
DEALING WITH BUSINESS PROCESS EVOLUTION
USING VERSIONS

Mohamed Amine Chaâbane, Eric Andonoff
Laboratoire IRIT, Université Toulouse 1, 2 rue du Doyen Gabriel Marty, 31042 Toulouse Cédex, France

Lotfi Bouzgenda, Rafik Bouaziz
Laboratoire MIRACL, ISIMS, Route de Tunis, km 10, BP 242, 3021 Sakeit Ezzit, Sfax, Tunisia

Keywords: Version, Business Process Evolution, Meta-model, Petri net with Objects.

Abstract: Competition in which enterprises and organizations are involved nowadays imposes them to often make
evolve their business processes in order to meet, as quickly as possible, new business or production
requirements. This paper proposes to adopt a version-based approach to support these dynamic changes of
business processes. This approach permits to keep chronological business process changes: it is then
possible to allow several instances of a same business process to own different schemas, each one
representing a possible schema for the considered business process. Consequently, this approach is very
suitable to deal with long-term business process evolution: it does not necessarily impose the adaptation and
migration of running instances of business processes to a new business process schema. The paper
contribution is threefold. First, it defines a meta-model for designing versions of business processes
considering the three dimensions of business processes: the informational, organizational and process
dimensions. Then, it introduces a taxonomy of operations for business process version management. Finally,
it proposes to formalize and visualize modeled versions of business processes using a Petri net-based
formalism, namely Petri net with Objects.

1 INTRODUCTION

Nowadays, the importance of business processes in
enterprises’ and organizations’ Information Systems
(IS) is widely recognized. As a consequence, these
last few years, there has been a shift from data-
aware IS to process-aware IS (Aalst and al, 2007).
However, even if important advances have been
done in business process management, several
problems are still to be dealt. Among them, the
business process evolution problem that can be
posed as follows: how to support dynamic change of
business processes (Smith and Fingar, 2003), (Aalst
and al, 2003-a)?

The competitive and dynamic worldwide
economic context, in which enterprises and
organizations are involved, lead them to often
change and adapt their business processes in order to
meet new business or production requirements.
Consequently, the business process evolution
problem is really a relevant problem. This problem

has mainly been addressed in the Workflow context
using two main approaches: an adaptive-based
approach and a version-based approach. The
adaptive-based approach consists in defining a set of
operations supporting both workflow process
schema changes, and adaptation and migration of
their corresponding instances (Casatia and al, 1996),
(Reichert and Dadam, 1998), (Kammer and al,
2000), (Rinderle and al, 2004). In this approach,
only one schema is kept for all modelled workflow
processes. This approach has been investigated
intensively and its implementations, ADEPT
(Reichert and Dadam, 1998) and JOpera (Heinis and
al, 2005), are probably the most successful
Workflow Management Systems (WfMS) regarding
workflow process’ schema evolution.

In the version-based approach, different
instances of a same workflow process can have
different schemas. Thus, it is possible to distinguish
between temporary and permanent updates for
workflow processes since it is possible to keep track
of chronological workflow process changes, each

267
Amine Chaâbane M., Andonoff E., Bouzgenda L. and Bouaziz R. (2008).
DEALING WITH BUSINESS PROCESS EVOLUTION USING VERSIONS.
In Proceedings of the International Conference on e-Business, pages 267-278
DOI: 10.5220/0001903702670278
Copyright c© SciTePress

one representing a possible schema for the
considered workflow process.

In the workflow context, where long-term
processes are involved, adaptation and migration of
workflow process instances according to a new
schema are not always easy and are sometimes
impossible (Casati and al, 1996). So, it is important
to be able to manage different schemas for a
workflow process in order to allow several instances
of this workflow process to own different schemas
(Kradolfer and Geppert, 1999). Thus, the version-
based approach is a promising solution to deal with
business process evolution.

Versions are used in several fields of computer
science in which was highlighted the need to
describe evolution of real world entities over time.
Thus, versions are used in the database field mainly
in object-oriented databases (Cellary and Jomier,
1990), (Sciore, 1994), or scientific databases (Chen
and al, 1996) but also for specific database
application fields such as computer aided design or
computer aided manufacturing (Chou and Kim,
1986), (Katz, 1990). Versions are also used in
software engineering to handle software
configurations (Kimball and Larson, 1991). Versions
are also considered in conceptual models such as the
Entity Relationship model (Roddick and al, 1993) or
the OMT model (Andonoff and al, 1996).

Although versions are used in several areas of
computer science, to the best of our knowledge, only
few efforts have been put on version management in
the business process (workflow) context (in the
remainder of the paper, the terms workflow and
business process will be used equally).

We distinguish two main contributions about
versions of business processes in literature.
(Kradolfer and Geppert, 1999) have proposed to deal
with dynamic workflow evolution, i.e. modification
of workflow process schemas in the presence of
active workflow process instances, introducing
versions of workflow process schemas. This work
has defined a set of operations for workflow process
schema modification and, if possible, a strategy for
migration of workflow process instances. Recently,
(Zhao and Liu, 2007) have also defended the
advantages of a version-based approach to face
business process evolution. More precisely, this
work proposes to model versions of workflow
process schemas using graphs. It also presents a set
of operations enabling updates of graphs and defines
two strategies to extract versions of workflow
process schemas from these graphs.

We believe that these two propositions need to
be revisited. Indeed, both (Kradolfer and Geppert,
1999) and (Zhao and Liu, 2007) addressed the issue

of business process versioning only considering,
what is called in the workflow literature, “process
model”. Such a model describes tasks involved in
the process and their coordination. But, using only
this model is not enough to have a comprehensive
description of business processes (Aalst, 1999). Two
others models have to be considered: the
organizational and the informational models. The
organizational model structures the business process
actors and authorizes them, through the notion of
role, to perform tasks making up the process. The
informational model defines the structure of the
documents and data required and produced by the
process. These two models are glued together with
the process model since, in addition to the tasks and
their coordination, the process model also defines
the required resources (information, actors) to
perform the tasks.

