects of two or more 
lower-level variables in the dimension hierarchy (or 
business model) cancel each other out so that their 
joint influence on a higher-level variable in the 
business model is partly or fully neutralized is quite 
common in multidimensional databases. For the top-
down explanation generation process this means that 
in some data sets possible significant causes for a 
symptom will not be detected when cancelling-out 
effects are present. These non-detected causes by 
multi-level explanation are called hidden causes. In 
theory, cancelling-out effects may occur at every 
level in the dimension hierarchy. Of course, analysts 
would like to be informed about significant hidden 
causes, and would consider an explanation tree 
without mentioning these causes as incomplete and 
not accurate. 

Here a multi-step look-ahead method is 
developed for detecting hidden causes. In short, the 
look-ahead method is composed of two consecutive 
phases: an analysis (1) and a reporting phase (2). In 
the analysis phase the explanation generation 
process starts, similar as for maximal explanation, 
with the root equation in the dimension hierarchy by 
determining parsimonious causes. However, instead 
of proceeding with strictly parsimonious causes, all 
non-parsimonious contributing and counteracting 
causes are investigated for possible cancelling-out 
effects at a specific (lower) level in the hierarchy. In 
multi-step look-ahead, a successor of variable 

1 ( , , )q ni i i
jy a… … … …  is a hidden cause if its influence 

on 1 1 ( , , )q ni i iy a−… … … …  is significant after 
substitution, when the influence of variable 

1 ( , , )q ni i i
jy a… … … …  of (2) on 1 1 ( , , )q ni i iy a−… … … …  is 

not significant. These hidden causes are made 
visible by means of function substitution, where all 
the lower-level equations at level i

kD  in the 
dimension hierarchy are substituted into the higher-
level equation under consideration for explanation. 
In the reporting phase the explanation tree is updated 
when hidden causes are detected by the multi-level 
look-ahead method.  
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5 SENSITIVITY ANALYSIS 

Sensitivity analysis in the OLAP context is related to 
the notion of comparative statics in economics. 
Where the central issue is to determine how changes 
in independent variables affect dependent variables 
in an economic model. Comparative statics is 
defined as the comparison of two different 
equilibrium states solutions, before and after change 
in one of the independent variables, keeping the 
other variables at their original values. The basis for 
comparative statics is an economic model that 
defines the vector of dependent variables y as 
functions of the vector of independent variables x. In 
this paper we apply comparative statics in the OLAP 
context where we have a system of linear equations 
with dependent variables on an aggregated level of 
the cube, called non-base variables and independent 
variables on the base level, called base variables.  

5.1 Aggregation Lattice 

An OLAP cube represents a system of additive 
equations in the form of a aggregation lattice. The 
top of the lattice is the single non-base variable 

max max maxi i iy …  and the bottom of the the lattice is 
represented by the base variables 00 0x … . The upset 
of a base variable in the lattice represents non-base 
variables on specific levels of aggregation (i.e., 
summarization) in the OLAP cube. For example, the 
non-base variable 1 2 ( 1)p ni i i iy +… … is a parent of the non-

base variable 1 2 p ni i i iy … … , somewhere in the lattice. In  
 In the OLAP cube roll-ups can be alternated 
from one dimension to the next, resulting in multiple 
paths from a base variable to a non-base variable in 
the aggregation lattice. For example, 110 0y …  is a 
common ancestor of 000 0x …  via parent 100 0y …  and 
parent 010 0y … . In addition, in the lattice the partial 
ordering within a single dimension hierarchy is 
preserved. In other words, it is not allowed to skip 
intermediate dimension levels. Thus, a parent in the 
lattice is on level 1 2 ( 1)p ni i i i+… …  and a child on 
level 1 2 p ni i i i… …  and possible other ancestors are 
on level 1 2 ( )p ni i i m i+… …  and have a connection 
with the child via the parent.  

The length of a path from a non-base variable 
1 2 ni i iy … in the lattice to a base variable 00 0x …  is 

1 2 ni i i+ + +… . Obviously, the sum of the indices of 
a non-base variable corresponds with the number of 

aggregations carried out. Every non-base variable in 
a system of OLAP equations is the result of a 
sequence of aggregations in the lattice structure.  
Although there are often multiple paths in the lattice 
from a non-base variable to a base variable, each 
non-base variable corresponds with a single equation 
expressed in a unique set of base variables.  The 
multiple paths are just the result of the same 
summarization, however carried out in a different 
order. This can be verified by substituting all 
equations in the downset of a non-base variable from 
level 1 2 ni i i+ + +…  to the base level. Suppose we 

have the non-base variable  1 2
1 2( , , , )nii i

ny d d d… …  
somewhere in the aggregation lattice. This variable 
is the linear combination of a unique set of base 
variables, denoted by: 

1 2
1 2

00 0

1 1 1

00 0

1 1 1

00 0

1 1 1

( , , , )

( , , , )

( , , , )

...

