
JAVA NIO FRAMEWORK
Introducing a High-performance I/O Framework for Java

Ronny Standtke and Ulrich Ultes-Nitsche
Telecommunications, Networks & Security Research Group, University of Fribourg

Boulevard de Pérolles 90, CH-1700 Fribourg, Switzerland

Keywords: Java, NIO, high-performance, security, framework.

Abstract: A new input/output (NIO) library that provides block-oriented I/O was introduced with Java v1.4. Because
of its complexity, creating network applications with the Java NIO library has been very difficult and build-in
support for high-performance, distributed and parallel systems was missing. Parallel architectures are now
becoming the standard in computing and Java network application programmers need a framework to build
upon. In this paper, we introduce the Java NIO Framework, an extensible programming library that hides most
of the NIO library details and at the same time provides support for secure and high-performance network
applications. The Java NIO Framework is already used by well-known organizations, e.g. the U.S. National
Institute of Standards and Technology, and is running successfully in a distributed computing framework that
has more than 1000 nodes.

1 INTRODUCTION

Multicore and manycore processing units are now be-
coming the standard in computing architectures. The
expected growth in number of cores per unit is a chal-
lenge for software engineers in almost all fields.

Java network application programmers have two
basic choices:

• use the classical I/O API (Streams, blocking I/O)

• use the NIO API (ByteBuffers, non-blocking I/O)

The classical I/O API is very easy to use, even
for network connections secured with SSL. Because
it uses blocking I/O, the one thread per socket multi-
plexing strategy must be used to serve several network
connections. Even though this API scales with the
number of available cores, the runtime performance
of network applications using this API is very poor.

The NIO API provides mechanisms for non-
blocking I/O. With non-blocking I/O it becomes pos-
sible to use readiness selection as the multiplexing
strategy for serving several network connections. On
the other hand, programming with the NIO API is
very difficult. A whole book has been written about it
(Hitchens, 2002). If attention is paid to all the neces-
sary NIO details, a programmer must write a lot of so-
called boilerplate code, even for the most simple net-
work application. The complexity is increased many
times if NIO is combined with SSL for secure net-

work connections or support for high-performance,
parallel systems. Many of these challenges and their
proposed solutions are described in (Pitt, 2005).

The Java NIO Framework presented here is an ex-
tensible programming library that solves many prob-
lems that Java network application programmers face
when using the original NIO library:

• In contrast to the original NIO library the Java
NIO Framework has a very simple API, hiding all
unnecessary details.

• Support for securing network connections with
SSL is an integral part of the library instead of
providing a separate, add-on engine.

• The I/O processing performance of network appli-
cations using the Java NIO Framework automati-
cally scales with the number of available cores.

We started the work on the Java NIO Frame-
work after Ron Hitchen’s presentation “How to Build
a Scalable Multiplexed Server With NIO” at the
JavaOne Conference 2006 (Hitchens, 2006). Al-
though there have been other frameworks available,
e.g. (Lee, 2006; Arcand, 2006; Roth, 2006; Shetty,
2006), none of them had the envisioned scalability
and ease of use. The Java NIO Framework has been
published in August 2007 and is available at http://
nioframework.sourceforge.net. It is Free Soft-
ware released under the GNU Lesser General Public
License version 3.

206
Standtke R. and Ultes-Nitsche U. (2008).
JAVA NIO FRAMEWORK - Introducing a High-performance I/O Framework for Java.
In Proceedings of the Third International Conference on Software and Data Technologies - PL/DPS/KE, pages 206-211
DOI: 10.5220/0001901502060211
Copyright c© SciTePress



2 MULTIPLEXING STRATEGIES

Two multiplexing strategies were mentioned in the in-
troduction, one thread per socket and readiness selec-
tion. In the next sections both strategies are briefly
introduced and analyzed.

2.1 One Thread Per Socket

Threads are a mechanism to split a process into sev-
eral simultaneously running tasks. Threads differ
from normal processes by sharing memory and other
resources. Therefore they are often called lightweight
processes. Switching between threads is typically
faster than switching between processes.

When a server uses the one thread per socket mul-
tiplexing strategy it creates one thread for every client
connection. When executing blocking I/O operations
the thread is also blocked until the operation com-
pletes its execution (e.g. when reading data from a
socket the thread blocks until new data is available
to read from the socket).

This strategy is very simple to implement because
every thread just continues its operation after return-
ing from a blocking operation and all internal states
of the thread are automatically restored. A program-
mer can implement the thread (more or less) as if the
server handles only one client connection.