Consequently, this paper proposes to revisit the
business process evolution problem using a version-
based approach and considering both organizational,
informational and process models of business
processes. More precisely, this paper introduces:

 A meta-model for designing versions of
business processes;

 A taxonomy of operations for business process
version management;

 A formalization and a visualization of versions
of business processes designed with the
previous meta-model.

The remainder of this paper is organized as
follows. Section 2 introduces the Business Process
(BP) meta-model we use for designing business
process, while section 3 introduces the Versioned
Business Process (VBP) meta-model we propose for
business process versioning. More precisely, section
3 first recalls the notion of version, then presents the
versioning kit we propose for handling versions of
business processes, and finally explains how the kit
is merged with the BP meta-model to define the
VBP meta-model. This section also gives an
example of business process versioning. Section 4 is
dedicated to the dynamic aspects of the meta-model:
it presents a taxonomy of operations for business
process version management. Section 5 presents our
proposition for both formalization and visualization
of workflow process versions using a formal model,
namely Petri Net with Objects (Sibertin, 1985).
Finally, section 6 stands our contribution according
to related works and then concludes the paper.

ICE-B 2008 - International Conference on e-Business

268

 DEALING WITH BUSINESS PROCESS EVOLUTION USING VERSIONS

2 MODELING BUSINESS
PROCESSES

As mentioned before, a business process meta-model
must allow the expression of three complementary
aspects, usually described through three different
interacting models: the organizational, informational
and process models. The main important model is
the process model which defines component tasks
and their coordination, but this model also refers to
the organizational model and to the informational
model defining required and produced resources
before and after tasks execution (Aalst, 1999).

Another important requirement for such a meta-
model is its simplicity and efficiency: it must be
comprehensive and must define the core (basic)
concepts of the three complementary aspects of
business processes: it must play the role of a
Business Process Virtual Meta-model, i.e. a minimal
meta-model for the design of business processes.
This idea of Business Process Virtual Meta-model is
the same as the one of Workflow Virtual Machine
introduced in (Fernandes and al, 2004) to deal with
the development of a Workflow Management
System (WfMS) that supports changes in its
workflow definition language(s).

But does such a meta-model for business process
modelling (i.e. meeting the previous requirements)
already exist, or do we have to define a new one by
ourselves?

Despite the standization efforts of the Workflow
Management Coalition (WfMC), different workflow
or business meta-models exist in literature. The used
vocabulary differs from one model to another, and
yet, so far, the workflow and business process
community seem to not have reached an agreement
on which model to adopt, even if XPDL, BPMN and
BPEL are standards recommended by the WfMC.

Some business process and workflow meta-
models proposed in literature mainly focus on the
process model -i.e. tasks description and their
coordination- (e.g. (Zhao and Liu, 2007), BPEL,
XPDL). Others also consider the informational
model in addition to the process model (e.g. (Casati
and al, 1995), (Kradolfler and Geppert, 1999),
(Vossen and Weske, 1999), (Aalst and al, 2004)).
Finally, some meta-models have a comprehensive
approach for business process modeling considering
the three complementary aspects (e.g. FlowMark
and its successors MQSeries Workflow and
WebSphere MQ Workflow (Leymann and Roller,
1999), Exotica (Mohan and al, 1995), OpenFlow
(Halliday and al, 2001)). For instance, as illustrated
in (Rosemann and zur Muehlen, 1998), the

FlowMark meta-model proposes a very detailed
description of workflow processes along with
involved data flows and actors. However, these
meta-models are very complex, specially with
respect to the organizational dimension.

Consequently, we have defined our own meta-
model which fulfils the previous requirements: (i) a
comprehensive meta-model considering three
complementary aspects of business processes
(organizational, informational and process models),
and (ii) a business process virtual meta-model as it
defines the core (basic) concepts of the three com-
plementary aspects of business processes. This meta-
model is shown in the UML diagram of figure 1.

In this UML meta-model, a business process is
either a composite process or an atomic process. A
composite process is itself recursively composed of
atomic or composite processes. It also uses a control
pattern, which participates to the definition of
business process coordination. In our meta-model,
and as in, for instance (Manolescu, 2001), the main
control patterns described in the literature are
provided. Some of them are conditional (e.g. if,
while…), while others are not (e.g. sequence,
fork…). Their semantics is the following:

 Sequence pattern: it permits the execution of
processes in a sequential order;

 If pattern: it allows processes execution
according to a condition;

 Fork pattern: it spawns the parallel execution of
processes and waits for the first to finish;

 Join pattern: it spawns the parallel execution of
processes but waits for all of them before
completing;

 While and Repeat patterns: they cyclically
execute a process while or until a condition is
achieved.

 Informational Model

System Data

Data Document Form

Atomic Process

Control Pattern

 Process Model

0..*

consumes

1 Organizational Model

1..*

DatabaseData Repository

Process Data Application Data

Informational resource

uses

1..*

1..*

is_composed_of

1..*

Actor

Human

Software

0..*

Not Human

Machine

Role

ExternalInternal

played_by

Organizational Unit1..*

0..*
1..*

is_member_of

1..*

Action1..*

references

Composite Process

Business Process

1..*

1
2..*

produces

0..*

0..*

0..*

1..* 1..* 1..*
contains

has_pre-conditions

has_post-conditions

Non Conditional Control
Pattern

Conditional Control Pattern

0..*0..1

has
0..1

1

belongs_to

uses

Condition
0..1

Figure 1: The Business Process meta-model.

An atomic process corresponds to a task to
perform. It can have pre-conditions and post-
conditions, and executes one or several actions. An
atomic process is performed by a role (belonging to

D

269

the organizational model) and consumes and/or
produces informational resources (belonging to the
informational model). Informational resources
correspond to system data, process data (i.e. data,
document or form), and application data (i.e.
database and data repository). A role is played by an
actor belonging to some organizational units. An
actor is a human resource or not (machine or
software). Finally, an actor may be internal or
external.

Going back to control patterns, our meta-model
only includes low level (basic) control patterns; all
the high level workflow patterns of (Aalst and al,
2003-b) are not considerer here (they are much more
complex than what we need). In this way, the meta-
model we propose could be seen as a Business
Process Virtual Meta-model gathering the core
(basic) concepts of business process models.

