
Towards a Generic Framework for Deploying
Applications as Grid Services

Simona Arustei, Mitica Craus and Alexandru Archip

Department of Computer Science and Engineering, “Gh. Asachi” Technical University
Bd. D. Mangeron, Iasi, Romania

Abstract. Exploiting the power of the grid very often involves transforming ex-
isting or new applications into grid services. In this paper we present a generic
framework based on a service oriented architecture developed in order to sim-
plify the task of deploying applications as grid services. Our work consists of a
configurable grid service that provides application developers with a high level
programming model, hiding the complexity of dealing with web services and
grid technologies. The architectural design of the framework allows custom
functionality to be plugged into an adaptive grid service in a simple manner,
thus attracting more non-expert users to the grid. A prototype implementation
of the framework has been built and a case study has been developed to illus-
trate the concept.

1 Introduction and Related Work

Functional grids across many universities represent the proof that grid technologies
are making great advances and present a wide-spread acceptance since many initial
installation and configuration issues have been resolved. Still, the difficulty to de-
velop and/or use already existing applications causes an evident lack of users on those
grids as most scientists do not concentrate their research effort on gaining a special-
ized insight on grid technologies although their access to grid computing should be
facilitated as it not only provides maximum available data/computing resources, but
also shows powerful ability on some critical issues, such as security, load balancing
and fault tolerance. Grid services provide several key features such as statefull ser-
vices, notifications, and uniform authentication and authorization across different
administrative domains. The focus of this paper is to describe the development, as
well as possible uses and extensions, of a generic framework based on a service ori-
ented architecture that can be used to provide grid access at a higher level, abstracting
the details of the grid middleware from the end user. The proposed framework is
based on a configurable grid service and has an architectural design that allows cus-
tom functionality to be plugged into this adaptable grid service in a simple manner.

There has been done work trying to provide the scientists with more attractive al-
ternatives to grid interaction. For example, [1] presents a generic job submission
service that provides a standardized, high-level set of functions allowing for easy job
submissions and access to grid resources, but the user is still communicating directly

Arustei S., Craus M. and Archip A. (2008).
Towards a Generic Framework for Deploying Applications as Grid Services.
In Proceedings of the 2nd International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing, pages 17-26
DOI: 10.5220/0001898800170026
Copyright c© SciTePress

with individual resources. Other efforts concentrated in migrating different technolo-
gies to the grid, but in the spectrum of specific narrow applicative domains. In [4], for
example, the problem of automatic deployment of CCM (CORBA Component Mod-
el) and MPI (Message Passing Interface) applications is addressed, while the authors
in [6] describe the migration of Web Services to a core grid middleware by convert-
ing them to OGSI (Open Grid Services Infrastructure) compliant grid services.

Other considerable efforts [2], [3] were concentrated on abstracting the grid mid-
dleware from the user/developer. The Grid Application Toolkit[2], for example, de-
fines a platform-independent API to grid resources and services, focusing on resource
management (job submission and migration), data management (access to files and
pipes), event management (application monitoring and control), and information
management (application-specific meta data). The GEMSS project [3] provided an
interoperable grid middleware for medical services applications built on common
Grid standards. For this, a generic grid service provision framework was developed
trying to hide the complexity of transforming existing medical applications into grid
services.

The remainder of the paper is organized as follows: section 3 presents the architec-
ture of the proposed framework and gives a detailed description of its components,
section 4 describes a case study developed as proof of concept, followed in section 5
by conclusions and issues that we will address in future development of the frame-
work.

2 Architecture of the Generic Grid Service Framework

The architecture of our framework is based on three components: the client compo-
nent, the service component and the work execution unit (Fig. 1). Each component is
a configurable one such that the user is able to customize the functionality of the
framework. The whole grid execution process is driven through the client component.
This module allows the user to interact with the framework in two ways: first, by
specifying or providing the components of the application needed to be deployed and
the input data for it and second, by driving a set of dynamic parameters for the appli-
cation through the interaction with a result visualization area. The generic service
component controls the execution of the provided application components on the
working units and can also be responsible with executing some pre- and post-
processing of the work.