( , , , )

nii i
n

K L W

k l w
k l w
L K W

k l w
l k w

W L K

k l w
w l k

y d d d

x a b z

x a b z

x a b z

= = =

= = =

= = =

=

=

=

=

∑∑ ∑

∑∑ ∑

∑∑ ∑

…

…

…

…

…

… …

… …

… …

 (10) 

Because of (10) it can be shown that the OLAP 
aggregation lattice always a unique solution for the 
non-base variables for a given a set of base 
variables.  

In figure 1 of the Appendix, an example 
aggregation lattice is given for the variable sales 
( 1 2i iy ) from some sales database, where the first 
index represents the hierarchy for the Time (T) 
dimension with the levels T3[All-T], T2[Year], 
T1[Quarter] and T0[Month], and the second index 
represents the Location (L) dimension with the 
levels L3[All-L], L2[Country], T1[Region] and 
T0[City]. In the lattice the variable 12y , which has a 
number of data instances, has instances of the 
variables { 22y , 13y , 23y , 32y , 33y } in its upset and 
instances of the variables { 11y , 02y , 10y , 01y , 00x } in 
its downset. All non-base variables in the lattice are 
aggregated from instances of the base variables 

00 (month,city)x . It can easily be shown with 
function substitution that each non-base variable in 
the example lattice can be expressed in a unique set 
of base variables. 
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5.2 Sensitivity Analysis Correction 

Because of the arguments above, a change in a 
single base variable c.p. in the aggregation lattice 
will result in a new unique solution for the non-base 
variables. The influence of a base variable on some 
aggregated non-base variable is given by: 

1 200 0

00 0 00 0

inf( ( , , ), ( , , ))

( , , ) ( , , )

ni i i
j

a r
j j

x a y a

x a x a

=

−

……

… …

… … … …

… … … …
 (11) 

If a non-variable 1 ( , , )q ni i i
jy a… … … …  is changed with 

some magnitude c.p. the aggregation lattice will 
obviously become inconsistent because its downset 
variables are not changed accordingly. However, the 
partial system of equations representing its upset is 
still consistent and the influence of a non-base 
variable on some non-base variable in its upset is 
given by equation (8). To make this type of 
sensitivity analysis useful for the complete 
aggregation lattice we have to correct the downset of 
the variable 1 ( , , )q ni i i

jy a… … … …  for the change from 
each associated lower level aggregation level to the 
base cube level. For the correction procedure all 
variables in the downsets of siblings of 1 q ni i iy … …  
( , , )ja… … have to remain on their reference values 
and one variable on each level of the downset of 

1 ( , , )q ni i i
jy a… … … …  has to be corrected with the 

induced change. In this procedure the variables on 
the base cube level are corrected in the last step. 
This step makes the OLAP aggregation lattice again 
consistent after cube construction. 

In figure 1, an illustration is given of the 
working of the sensitivity analysis correction. 
Suppose a business analyst changes a single instance 
of the variable 12y  to a new actual value a while 
keeping all siblings of this variable on their 
reference values r. This change makes the system of 
equations in the aggregation lattice inconsistent. 
Now the correction procedure corrects the downsets 
of instances of variable 12y  level by level, where 
only descendants of the actual instance of 12y  are 
considered as candidates for correction. In the last 
step of the procedure the base variables are changed 
accordingly to produce again a consistent system of 
OLAP equations. 

6 CONCLUSIONS 

In this paper, we described extensions to the OLAP 
framework for business analysis. Exceptional cell 
values are determined based on a normative model, 
often a statistical model appropriate for multi-
dimensional data. Explanation generation is 
supported by the two internal structures of the 
OLAP data cube: the business model and the 
dimension hierarchies. Therefore, we developed a 
multi-level explanation method for finding 
significant causes in these structures, based on an 
influence-measure which embodies a form of ceteris 
paribus reasoning. This method is further enhanced 
with a look-ahead functionality to detect so-called 
hidden causes. The methodology as proposed uses 
the concept of an explanation tree of causes, where 
explanation generation is continued until a 
significant contributing cause cannot be explained 
further. The result of the process is a semantic tree, 
where the main causes for a symptom are presented 
to the analyst. Furthermore, to prevent an 
information overload to the analyst, several 
techniques are proposed to prune the explanation 
tree. 

Currently, we are working on a novel OLAP 
operator that supports the analyst in answering 
typical managerial questions related to sensitivity 
analysis. Often the analyst wants to know how some 
root variable (e.g. profit) would have been changed 
if a certain lower-level successor variable (e.g. some 
cost variable) is increased (ceteris paribus) with one 
extra unit or one percent in the business model or 
dimension hierarchy. This is related to the notion of 
partial marginality and elasticity in economics. An 
important related issue is that the system of 
equations (e.g. a set of business model equations) 
remains consistent after the influence measure is 
applied on some successor variable (of the root). 
Consistency in a set of OLAP equations is not trivial 
because by changing a certain variable (ceteris 
paribus) a (non-)linear system of equations can 
become inconsistent. For instance, missing data, 
dependency relations, and the presence of non-linear 
relations in the business model can cause a system to 
become inconsistent. It is therefore important to 
investigate the criteria for consistency in the OLAP 
context. 
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Figure 1: Aggregation lattice with the dimensions Time and Location illustrating the working of the correction procedure. 
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