3 MODELING VERSIONS OF
BUSINESS PROCESSES

First, this section briefly recalls the version notion as
it is introduced in object-oriented databases and
software engineering. Then, this section presents the
Versioned Business Process (VBP) meta-model: it
consists of a versioning kit to handle versions of
business processes which is merged with the BP
meta-model introduced before. Finally, this section
illustrates the VBP meta-model instantiation to
design versions of business processes.

3.1 Concept of Version

A real world entity has characteristics that may
evolve during its life cycle: it has different
successive states. In object-oriented database
systems that provide version management, this entity
is described by a set of objects called versions. A
version corresponds to one of the significant entity
states. Then, it is possible to manage several entity
states (neither only the last one as in classical
databases nor all the states as in temporal databases).

E 1 .v 0 E 1 .v 1 E 1 .v 2

E 1 .v 3
E 1

E n .v 2
E n . v 0

E n . v 1

E n . v 3
E n

E n t i t i e s V e r s io n s

Figure 2: Representing entities with versions.

As illustrated in figure 2, the entity versions are
linked by a derivation link; they form a version
derivation hierarchy. When created, an entity is

described by only one version. The definition of
every new entity version is done by derivation from
a previous one. Such versions are called derived
versions (e.g. E1.v1 is a derived version from
E1.v0). Several versions may be derived from the
same previous one. They are called alternatives (e.g.
E1.v2 and E1.v3 are alternatives derived from
E1.v1).

A version is either frozen or working. A frozen
version describes a significant and final state of an
entity. A frozen version may be deleted but not
updated. To describe a new state of this entity, we
have to derive a new version (from the frozen one).
A working version is a version that temporarily
describes one of the entity states. It may be deleted
and updated to describe a next entity state. The
previous state is lost to the benefit of the next one.

3.2 The Versioned Business Process
Meta-model

This meta-model consists of a versioning kit to
handle versions of business processes, which is
merged to the BP meta-model previously introduced.

3.2.1 Versioning Kit

This kit is very simple: it is composed of a class and
a set of properties and relationships that make
classes of the previous meta-model “versionable”. A
“versionable” class is a class whose instances are
versions (Katz, 1990).

Thus, for each of these “versionable” classes, we
define a new class which contains versions, called
“Version of…”. We also specify two new
relationships: (i) the is_version_of relationship
which links a class to its corresponding “Version
of…” class, and (ii) the derived_from relationship
which describes version derivation hierarchies. This
latter relationship is reflexive. The underlying idea
of our proposition is to describe both entities and
their corresponding versions as indicated in figure 2.
Consequently, (i) versions are therefore involved in
the process definition, and (ii) a couple (version,
entity) is obviously created when the first version of
an entity is created. Regarding properties of these
“Version of…” classes, we introduce the classical
version number, creator name, creation date and
status properties (Sciore, 1994).

3.2.2 Merging the Versioning Kit with the
Business Process Meta-model

Regarding the process model, we propose to keep
versions for only two classes: the Atomic Process

ICE-B 2008 - International Conference on e-Business

270

 DEALING WITH BUSINESS PROCESS EVOLUTION USING VERSIONS

and the Business Process classes. It is indeed
interesting to keep changes history for both atomic
processes (i.e. tasks) and workflow processes since
these changes correspond to changes in the way that
business is carried out. At the atomic (task) level,
versions describe evolutions in activity realization
while at the business process level, versions describe
evolutions in work organization (i.e. coordination of
activities). We defend the idea that atomic process
(task) and business processes versioning is enough
to help organizations to face the fast changing
environment in which they are involved nowadays.

Regarding the other models, it is necessary to
handle versions for the Informational resource class
from the informational model, and versions for the
Role class from the organizational model. Regarding
this latter model, it is also possible to handle
versions for the Actor and Organizational Unit
classes. However, keeping changes history for these
two classes is, in our opinion, quite useless to handle
versions of business processes.

Figure 3 below presents the new obtained meta-
model in terms of classes and relationships.

System
Data

Data Document Form

Version of Atomic
Process

Control
Pattern

 Informational Model
 Process Model

0..*
1

Organizational Model

1..*

Database Data
Repository

Process
Data

Application
Data uses

1..*

1..*

is_composed_of

Actor

Human

Software

0..*

Not Human

Machine

Role

ExternalInternal

played_by

Organizational Unit1..*
0..*
1..*

1..*

Composite Process

1..*
1

2..*

0..*

0..*

Non Conditional Control
Pattern

Conditional Control Pattern

has

0..1
Version of

Business Process

Business
Process

1..*
is_version_of

1

derived_from

is_version_of
1..* 1

1
derived
_from1..*

Version of
Informational resource

is_version_of

Informational
resource

Version of
Role

derived_from

11..*
is_version_of

belongs_to

uses

Atomic
Process

derived_from

consumesproduces

1..*
1..*

1..*

Action1..*

references

0..*

1..*

contains

has_pre-conditions

has_post-conditions
0..*

1
1 1Condition

Figure 3: The Versioned Business Process meta-model.

3.3 Example

In order to illustrate the VBP meta-model
instantiation, we propose to use the example
introduced by (Zhao and Liu, 2007). Because of
space limitation, we only focus on the instantiation
of the process model of this example.

This example describes a production business
process and involves a factory, which owns one
production pipeline following the business process
shown in figure 4(a). It includes several activities:
production scheduling, production using a work
centre, quality checking and packaging. In order to
increase its productivity, the factory decides to add a
new work centre. The business process is then
updated as shown in figure 4(b). If one of the two

work centres, for instance work centre#1 (Pc#1), has
a technical problem and consequently is removed
from the process, two solutions are proposed to
attempt keeping the production output: fixing
unqualified products or using employees for manual
production. The business process is then updated as
shown in figure 4(c) and 4(d).