The collaboration between the three components is notification-based allowing the
communication of input and output data in a service-oriented fashion. If needed it can
also be achieved through the use of file staging.

The application to be deployed as a grid service is specified in a modular fashion
and can be composed of up to three modules: the data partitioning module, the job
execution module and the result composition module. For the development of each
module we provide an easy to use Java interface and each module can extend a built-
in class that hides the internal workings and details of the grid.

18

The input for the data partitioning module is represented by the number of units
that will execute the actual work and should provide the input data for these compo-
nents.

The job execution module is responsible for launching the execution of the actual
work on the working nodes. The working nodes can all execute the same code or can
each have a different functionality. There can be one or more such work execution
units and the hosts on which they run can be specified through the client component
or can be determined by the service component.

Fig. 1. Architecture of the generic framework.

If the partial results produced by the work execution units need a final stage of re-
finement or composition, this can be done through the means of the result composi-
tion module.

In the following we will discuss in more detail the three components of the frame-
work, their interaction and customization.

2.1 The Client Component

This component is a Java application that allows the user to interact with the frame-
work and to explore the results of the specified processing. The interaction between
the client component and the service is described by two types of parameters:
 parameters that drive the execution of the framework on the grid

 Client Component (1..n)

 Application Parameters

Result
Visualization

 Area

Grid Execution
Parameters

 Fixed Params

 Dynamic Params

Service
Component

Parameters Setting

Work Dispatch

Compose Final
Result

Virtual
Organization

Worker Components
(1..n)

Globus Container

Worker

set application
 parameters

set execution
 parameters

query GRAM
for nodes list

send partial results

display
 final result

do work

19

 application specific parameters
The former parameters express the information related to the grid execution of the

requested processing and consist in:
- input data set that needs to be processed - the user specifies the location of the

data set that needs to be transferred to the host executing the partitioning module;
- the data partitioning module - represents a custom Java module that divides the

input data set between work execution units, employing either a static or a dynamic
load balancing scheme;

- the job execution module(s) - custom Java module(s) that will be executed by the
workers. This module represents the actual functionality of the custom grid service
and states the processing that each execution unit must perform on the allocated sub-
set of data.

- the result composition module - custom Java modules that builds a final result of
the parallel processing based on the partial results produced by the work execution
units.

- number and type of work execution units - this is where the user can request the
number of working nodes and can specify whether the working nodes will all execute
the same job or will each have distinct functionality.

- work execution units hosts - optionally it can be specified through the client
component the exact hosts that will execute the custom job modules.

There are two types of application specific parameters: fixed input parameters
(these are set only once at first use of the service instance) and dynamic parameters
(used to drive a loop in the jobs execution on the working nodes - any change in the
values of these parameters triggers a new grid execution of the customized framework
with the new values).

The results of the processing on the input data can be visualized in a result visuali-
zation area which can also be used to trigger new executions by changing the values
of dynamic application parameters.

2.2 The Service Component

The generic service component is developed using Globus Toolkit 4 (GT4) [7] and
runs inside a secured grid service container. In the grid system there can be only one
such component but there might be a need for multiple client components to access it
at the same time and either use the same or different customized functionalities. In
order to solve this situation, the generic service component was designed using the
factory-instance pattern. Using this pattern, a client can either create a new custom-
ized instance of the service or connect to an already running one. When the client
needs the creation of a new instance, it will contact a fabric service that will manage
the instantiation and initialization of a new resource. Because multiple resources need
to be managed at the same time they are assigned a unique key needed for their iden-
tification. Thus, the fabric service will return an endpoint reference information
(EPR) associated to a WS-resource (Web Services resource). The EPR will contain
the URI (Uniform Resource Identifier) of the service as well as the resource key so
that the client can invoke the service operations through the means of a customized
instance service.