The drawback of this multiplexing strategy is that
it does not scale well. Each blocked thread acts as a
socket monitor and the thread scheduler is the notifi-
cation mechanism. Neither of them was designed for
such a purpose.

A remaining problem of this strategy is that a de-
sign with massive parallel threads naturally is prone to
typical threading problems, e.g. deadlocks, lifelocks
and starvation.

2.2 Readiness Selection

Readiness selection is a multiplexing strategy that en-
ables a server to handle many client connections si-
multaneously with a single thread. An overview of
readiness selection is given in (James O. Coplien,
1995) when presenting the reactor design pattern.

The reactor design pattern proposes the software
architecture presented in Figure 1.
• The class Handle identifies resources that are

managed by an operating system, e.g. sockets.

• The class Demultiplexer blocks awaiting events
to occur on a set of Handles. It returns when it
is possible to initiate an operation on a Handle
without blocking. The method select() returns
which Handles can have operations invoked on

Figure 1: Reactor design pattern.

them synchronously without blocking the appli-
cation process.

• The class Dispatcher defines an interface for
registering, removing, and dispatching Event-
Handlers. Ultimately, the Demultiplexer is re-
sponsible for waiting until new events occur.
When it detects new events, it informs the Dis-
patcher to call back application-specific event
handlers.

• The interface EventHandler specifies a hook
method that abstractly represents the dispatching
operation for service-specific events.

• The class ConcreteEventHandler implements the
hook method as well as the methods to pro-
cess these events in an application-specific man-
ner. Applications register ConcreteEventHandlers
with the Dispatcher to process certain types of
events. When these events arrive, the Dispatcher
calls back the hook method of the appropriate
ConcreteEventHandler.

Readiness selection scales much better but it is
not as easy to implement as the one thread per socket
strategy.

3 NIO FRAMEWORK DESIGN

Because the NIO Framework should be scalable to
handle thousands of network connections simultane-
ously, the decision was made to use readiness se-
lection as the multiplexing strategy, which is much
more appropriate for high-performance I/O than the
one thread per socket strategy.

JAVA NIO FRAMEWORK - Introducing a High-performance I/O Framework for Java

207



3.1 Mapping the Reactor Design
Pattern

If the reactor design pattern presented above had
been used for the NIO Framework without mod-
ification, every application-specific ConcreteEvent-
Handler would still have to take care of many NIO
specific details. These include buffers, queues, in-
complete write operations, encryption of data streams
and much more. To provide a simple API to Java net-
work application programmers, the NIO Framework
was complemented with several additional helper
classes and interfaces that will be introduced in the
following sections.

The concepts and techniques used to design and
implement a safe and scalable framework that effec-
tively exploits multiple processors are presented in
(Peierls et al., 2005).

A simplified model of the NIO Framework core is
shown in Figure 2.

The blue UML elements (Runnable, Thread, Se-
lector, SelectionKey and Executor) are part of the Java
Development Kit (JDK). The interface Runnable and
the class Thread were part of JDK from the very be-
ginning, Selector and SelectionKey have been added
to the JDK with the NIO package in JDK v1.4 and
the interface Executor was added with the concur-
rency package in JDK v1.5. The yellow UML el-
ements (ChannelHandler, HandlerAdapter and Dis-
patcher) are the essential core classes of the NIO
Framework.

The Dispatcher is a Thread that runs in an endless
loop, processes registrations of ChannelHandlers with
a channel (a nexus for I/O operations that represents
an open connection to an entity such as a network
socket) and uses an Executor to offload the execution
of selected HandlerAdapters. The Executor interface
hides the mechanics of how each task will be exe-
cuted, including details of thread use, scheduling, etc.
This abstraction is necessary because the NIO Frame-
work may be used on a wide range of systems, from
low-cost embedded devices up to high-performance
multi-core servers.

The class Selector determines which registered
channels are ready.

The class SelectionKey associates a channel with
a Selector, tells the Selector which events to monitor
for the channel and holds a reference to an arbitrary
object, called “attachment”. In the current architec-
ture the attachment is a HandlerAdapter.

The EventHandler from the reactor design pattern
is split up into several components. The first compo-
nent is the class HandlerAdapter. It manages all the
operations on a channel (connect, read, write, close)

and its queues, interacts with the Selector and Selec-
tionKey classes and, most importantly, hides and en-
capsulates most NIO details from higher level classes
and interfaces.