Start

Produce

Quality Checking

Packaging

End

Produce

Schedule Production

Start

Schedule Production

Produce

Quality Checking

Packaging

End

Produce
(Manual)

Start

Fix Unqualified
Products

Quality Checking

Packaging

End

Produce

Schedule Production

4(a) 4(b) 4(c)
Start

Quality Checking

Packaging

End

Produce

Schedule Production

4(d)

Pc#1,
Ma

 Roles
Em: Enterprise manager
Pc: Production work centre
Pac: Packaging work centre
Ma: Machine

Informational Resource
Cof: Customer order form
Po: Production order form
E-Co: Electronic customer order form

EmCof

Po

Em

Pac

Cof, E-Co

Po

Ss

Po

Qs

Pc#1Po PoPo
Pc#1,
Ma, Ms

Ss: Scheduling service
Ms: Maintenance service
Qs: Quality service

SsCof, E-Co Cof, E-Co Ss

Em Em

Pac Pac Pac

Pc#1,
Ma

Pc#2,
Ma

Pc#2,
Ma Pc#2,

Ma

Figure 4: Change in the Production BP.

The solution we provide to model theses
derivation hierarchies consists in instantiating the
VBP meta-model. The Business Process, Atomic
Process, Role and Informational resource
“versionable” classes and their “Version of…”
corresponding classes are involved in this
instantiation, along with the Composite Process and
Control Pattern non “versionable” classes. This
instantiation is visualized in figure 5.

is_version_of
relationship

Version of Atomic Process

Atomic
Process

[ap1, Schedule Production, {vap1, vap2}, ...]
[ap2, Produce, {vap3, vap4, vap5}, ...]
[ap3, Quality Checking, {vap6, vap7}, ...]
[ap4, Packaging, {vap8}, ...]
[ap5, Fix Unqualified Products, {vap9}, ...]

Control Pattern

[cpa1, Sequence]
[cpa2, Join]

Composite Process
[cp1, cpa1, {vap1, vap3, vap6, vap8}, ...]
[cp2, cpa1, {vap2, cp5, vap6, vap8}, ...]
[cp3, cpa1, {vap2, cp6, vap6, vap8}, ...]
[cp4, cpa1, {vap2, cp7, vap7, vap8}, ...]
[cp5, cpa2, {vap3, vap4}, ...]
[cp6, cpa2, {vap9, vap4}, ...]
[cp7, cpa2, {vap5, vap4}, ...]

Business Process
[bp1, Production, {vbp1}, ...]

Version of
Business Process

[vbp1, v1, bp1, nil, cp1, ...]
[vbp2, v2, bp1, vbp1, cp2, ...]
[vbp3, v3, bp1, vbp2, cp3, …]
[vbp4, v4, bp1, vbp2, cp4, …] structure of the

business process
version

is_version_of
relationship

derived_from
relationship

is_version_of relationship

derived_from relationship

control pattern which
structures the

composite process

is_version_of
inverse relationship

Role

[vr1, v1, r1, nil, ...]
[vr2, v1, r2, nil, ...]
[vr3, v2, r2, vr1, ...]
[vr4, v1, r3, nil, ...]
[vr5, v1, r4, nil, ...]
[vr6, v1, r5, nil, ...]
[vr7, v1, r6, nil, ...]
[vr8, v1, r7, nil, ...]

Version
of Role

[r1, Enterprise Manager, {vr1}]
[r2, Production work center, {vr2,vr3}]
[r3, Machine, {vr4}]
[r4, Quality service, {vr5}]
[r5, Packaging work center, {vr6}]
[r6, Maintenance service, {vr7}]
[r7, Scheduling service, {vr8}]

[ir1, Customer order form,{vir1}]
[ir2, Electronic customer order,{vir2}]
[ir3, Production order, {vir3}]

Informational resource

derived_from
relationship

[vir1, v1, ir1, nil, ...]
[vir2, v1, ir2, nil, ...]
[vir3, v1, ir3, nil, ...]

Version of
Informational resource

[vap1, v1, ap1, nil, {vr1}, {vir1}, …]
[vap2, v2, ap1, vap1, {vr8}, {vir1,vir2}, …]
[vap3, v1, ap2, nil, {vr2,vr4}, {vir3}, …]
[vap4, v2, ap2, nil, {vr3,vr4}, {vir3}, …]
[vap5, v3, ap2, vap3, {vr2}, {vir3}, …]
[vap6, v1, ap3, nil, {vr1},{}, …]
[vap7, v2, ap3, vap6, {vr5},{}, …]
[vap8, v1, ap4, nil, {vr6},{}, …]
[vap9, v1, ap5, nil, {vr2,vr4,vr7},{}, …]

is_version_of
inverse relationship

is_version_of
inverse relationship

is_version_of
relationship

derived_from
relationship

Figure 5: Instantiation of the VBP Meta-Model.

D

271

4 OPERATIONS FOR BUSINESS
PROCESS VERSIONING

In this section, we introduce a taxonomy of
operations for business process versioning. These
operations are defined as methods in the “Version of
…” classes (“versionable” classes). They correspond
to classical operations for versions (Katz, 1990):
create, derive, delete, update and froze, but this
taxonomy also includes operations for version
selection. Of course, create, delete and update are
also available for the other classes of the meta-
model (non “versionable” classes), but their
presentation is out of the scope of the paper.

This section introduces the create, derive, delete,
update and froze operations first giving a state chart
which indicates when these operations are available,
and second detailing the actions they perform
according to the classes in which they are defined.
Moreover, this section also discusses about version
selection, more precisely business process version
selection.

4.1 State Chart for Versions

The UML state chart of figure 6 indicates when
these operations are available. Some of them are
available whatever the state of versions on which
they are applied, while others are only available in
some cases. In this state chart, each operation is
described using the notation Operation:Event/Action
whose meaning is “for Operation when Event is
triggered then Action is performed”.

Working

Frozen

Create:
create/to_create

Update:
update/to_update

Delete:
delete/to_delete

Freeze:
freeze/to_freeze

Derive:
derive/to_derive

Delete:
delete/to_delete

Figure 6: State Chart for Versions of Business Processes.

When the create event is triggered by the a
version designer, the to_create action is performed
to both create the entity and its corresponding first
version. The state of the created version is Working.
In this state, the version can be updated (update
event and to-update action).