20

Resource Properties and Operations. Because the main requirement of the service
is that it is reconfigurable and adaptive, the application related resource properties
published generically express all the settings that need to be done in order to custom-
ize the functionality of the service:

Table 1. Application related resource properties exposed by the generic service component.

inputDataSet
An array of strings representing the location(s) of the
input data set in the form of host:pathToFile

partitionModule
A string representing the location of the .jar file contain-
ing the classes that implement the partitioning module

jobExecutionModule
A string representing the location of the .jar file contain-
ing the classes that implement the job execution mod-
ule(s)

compositionModule
A string representing the location of the .jar file contain-
ing the classes that implement the result composition
module

jobInputParameters
An array of input parameters for the job execution mod-
ule expressed generically in the form of <paramName,
paramType, paramValue, paramLength>.
These parameters need to comply with the input parame-
ters specified in the classes implementing the job execu-
tion module.

jobOutputParameters
An array of output parameters filled in by the job execu-
tion module with the results of the processing. The pa-
rameters are specified in the same manner as above and
each work execution unit produces a set of such parame-
ters. They will be used to create the final output parame-
ters of the service.

serviceOutputParameters
A set of output parameters specified in the same manner
as above. These represent the final result sent to the
client and are filled by the composition module based on
the sets of jobOutputParameters produced by each
worker.

In order to ensure the generality of the service the input and output parameters for
the application to be deployed as a grid service need to be specified by the client
component and can be of any type depending on the functionality of the application.
Thus, our generic grid service allows the parameters to be specified in the form of
parameter name (string) - parameter type (string) - parameter value (array of bytes) -
parameter length (integer). All manipulated types of data are streamed to a byte array
and vice versa.

The generic service component provides two types of operations:
- parameter related operations (setJobInputParameter, setJobOutput-

Parameter, getServiceOutputParameter) and
- workflow related operations (partitionData, launchJobs, composeRe-

sult).

21

Launching Execution of Workers. The latter type of operations provided by our
service use GRAM (Globus Resource Allocation Manager) [8] to launch jobs that
actually trigger the execution of the provided modules for partitioning, job execution
and result composition. The work is sent to the processing nodes via asynchronous
threads. For this we have developed a Dispatcher class that implements the
GramJobListener interface in order for the launcher to be notified about the
status of the Gram job.

The job execution hosts can be specified by the client or can be chosen by the ser-
vice component based on some minimal criteria requested by the client. Either way,
the discovery of the nodes that can execute the jobs is done through the means of a
GramLocator class that finds the Globus nodes defined for a specified virtual or-
ganization.

Transferring Results. The linking between the client, service and worker compo-
nents is implemented as subscriptions and notifications. The partial results of the
processing can either be written to files and pushed on the node performing the com-
position step or can be transferred by calling a service operation. In the first case the
files are transferred to the composition node as part of the job launched on the work
execution units. In the second case, the results of the processing are written by the
worker by accessing an operation exposed by the generic service (setJobOutput-
Parameter). Either way a notification is produced when the partial results have
reached destination.

When there is a composition step performed by the service component, the final-
ization of this stage needs to be notified to the client component and this is imple-
mented by publishing a resource property as a notification topic. The final result can
then be transferred to the client either as a file or by accessing the getOutput-
Parameter operation published by the generic service.

Security Issues. The framework is built to exploit the security mechanisms available
in Globus Toolkit 4. These mechanisms allow restricted access to the generic service,
including both authentication and authorization. The Grid Security Infrastructure
(GSI) [9] was used to enable message-level security (GSI Secure Conversation) and
full delegation was transferred to the service in order to allow it to act on the user's
behalf. Also a proxy was transferred to the workers such that they are able to contact
the service in order to transfer back the results of the processing.

