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Abstract. Palpation is a standard medical method to detect of abnanasabf
the human body, because a pathological state of soft tissuafen correlated
with changes in stiffness. However, a pathological lesiay he undetectable
by palpation if it is located deep in the body or if it is too $mRecently, new
technics are developing to identify stiffness (Young's mlod). The observed
data contain noise, it prevent to substitute the data fomtathematical model
equation of the human body. Because the model equationdieslthe second
differential terms. “Numerical differentiation” is a numeal method to deter-
mine the derivatives of an unknown function from the giveimspwalues of the
unknown function at the scattered points. In this talk, wk apply this method
to the noisy data, and introduce numerical results.

1 Introduction

Palpation is a standard medical method to detect of abndiesabf the human body,
because a pathological state of soft tissues is often ebecklvith changes in stiffness.

However, a pathological lesion may be undetectable by galp# it is located
deep in the body or if it is too small. Recently, new technies@eveloping to identify
stiffness(Young’s modulus). The principle of them is tHy: giving vibration from
outside of the body, we observe the propagation of the waypr@&cessing the observed
data, the stiffness can be identified.”

To observe the propagation of the wave, there are two ways.i©hy using ul-
tarsonic device, the other is MRI device. For either techaijqt is usually derived by
substituting the observed data for a mathematical modeiesgmg the human body.
The human body can be approximated by the elastic model, we tbacalculate the
second derivative of the data.

Because the observed data contain the noise, it is impedsildlerivate them, di-
rectly. So far, by modifying data, for example taking averag neighbourhood, we
get the Young's modulus. As for measuring a value of elagtmi the identification of
the border of the pathological part, we can not get corrdotimation by this method.
We have to develop the method to calculate the derivatiom®fbisy data without
modifying of data.

“Numerical differentiation” is a numerical method to detene the derivatives of an
unknown function from the given noisy values of the unknowndtion at the scattered
points. at the scattered points.
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The higher order for one-dimensional and the first orderviar timensional nu-
merical differntiaton along the line of this method wereagivin [2] and [3], respec-
tively. For the two dimensional case, the new ingredient thias the variational prob-
lem for the regularised minimisation problem is solved bing<Green'’s function for
the Laplacian with Dirichlet boundary condition and a sckdor computing the first
order derivative was given in [3]. The numerical examplevgbbthat this method was
efficient. But in many applications, it is necessary to cotagigher order derivatives.
In this talk, we will treat a problem concerned with MRE(Magjic Resonance Elas-
ticity). It give an example to apply a numerical differnitat for the second derivatives
from noisy scattered data.

Mathematical setting and a mathematical result are intedin the following.

2 Problem

Suppose we know? C R? is a bounded domain with piecewié& boundary and
p = p(z) € H*(£2) is a function defined irf2. Let N be a natural number arf{d:*} ¥,
be a group of points if2. We assume tha? is divided intoN parts{(2;} Y, and there
is only one points of 2} ,in each part. For simplicity we also assume that the areas
|£2;] of all £2;,(1 < i < N) are the same. We denote Bythe diameter of’2; and let
d = max{d;}.
We will discuss the following problem:
Suppose that we know the approximate vaiuat pointz? i.e.

|p~t_p(351)|§5a i:1727"'5Na
whered > 0 is a given constant called the error level.
We want to find a functiotf, (z) which approximates functiop(z) such that

li = =0.
da(l)irslﬁ()”f llz o) =0

We treat this problem as the following optimisation problbynusing Tikhonov
regularisation method.

Problem 2.1. Define a cost functio®( f)
 LOT
@(f) —3 N Z(f(xl) - ﬁj)Q + O‘”AQfH%z(Q); feH
Jj=1

whereH = {f : f € H*(92), flon = Aflse = 0}, anda > 0 is a regularisation
parameter. Then, the problem is to fifid € H such thatd(f.) < &(f) for every
feH.

The existence and uniqueness of the minimiser of Problehmoiss in [1].
Theorem 2.1. Problem 2.1 is equivalent to finding a unique solutione H for the
following variational problem:

N
| 2r.athae - —— 307 = e 1)
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forall h € H. This equation is the Euler equation of Problem 2.1. Moredbhe min-
imiser of Problem 2.1 is unique.

To solve numerical differentiation problem, it is neceggarprovide a scheme for
constructionf,. For that, by a formal argument using Green'’s function ofiimonic
operator, we derive a method how to constrfictlt will be shown as a theorem that
the constructed, by this method is the solution of (1).

We get the equation (2) by (1) (cf. [1])

af*(:c)+%z oz /Gx%y (y, x)dy

=0, (2

whereG(z,y) is a bi-harmonic Green’s function. By defining

a;(z) = /Q G2, 4)Gly, x)dy

and )
¢ = ——(f.(a7) = ),

(2) becomes
N
z) =Y cja;()
j=1

Now the problem of constructing. reduces to computing the coefficientfrom g;.
From the definition of;; andc; with z = 27(j = 1,2,--- N), we obtain

(f (a7) —

N
Z ak Ck - Pg (3)

k=1
Let A be a(N, N) matrix which is defined by
A = (aNd;; + ai(mj)) ,
whered;; is Kroneker's delta. And let andb be vectors
c=(¢),  b={(b)
Then (1) becomes the linear equations
Ac=b.

Solving this equations, we will obtain coefficierts Then we getf.. To make suref,
is the solution of our problem, we give the following theorem
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Theorem 2.2. Suppose function

WE

f*(:w -

ak(x)cx
k=1

where{cj}j.":1 is the solution of linear system (3), thgin is the solution of Problem
2.1.

3 Numerical Results

Here, we will see our method, the numerical differentiatisneffective. We insert a
noise to the numerical data that are given by numerical caatipn of direct problem.

Figure 1 is comparison with the elastic coefficient(stiffgethat we set in the direct
problem and the numerical result of our method. Reconstnut performed with good

precision.
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Fig. 1. Without noise.

Figure 2, we insert the noisEf). For comparison, we show the result which is given
by ordinary differential method Figure 3.
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Fig. 2. Numerical differential method with% noise.

Figure4, 10 noise is inserted to the data. We can recongtractlastic modulus. We
can see our method is robust to the noise.
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Fig. 3. Ordinary differential method with % noise.
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Fig. 4. Numerical differential method with0% noise.

4 Conclusions

The real observed data contain the noise. It is impossildetive the stiffness(Young’s
modulus), directly. Usually, by modifying the data, it ivgn. As for measuring a cor-
rect value of elasticity or the identification of the bordéitlee pathological part, we
have to develop the method to calculate the differentiaffimdent of the noisy data
without modifying of data.

In this note, we proposed the numerical differential metaod introduced numeri-
cal results. We can see our method is robust to the noise. oywee do not know the
noise level of the real observed data. It is necessary tedéaw to choose parameters
with the real data.
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