It also can be deleted (delete event and to-delete
action): its state is then the final state of the chart. It
also can be frozen (freeze event and to-freeze
action): its state is then Frozen. Triggering the freeze
event, the designer means that the considered

version is definitive and does not need additional
updates. A frozen version (i.e. a version in a Frozen
state) can be deleted or can serve as a basis for the
creation of a new version using the derive event and
to-derive operation. This new created version has the
same value as the version from which it is derived
from: its state is Working.

In addition to the previous state chart, these
operations require further details. For instance, the
Create and Update operations permit to add and
delete references to the components of versions.
These components change according to the
considered type of versions: versions of business
processes, versions of atomic processes (tasks),
versions of informational resources or versions of
roles. Regarding the Derive operation, it can trigger
the derivation of versions of its components. The
sections below gives additional details for these
operations.

4.2 Creating and Updating Versions

Table 1 and 2 below give the semantics of these two
operations (Create and Update) according to the
classes in which they are defined. The four “Version
of…” classes are considered.

Table 1: Creating and Updating Versions of Business
Processes and Atomic Processes (task).

Business Process Atomic Process
1. Change structure 1. Change conditions
1.1. add/delete
composite process in
the workflow process
structure

1.1. add/delete pre-
conditions (has-pre-
conditions relationship)

1.2. add/delete atomic
process in the work-
flow process structure

1.2. add/delete post-
conditions (has-post-
conditions relationship)

2. Change pattern 2. Change action
2.1. choose a pattern
for a composite process
(use relationship)

2.1. add/delete actions
(contains relationship)

3. Change information
3.1. add/delete input
information (consumes
relationship)
3.2. add/delete output
information (produces
relationship)
4. Change role

4.1. add/delete roles
(references relationship)

These two tables indicate that Create and Update
operations change according to the classes in which

ICE-B 2008 - International Conference on e-Business

272

 DEALING WITH BUSINESS PROCESS EVOLUTION USING VERSIONS

they are defined. However, they share the same
general idea that is to give values to properties and
relationships of the considered classes. Moreover,
relationships referencing versions may only
reference frozen versions (i.e. versions in the Frozen
state).

Table 2: Creating and Updating Versions of Informational
Resource and Role.

Informational
Resource

Role

1. Change software 1. Change actors
1.1. add/delete
software (uses
relationship)

1.1. add/delete actors
(played_by relationship)

2. Change organization 2. Change the structure
of information
resource

2.1. add/delete
organizational units
(belongs_to
relationship)

4.3 Derivation of Versions

The Derive operation allows the creation of a new
version from an existing frozen one. The new
created version is a working version (its state is
working). Before being updated, the value of this
new created version is the same than the derived
one. Moreover, derivation of a version may trigger
the derivation of other versions, which are linked to
the derived one. Figure 7 below illustrates this
derivation propagation.

Role
Derive

Atomic Process

Informational Resource

Business Process

Derive

Derive

Derive

Derive
Derive

Derive

Figure 7: Derivation Propagation.

This propagation is due to the composition
relationships existing between Business Process,
Atomic Process, Informational Resources and Role
classes. Thus, derivation of an Informational
Resource version or a Role version triggers the
derivation of its corresponding Atomic Process
version. In the same way, derivation of an Atomic
Process version triggers the derivation of its
corresponding Business Process version.

4.4 Selection of Versions

In addition to the previous presented operations, we
also propose specific operations for version selection

and version hierarchy selection: Select, Slice,
Display, among others... Because of space
limitation, the paper only details the version
selection operation and illustrates its use for business
process version selection.

4.4.1 Select Operation

This operation allows the selection of versions. Its
syntax is: Select(Class,Predicate) where Class is a
name of a VBP class containing versions (i.e. a
“versionable” class) and Predicate a condition
permitting the filtering of versions.

The result of this operation is a set of versions
verifying the predicate along with versions and/or
objects that are (directly or not) linked to it by a
relationship. In other words, the result of the Select
operation is a set of instances of the VBP meta-
model linked (directly or not) to a version belonging
to the “versionable” class on which the Select
operation is performed. We call such a group of
instances VBP-instances. This notion of VBP-
instances corresponds to the notion of Configuration
introduced for handling versions in Software
Engineering (Kimball and Larson, 1991). It is also
close to the notion of Database Version introduced
in (Cellary and Jomier, 1990) in order to reduce the
complexity of version management in object-
oriented databases.

4.4.2 VBP-Trees for representing
VBP- Instances

Regarding business process version selection, the
result of a Select operation performed to the Version
of Business Process class is a set of business process
versions verifying the predicate along with instances
(versions and/or objects) of the Composite Process,
Control Pattern, Version of Atomic Process, Version
of Informational Resource and Version of Role
classes which are (directly or not) linked to them.

In this case, a VBP-instance corresponds to a
business process version along with versions and/or
objects linked to it. It can be represented as what we
call an VBP-Tree from which we distinguish two
kinds of nodes: terminal nodes (leaves) and non
terminal nodes. Terminal nodes correspond to VBP
atomic processes while non terminal nodes
correspond to VBP composite processes. A non
terminal node is described by the following data
structure:

 NodeName: name of the node (corresponds to
the name of the corresponding composite
process);

D

273

 CPName: name of the control pattern used for
the composite process;

 Condition: optional property associated to
conditional control patterns;

 SetOfNodes: set of nodes (terminal or non
terminal) composing it.

A terminal node is described by the following
data structure:

 NodeName: name of the node (corresponds to
the name of the corresponding atomic
process);

 SetOfActions: set of actions to perform;
 PreCondition: condition associated to the

execution of the atomic process; it must be
evaluated to true to perform actions of the
atomic process that the node represents;

 PostCondition: condition associated to the
atomic process after execution of actions of
the node;

 ConsumesInformation: set of informational
resources required to perform actions of the
node;

 ProduceInformation: set of informational
resources produced by the performing the
actions of the node;

 PlayedBy: role defining a set of actors able to
perform the actions of the node.

For instance, the VBP-Tree corresponding to the
third version of the Production business process
(vbp3 i.e. Production.v3) introduced in section 3.3 is
visualized in figure 8.

This VBP-Tree illustrates the structure of the
considered business process distinguishing terminal
nodes (visualized as ellipses) from non terminal
nodes (visaulized as rectangles).