2.3 The Worker Component

This component represents the application launched on a working node by the render-
ing service through GT4 GRAM. It was developed as a Java application as it acts as
a client for the grid service. The generic service pushes the files needed for the host
machines to act as clients for the grid service and prepares the environment by exe-
cuting a script on the host. Once launched, the worker application processes its corre-
sponding subset of the input data and either writes the results to a file which it trans-
fers back to the service component or directly to the client (if there is no need for

22

post-processing or it was chosen to be done by the client) or sends the result to the
service by accessing the generic operations available.

3 Case Study: Sort-Last Parallel Rendering

A case study has been taken from the visualization domain, specifically Object Space
Parallel Rendering, and has been used to demonstrate and test the framework. The
need for real-time visualization of large data sets leads the way towards developing a
Grid implementation of a parallel rendering pipeline.

Within Object Space parallel visualization, each node (individual unit of the paral-
lel system, typically a single machine or processor) is responsible for the rendering of
its block of data, irrespective of whether it may actually be visible at that precise
moment. Object Space parallelization is also known as Sort-Last [5], reflecting the
late stage in the graphics pipeline at which the graphics primitives are sorted from
object-space into the resultant image-space (Fig. 2). Each node computes the values
of the pixels for its associated sub-set and sends them to the compositing node which
solves for the visibility of the pixels received from all processing nodes.

Fig. 2. Sort-Last parallel rendering pipeline [5].

We developed our visualization service by customizing the generic framework
previously presented and we depict the architecture of the customized framework in
Fig. 3. The rendering process is driven and displayed through the client component.
This module allows the user to interact with the visualization system in two ways:
first, by specifying or providing the input data to be rendered and second, by driving
the visualization parameters through the interaction with an OpenGL visualization
area. The grid execution parameters and the visualization parameters are provided to
the Render Service which controls the execution of the Render Workers that produce
the images of the associated sub-sets of graphics data. The Render Service is also
responsible with compositing the final image to be sent to the client, based on the
partial results received from the rendering units. Both the client and the worker com-

Application

Graphics Pipeline
Geometry-Rasterization-Frame Buffer

Graphics Pipeline
Geometry-Rasterization-Frame Buffer

Graphics Pipeline
Geometry-Rasterization-Frame Buffer

Depth
Sort

Frame
Buffer

23

ponents act like clients for the Render Service. The three components of the visualiza-
tion service will be discussed in more detail in the following.

Fig. 3. Custom Visualization Service Architecture.

The three modules used to configure the generic service into a visualization service
express the work that needs to be done to implement the Sort-Last parallel rendering
scheme:
Data partitioning module - the input for this module is the path to the graphics primi-
tives data set and it outputs a set of files with the primitives equally allocated to each
working node.
Job execution module - this component effectuates an off-screen rendering of its
allocated geometry and reads back the pixels along with depth information. The pixel
and depth information are sent to the Render Service for compositing the final image.
Result composition module - this module is executed by the service component and
sorts the pixels received from each worker based on the depth information, thus creat-
ing the image to be sent to the client.

The client component includes a Java application that uses OpenGL through the
means of a wrapper library - JOGL (Java Binding for the OpenGL API) [10] - and
allows the user to interact with the visualization system and to explore the results of
the rendering. The interaction between the client component and the Render Service
is described by the two types of parameters presented in section 3.1.

 OpenGL Client (1..n)

 Render Parameters

OpenGL
 Area

Grid Execution
Parameters

 Fixed Params

 Dynamic Params

 GRAI Render
 Service

Rendering
Parameters Setting

Render
Work Dispatch

Compose Final
Image

GRAI Virtual
Organization

GRAI Worker
 (1..n)

Globus Container

Render Worker

set rendering
 parameters

set execution
 parameters

query GRAM
for nodes list

send partial results

display
 final image

do work

Partition Data

24

The grid execution parameters express the information related to the input data
(location of the files containing the graphics primitives to be rendered), to the resolu-
tion and aspect of the resulting image and to the configuration of the parallel render-
ing pipeline (the user can specify the number of rendering nodes needed and can
specify or choose the exact nodes that will execute the rendering).

Fig. 4. Visualizing the St. Stephan's Cathedral point cloud using Sort-Last parallel rendering
executed on the customized framework.