The second EventHandler component in the NIO
Framework is the interface ChannelHandler. It de-
fines the methods that any application-specific chan-
nel handler class has to implement so that it can be
used in the NIO framework. These include:

public void channelRegistered(
HandlerAdapter handlerAdapter)

This method gets called when a channel was regis-
tered at the Dispatcher. It is mostly used on server
type applications to send a welcome message to
clients that just connected.

public InputQueue getInputQueue()

This method returns the InputQueue that will be used
by the HandlerAdapter, if there is data to be read from
the channel.

public OutputQueue getOutputQueue()

This method returns the OutputQueue that will be
used by the HandlerAdapter, if there is data to be writ-
ten to the channel.

public void handleInput()

The HandlerAdapter calls this method, if the In-
putQueue has new data to be read from the channel.

public void inputClosed()

This method gets called by the HandlerAdapter, if no
more data can be read from the InputQueue.

public void channelException(
Exception exception)

The HandlerAdapter calls this method, if an exception
occurred while reading from or writing to the channel.

Not shown in Figure 2 are all the application-
specific channel handlers that implement the interface
ChannelHandler. They represent the ConcreteEvent-
Handler of the reactor design pattern. Because the
details of the method handleInput() may vary with
every specific handler they are outside the scope of
the NIO Framework.

Table 1 shows the mappings from the reactor de-
sign pattern to the NIO Framework.

3.2 Parallelization

Some parts of the Java NIO Framework are paral-
lelized by default, other parts can be customized to
be parallelized.

ICSOFT 2008 - International Conference on Software and Data Technologies

208



Figure 2: NIO Framework Core.

3.2.1 Execution

The execution of all HandlerAdapters is off-loaded
from the Dispatcher thread to an Executor. Because
I/O operations are typically short-lived asynchronous
tasks, the default Executor of the Java NIO Frame-
work uses a thread pool that creates new threads as

needed, but will reuse previously constructed threads
when they are available. Threads that have not been
used for a while are terminated and removed from the
pool. Therefore, if the Executor remains idle for long
enough, it will not consume any resources.

Not every I/O operation meets the typical crite-

JAVA NIO FRAMEWORK - Introducing a High-performance I/O Framework for Java

209



Table 1: Mappings from reactor design pattern to the Java
NIO Framework.

Reactor Design Pattern Java NIO Framework
Dispatcher Dispatcher
Demultiplexer Selector
Handle SelectionKey

EventHandler
HandlerAdapter
ChannelHandler
Executor

ConcreteEventHandler n.a.

ria, e.g. SSL operations are comparatively long-lived.
If the actual requirements (e.g. a certain thread usage
or scheduling) are not met by the default Java NIO
Framework Executor, it can be customized with the
method setExecutor() of the Dispatcher. Because
this method is thread-safe, the Executor can even be
hot-swapped at runtime.

3.2.2 Selection

There is only one Dispatcher running per default in
the Java NIO Framework, waiting until new events
occur on channels represented by SelectionKeys. If
the Dispatcher would ever become the bottleneck of
the framework it could simply be parallelized by start-
ing several Dispatcher instances.

Load-balancing could be done by distributing
channel registrations between the parallel Dispatcher
instances. Some of the most simple scheduling algo-
rithms that could be applied are round-robin distribu-
tion or random scheduling.

If connection lifetimes have a high degree of vari-
ation, both algorithms could lead to a very unequal
distribution of channels to Dispatchers. To prevent
this scenario, an active channel counter could be in-
tegrated into every Distributor and a lowest-channel-
counter-first scheduling algorithm could be used.

If connections have a high degree of “activity”
variation, i.e. on some channels there is always some-
thing to read or write and other channels are mostly
idle, the scheduling algorithm should be based on a
select()-counter in the Dispatcher.

3.2.3 Accepting

Another thread, the Acceptor, is running on server
type applications. It is listening on a server socket
for incoming connection requests from clients over
the network. Every time a request comes in, the Ac-
ceptor creates a new channel and appropriate handler,
and registers them both at the Dispatcher of the server
type application (or Dispatchers, if selection was par-
allelized like mentioned in Section 3.2.2).

Figure 3: I/O Transformation example.

Currently the Java NIO Framework does not sup-
port parallelization of Acceptors.