In fact, figure 8 only gives a simplified view of
the VBP-Tree since nodes are not described in
details (according their corresponding structures
defined before).

Packaging

Join

Schedule Production

Quality Checking

ProduceFix Unqualified Products

Sequence

Figure 8: VBP-Tree for Production v3.

The function implementing the mapping from a
VBP-instance to a VBP-Tree uses the mapping rules
given in Table 3 below.

Table 3: Mapping Rules from VBP-instance to VBP-Tree.

VBP meta-model
concepts

VBP-Tree concepts

Instance of Version of
Business Process class

VBP-Tree

Instance of Composite
Process class

Non Terminal node

Instance of Version of
Atomic Process class

Terminal node

Moreover, this function uses a set of functions
permitting the handling of processes and nodes:

 IsAtomicProcess(i) indicates if i is an instance
of the Version of Atomic Process class;

 BuildTerminalNode(i) returns the
corresponding terminal node of an atomic
process i taking into account the relationships
flowing from i (has_pre-conditions, …);

 BuildNonTerminalNode(i) returns the
corresponding non terminal node of the
composite process i using the relationship
flowing from i (uses);

 AddNode(n, tr) adds the node n to a VBP-Tree
tr.

This function is the following.
Function BuildVBP-Tree (i:VBP-
 Instance):VBP-Tree
Local n:Node
Begin
 If IsAtomicProcess(i) Then
 n = BuildTerminalNode(i)
 BuildVBP-Tree = AddNode(n, tr)
 Else
 –- i is a composite process
 n = BuildNonTerminalNode(i)
 BuildVBP-Tree = AddNode(n, tr)
 For Each c ∈ IsComposedOf(i)
 BuildVBP-Tree =
 BuildVBP-Tree(c)
 Next c
 End If
End

5 FORMALIZING BUSINESS
PROCESS VERSIONS: FROM
VBP-TREE TO PNO

Representing versions of business processes as
VBP-Tree is not sufficient to visualize and formalize
the semantics of the modeled versions of business
processes. To compensate this drawback, we
propose to use a Petri net-based formalism, namely
Petri Nets with Objects (PNO) (Sibertin, 1985) for

ICE-B 2008 - International Conference on e-Business

274

 DEALING WITH BUSINESS PROCESS EVOLUTION USING VERSIONS

workflow process version visualization and
formalization.

This section first presents the PNO formalism
and gives the reasons of the choice of this language
for workflow process versions. Then, this section
explains the mapping from a VBP-Tree onto a PNO.

5.1 Petri-net with Objects

5.1.1 What are PNO?

Petri Nets with Objects (PNOs) (Sibertin, 1985) are
a formalism combining coherently Petri nets (PN)
technology and the Object-Oriented (OO) approach.
While PN are very suitable to express the dynamic
behavior of a system, the OO approach permits the
modeling and the structuring of its active (actor) and
passive (information) entities. In a conventional PN,
tokens are atomic, whereas they are objects in a
PNO. As any PN, a PNO is made up of places, arcs
and transitions, but in a PNO, they are labeled with
inscriptions referring to the handled objects. More
precisely, a PNO features the following additional
characteristics:

 Places are typed. The type of a place is a (list
of) type of an (list of) object(s). A token is a
value matching the type of a place such as a
(list of) constant (e.g. 2 or ‘hello’), an in-
stance of an object class, or a reference
towards such an instance. The value of a place
is a set of tokens it contains;

 Arcs are labeled with parameters. Each arc is
labeled with a (list of) variable(s) of the same
type, as the place the arc is connected to. The
variables on the arcs surrounding a transition
serve as formal parameters of that transition
and define the flow of tokens from input to
output places. Arcs from places to a transition
determine the possible condition of the
transition: a transition may occur (or is
possible) if there exists a binding of its input
variables with tokens lying in its input places;

 Each transition is a complex structure made up
of three components: a precondition, one (or
several) action(s) and emission rules. A
transition may be guarded by a precondition,
i.e. a side-effect free Boolean expression
involving input variables. In this case, the
transition is only permitted by a binding if this
binding evaluates the precondition to be true.
Passing through a transition depends on the
precondition, on the location of tokens and
also on their value. A transition also includes
one or several actions, which consists of a

piece of code in which transitions’ variables
may appear and object methods may be
invoked. These actions are executed at each
occurrence of the transition and they process
the values of tokens. Finally, a transition may
include a set of emission rules i.e. side-effect
free Boolean expressions that determine the
output arcs that are actually activated after the
execution of the action.

5.1.2 Motivations for using PNO

Petri nets are widely used for workflow specification
(Aalst, 1998). Several good reasons justify their use:

 An appropriate expressive power that permits
the description of the different tasks involved
in a workflow process and their coordination;

 A graphical representation that eases the
workflow process specification;

 An operational semantics making an easy
mapping from specification to implementation
possible;

 Theoretical foundations enabling analysis and
validation of behavioral properties and
simulation facilities.

Unfortunately, conventional Petri nets focus on
the process definition and do not perfectly capture
the organizational and the informational dimensions
of business processes. As mentioned before, PNO
extend Petri nets by integrating high-level data
structures represented as objects, and, therefore
provide the possibility to integrate in a coherent way
the two missing dimensions. Thus, using PNO,
actors/roles of the organizational model are directly
represented as objects and they may be invoked
through methods in the action part of a transition. In
the same way, data and documents (from the
informational model) are also represented by objects
flowing in the PNOs and transformed by transitions.

Consequently, we use PNO as a graphical tool to
visualize versions of business processes, and as a
formal tool to define executable specifications in
order to analyze, simulate, check and validate
workflow process versions.

5.2 From VBP-Trees to PNOs

Table 4 and figure 9 give the mapping rules in order
to obtain, from a VBP-Tree, i.e. a VBP-instance, the
corresponding Petri net with objects. We distinguish
mapping rules for concepts from mapping rules for
control patterns. Table 4 introduces mapping rules
for concepts while figure 9 presents mapping rules
for control patterns.

D

275

Table 4: Mapping Rules for Concepts.