The application specific parameters are needed to drive the rendering process by
specifying modeling and visualization (rotation, translation, scaling etc) and projec-
tion transformations to be applied to the input data. These are dynamic parameters
determined by the client application based on the user interaction with the OpenGL
area. Any update on the rendering parameters triggers a new execution of the render-
ing pipeline on the working nodes.

The initialization of the visualization framework is triggered by the client applica-
tion which causes the service component to partition the data set according to the
number of working nodes specified through the client application and using the pro-
vided partitioning module. The Render Service sends the rendering jobs to the work-
ing nodes through the worker dispatcher. When the working nodes finish their render-
ing tasks, the Render Service begins the compositing stage of the final image by
depth sorting the resulting pixels.

We tested our visualization service by rendering a point cloud acquired with a
range scanning device (Fig. 4). The range scanners are capable of producing highly
detailed point clouds, so, even though point primitives can be rendered simply and
relatively fast, problems arise due to the often huge size of the datasets. Our test data
is represented by a 3 million points scan (with color information) from the interior of
St. Stephen's Cathedral in Vienna1.

1 Data provided by the Institute for Computer Graphics and Algorithms, TU Vienna, Austria.

25

4 Conclusions and Future Work

We have presented the vision, design and prototype implementation of a generic
framework for deploying applications as grid services. Our approach simplifies the
task of developing a grid service based on an existing or a new application, providing
application developers with a high level programming model, hiding the complexity
of dealing with web services and grid technologies. To test the proposed framework
we developed a simple visualization service by customizing the generic components
and we illustrated how an existing parallel rendering application can be deployed as a
grid service. Whilst the current implementation of the framework has demonstrated
the basic principles behind the architectural design, it represents a work in progress.
Future research and development will address issues concerning resource monitoring
and (re)scheduling, deployment of MPI applications, enabling inter-process commu-
nication during processing and providing Quality of Service support. Further devel-
opment will also include adding built-in functionality to our service and creating an
extension dedicated to grid visualization.

Acknowledgements

The research for this paper was supported by the Grant 74 CEEX-II03/31.07.2006.

References

1. Afgan, E., Jones, W. T.: Design, development and usage of a generic job submission grid
service. In: Proc. of the 44th Annual Southeast Regional Conference, (Melbourne, Florida,
March 10 - 12, 2006) 738-739 .

2. Allen G., Davis K., Goodale T., et. al.: The Grid Application Toolkit: Towards generic and
easy application programming interfaces for the grid. In: Proc. of the IEEE, vol. 93, no. 3
(2005) 534-550.

3. Benkner, S., Berti, G., Engelbrecht, G., Fingberg, J., Kohring, G., Middleton, S. E.,
Schmidt, R.: GEMSS: Grid-infrastructure for Medical Service Provision. In: Methods of
Information in Medicine, vol. 44, part 2 (2005) 177-181.

4. Lacour, S., Perez, C., Priol, T.: Generic Application Description Model: Toward Automatic
Deployment of Applications on Computational Grids. In: Proc. of the 6th IEEE/ACM Int.
Workshop on Grid Computing (Nov. 13 - 14, 2005). Int. Conf. on Grid Computing, IEEE
Computer Society, Washington, DC, 284-287.

5. Molnar S., Cox M., Ellsworth D., Fuchs H.: A Sorting Classification of Parallel Rendering.
In: IEEE Computer Graphics & Applications, vol. 14, no. 4 (1994) 23-32.

6. Parastatidis S., Watson P.: Experiences with Migrating myGrid Web Services to Grid
Services, Global Grid Forum Workshop on Designing and Building Grid Services, (Chi-
cago, Illinois, Oct. 8, 2003).

7. http://www.globus.org/toolkit/
8. http://www.globus.org/toolkit/docs/3.2/gram/ws/
9. http://www.globus.org/toolkit/docs/4.0/security/
10. https://jogl.dev.java.net/

26