3.3 I/O Transformations

When application data units (objects, messages, etc.)
have to be transmitted over a TCP network connec-
tion, they have to be transformed into a serialized rep-
resentation of bytes.

There are many ways to represent application data
and there are also many ways to serialize data into a
byte stream. Therefore, there are countless transfor-
mations between application space and network space
imaginable.

The first approach to this problem in the NIO
Framework was to provide an extensible hierarchy of
classes, where every class dealt with a certain trans-
formation (e.g. string serialization, SSL encryption).
This architecture turned out to be very simple and ef-
ficient. The downside of this approach was that every
combination of transformations required its own im-
plementing class. Changing the order or composition
of transformations was very difficult and much too in-
flexible for a generic framework.

The second and current approach to message
transformation is to implement a set of transformer
classes were each class offers just a certain transfor-
mation. An application programmer can put these
transformer classes together into a hierarchy of almost
arbitrary order. Almost no programming effort is re-
quired besides assembling the needed classes of the
transformation hierarchy in the desired order.

A diagrammatic example of the I/O transforma-
tion architecture is shown in Figure 3:

ICSOFT 2008 - International Conference on Software and Data Technologies

210



The shapes Tx are the transformation classes.
When writing to a channel, the ChannelHandler hands
the application level data units to one of the input
transformation classes T1, T2 or T3 (depending on the
type of input it just accepted). Every transformation
class transforms the data and hands it over to its next
transformer until it reaches the Writer, which writes
the final byte stream to the channel and handles many
channel specific problems, e.g. incomplete write op-
erations.

When reading from a channel, the Reader handles
the channel specific problems, e.g. connection clos-
ing and read buffer reallocations. After reading a byte
stream from the Channel, the Reader passes the data
to T4, which transforms the data. The ChannelHan-
dler can get the application level messages from T4.

There are four basic I/O models for the transfor-
mation classes Tx. In ascending order of complexity
they are:

• 1:1 (one type of input, one type of output)

• 1:N (one type of input, different types of output)

• N:1 (different types of input, one kind of output)

• N:M (different types of input, different types of
output)

Every model is valid insofar as one can establish a
fully functional transformation hierarchy with any of
these I/O models. While the 1:1 model would be the
most simple one, transformation classes of the N:M
model would have the highest flexibility. The interest-
ing thing to note here is that with respect to flexibility
every transformation class of the more complex mod-
els can be replaced by chaining several transforma-
tion classes of the 1:1 model. While trying to imple-
ment prototypes for all models above it became clear
that the most simple API was provided by using Java
Generics and the 1:1 model. Another advantage of
the 1:1 model is the encouragement of code reuse, be-
cause every transformation should be implemented in
a separate class.

The elegance and simplicity comes at the small
price of an almost immeasurable performance loss.
Currently, Java Generics are implemented by type
erasure: generic type information is present only at
compile time, after which it is erased by the com-
piler. The compiler automatically inserts cast oper-
ations into the byte code at necessary places which
may cause a tiny performance loss. Using the 1:1
model results in slightly longer transformation chains,
more involved objects and more locking and unlock-
ing when passing data through a transformation hier-
archy.

4 CONCLUSIONS

We presented in this paper a framework for se-
cure high-performance Java network applications that
builds upon the NIO library. The framework com-
bines the ease of use of classical I/O operations with
the performance gain of NIO, hiding the inconve-
nient aspects of NIO from the developer. Develop-
ing the NIO framework was motivated by research
on an anonymity server, a system that requires high-
performance network operations over secure chan-
nels. First experiments with using the NIO framework
within this project show a tremendous performance
increase, making the system meet the requirements
for anonymity servers in productive environments.

REFERENCES

Arcand, J.-F. (2006). Project Grizzly.

Hitchens, R. (2002). Java NIO. O’Reilly & Associates, Inc.

Hitchens, R. (2006). How to build a scalable multiplexed
server with NIO. JavaOne Conference.

James O. Coplien, D. C. S. (1995). Pattern Languages of
Program Design. Addison-Wesley.

Lee, T. (2006). Apache MINA project.

Peierls, T., Goetz, B., Bloch, J., Bowbeer, J., Lea, D., and
Holmes, D. (2005). Java Concurrency in Practice.
Addison-Wesley Professional.

Pitt, E. (2005). Fundamental Networking in Java. Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

Roth, G. (2006). xSocket.

Shetty, A. (2006). QuickServer.

JAVA NIO FRAMEWORK - Introducing a High-performance I/O Framework for Java

211