VBP-Tree concepts PNO concepts
Name of a Terminal
node

Name of a transition

SetofActions of a
Terminal node

Actions of a transition

PreCondition of a
Terminal node

Pre-condition of a
transition

PostCondition of a
Terminal node

Emission rule of a
transition

ConsumesInformation
of a Terminal node

Begin place of a
transition

ProduceInformation of
a Terminal node

End place of a transition

PlayedBy of a
Terminal node

Begin place of a
transition representing a
role

Figure 9 below details how modeled control
patterns are represented using PNOs. In this figure,
P, P1 and P2 correspond to business processes while
condition corresponds to a condition used in
conditional control patterns. Finally, Empty is a
transition for which no actions are executed.

Sequence(P1,P2)Fork(P1,P2)

Join(P1,P2)

If(Condition,P)

While(Condition,P) Repeat(Condition,P)

P2P1

P2

P1

EmptyAP
condition not condition

P2P1

Empty

AP
condition not condition

EmptyAP
condition not condition

Figure 9: Mapping Rules for Control Patterns.

We also provide a function for building a PNO
from a VBP-Tree. This function uses mapping rules
presented in table 4 and figure 9 for defining
transitions of the PNO and their coordination.

Moreover, this function uses a set of functions
permitting the handling of a tree:

 ListOfChildren(n) returns the children of a node
n (non-terminal or terminal nodes);

 ListOfLeaves(t) returns the terminal nodes
(leaves) of a tree t;

and also a set of functions for building transitions
and their coordination:

 BuildTransition returns the corresponding
transition to a node using mapping rules
defined in table 4;

 BuildPattern uses mapping rules defined in
figure 9 to return the corresponding PNO
according to the control pattern specified in a
node;

 AddTransition (tr,PNO): add a transition tr to a
PNO;

 AddPattern (pa,PNO): adds a pattern pa to a
PNO.

This function is the following.
Function BuildPNO (n:Node):PNO
Local c:Node; tr:Transition
Global t:VBP-Tree
Begin
 If n ∈ ListOfLeaves(t) Then
 tr = BuildTransition(n)
 BuildPNO =
 AddTransition(tr,BuildPNO)
 Else
 –- n is a non terminal node
 pa = BuildPattern(n)
 BuildPNO =
 AddPattern(pa, BuildPNO)
 For Each c ∈ ListOfChildren(n)
 BuildPNO = BuildPNO(c)
 Next c
 End If
End

6 CONCLUSIONS

As mentioned in the introduction, the problem stated
as “how to support dynamic change of business
process” has already been addressed in the workflow
context. We distinguish two main approaches to deal
with this problem.

Concerning the adaptive-based approach,
relevant works in this area propose solutions to deal
with workflow schemas changes, adaptation and
migration of their corresponding instances. (Casatia
and al, 1996) presents a workflow modification
language that supports updates of workflow

ICE-B 2008 - International Conference on e-Business

276

 DEALING WITH BUSINESS PROCESS EVOLUTION USING VERSIONS

schemas. It also defines a set of evolution policies
that a workflow administrator can adopt to manage
instances of updated workflow schemas in order to
migrate (or not) them as instances of the new
schema. Three mains policies are defined: abort,
flush and progressive. (Kammer and al, 2000)
investigates exception handling as a way to support
dynamic change to workflow process schemas.
Consequently, it introduces a taxonomy for
exceptions and defines functionalities that Workflow
Management Systems must have in order to be able
to deal with these exceptions. The ADEPTflex
project (Reichert and Dadam, 1998), (Rinderle and
al, 2004) extensively studies process schema
evolution. This work formally defines change
operations for both process schemas and workflow
instances as well as related migration policies in
handling potential conflicts. We can also mention
van der Aalst’s work to address dynamic change of
workflow (Aalst, 2001). This work uses a generic
process model to describe a family of variants of a
same workflow process and the notion of inheritance
is used to link these different variants. In the same
vein, (Adams and al, 2006) proposes, for dealing
with dynamic evolution in workflows, to use
accepted ideas of how people actually work to
define sets of worklets (i.e. processes) and a stategy
for runtime selection of a specific worklet.

However, none of these works mention the
notion of workflow versions. Consequently, none of
them enables several different schemas of a same
workflow process to conjointly exist.

Relevant works from the version-based approach
allow to different instances of a same workflow
process to own different schemas. Two main
contributions are relevant from this approach. First,
(Kradolfer and Geppert, 1999) have proposed to deal
with dynamic workflow evolution, i.e. modification
of workflow process schemas in the presence of
active workflow process instances, introducing
versions of workflow process schemas. This work
has defined a set of operations for workflow process
schema modification and a strategy for migration of
workflow process instances. Second, and more
recently, (Zhao and Liu, 2007) have also defended
the advantages of a version-based approach to face
business process evolution. More precisely, this
work proposes to model versions of workflow
process schemas using a graph. It also presents a set
of operations enabling to update this graph and
defines two strategies to extract versions of
workflow process schemas from this graph.

However, these two works only consider the
process model of workflow. They do not integrate

the two other dimensions of workflow, that are the
informational and the organizational dimensions.

Consequently, this paper revisits the dynamic
change of business process issue following a
version-based approach and considering the
organizational, informational and process models of
business processes. More precisely, it introduces:

 A meta-model for designing versions of
business processes;

 A taxonomy of operations for business process
version management;

 A formalization and a visualization, using Petri
net with Objects, of versions of business
processes, designed with the previous meta-
model.

Our solution has the following advantages:
 It permits a comprehensive modeling of

business processes considering the three
dimensions of business processes;

 The VBP meta-model is simple: it only
integrates core concepts for both business
process modeling and business process
versioning (our versioning kit is very simple),

 Dynamics aspects of business process version
management are investigated in depth
according to the state of the art for versions in
databases;

 It provides rules and algorithms to derive
modeled versions of business processes onto
Petri net with objects specifications.

As future work, we have planed to implement the
VBP meta-model in order to model version of
business processes and to derive versions of business
processes specified using BPEL.

REFERENCES

Adams, M., ter Hofstede, A., Edmond, D., van der Aalst,
W., 2006. Worklets: A Service-Oriented
Implementation of Dynamic Flexibility in Workflows,
Int. Conference on Cooperative Information Systems,
Montpellier, France, pp. 291–308.

Andonoff, E., Hubert, G., Le Parc, A., Zurfluh, G., 1996.
Integrating Versions in the OMT Models. Int.
Conference on the Entity Relationship Approach,
Cottbus, Germany, pp. 472–487.

Casati, F., Ceri, S., Pernici, B., Pozzi, G., 1995.
Conceptual Modelling of Workflows. Int. Conference
on the Entity Relationship Approach, Goald Cost,
Autralia, pp. 341–354.

Casati, F., Ceri, S., Pernici, B., Pozzi, G., 1996. Workflow
Evolution. Int. Conference on the Entity Relationship
Approach, Cottbus, Germany, pp. 438–455.

D

277

Cellary, W., Jomier, G., 1990. Consistency of Versions in
Object-Oriented Databases. Int. Conference on Very
Large DataBases, Brisbane, Australia, pp. 432–441.

Chen, I., Markowitz, V., Letovsky, , Li, P., Fasman, K.,
1996. Version Management for Scientific Databases.
Int. Conference On Extended Database Technology,
Avignon, France, pp. 289–303.

Chou, H.T., Kim, W., 1986. A Unifying Framework for
Version Control in a CAD Environment. Int.
Conference on Very Large DataBases, Kyoto, Japan,
pp. 336–344.

Fernandes, S., Cachopo, J., Silva, R., 2004. Version
Supporting Evolution in Workflow Definition
Language. Int. Conference on Current Trends in
Theory and Practice of Computer Science, Merin,
Czech Republic, pp. 208–217.

Halliday, J., Shrivastava, SK., Wheater, SM., 2001.
Flexible Workflow Management in the OPEN-flow
System. Int. Conference on Enterprise Distributed
Object Computing, Seattle, Washington, USA, pp. 82–
92.

Heinis. T., Pautasso. C., Alonso G., 2005. The JOpera
Autonomic Workflow Engine, the 2nd International
Conference on Autonomic Computing (ICAC-05),
Seattle, Washington, June 2005.

Kammer, P., Bolcer, G., Taylor, R., Bergman, M., 2000.
Techniques for supporting Dynamic and Adaptive
Workflow. Int. Journal on Computer Supported
Cooperative Work, 9(3/4), pp. 269–292.

Katz. R., 1990. Towards a Unified Framework for Version
Modelling in Engineering Databases. Int. Journal on
Computing Surveys, 22(4), pp. 375–408.

Kimball, J., Larson, A., 1991. Epochs: Configuration
Schema, and Version Cursors in the KBSA
Framework CCM Model. Int. Workshop on Software
Configuration Management, Trondheim, Norway, pp.
33–42.

Kradofler, M., Geppert, A., 1999. Dynamic Workflow
Schema Evolution based on Workflow Type
Versioning and Workflow Migration, Int. Conference
on Cooperative Information Systems, Edinburgh,
Scotland, pp. 104–114.

Leymann, F., Roller, D., 1999. Production Workflow:
Concepts and Techniques. Prentice-Hall Press.

Manolescu, DA., 2001. Micro-Workflow: A Workflow
Architecture Supporting Compositional Object-
Oriented Development. PhD Thesis, University of
Illinois.

Mohan, C., Alonso, G., Gunthor R., Kamath, M., 1995.
Exotica: A Research Perspective on Workflow
Management Systems. IEEE Data Engineering
Bulletin, 18(1), pp. 19–26.

Reichert, M., Dadam, P., 1998. ADEPTflex: Supporting
Dynamic Changes of Workflow without Loosing
Control. Int. Journal on Intelligent Information
Systems, 10(2), pp. 93–129.

Rinderle, S., Reichert, M., Dadam, P., 2004. Disjoint and
Overlapping Process Changes: Challenges, Solutions
and Applications. Int. Conference on Cooperative
Information Systems, Agia Napa, Cyprus, pp.101–120.

Roddick, J., Craske, N., Richards, T., 1993. A Taxonomy
for Schema Versioning based on the Relational and
Entity Relationship Models. Int. Conf. on the Entity
Relationship Approach, Arlington, Texas, USA, pp.
137–148.

Rosemann, M., zur Muehlen, M., 1998. Evaluation of
Workflow Management Systems: a Meta-model
Approach. Australian Journal of Information Systems,
6(1), pp. 103–116.

Sciore, E., 1994. Versioning and Configuration
Management in Object-Oriented Databases. Int.
Journal on Very Large Databases, 3(1), pp. 77–106.

Sibertin-Blanc, C., 1985. High Level Petri Nets with Data
Structure. Int. Workshop on Petri Nets and
Applications, Espoo, Finland.

Smith, H., Fingar, P., 2003. Business Process Management
- The Third Wave. Megan-Kiffer Press.

van der Aalst, W., 1998. The application of Petri Nets to
Workflow Management. Int. Journal on Circuits,
Systems and Computers, 8(1), pp. 21–66.

van der Aalst, W., 1999. Inter-Organizational Workflows:
An Approach Based on Message Sequence Charts and
Petri Nets. Int. Journal on Systems Analysis, Modeling
and Simulation, 34(3), pp. 335–367.

van der Aalst, W., 2001. How to Handle Dynamic Change
and Capture Management Information: an Approach
based on Generic Workflow Models. Int. Journal of
Computer Systems, Science, and Engineering, 16(5),
pp. 295–318.

van der Aalst, W., Aldred, L., Dumas, M., ter Hofstede,
A., 2004. Design and Implementation of the YAWL
System. Int. Conference on Advanced Information
Systems Engineering, Riga, Latvia, pp. 142–159.

van der Aalst, W., Benatallah, B., Casati, F., Curbera, F.,
Verberk, E., 2007. Business Process Management:
Where Business Processes and Web Services Meet.
Int. Journal on Data and Knowledge Engineering,
61(1), pp. 1–5.

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B.,
Barros, A., 2003-b. Workflow Patterns. Int Journal on
Distributed and Parallel Databases, 14(1), pp. 5–51.

van der Aalst, W., Ter Hofstede, A., Weske, M., 2003-a.
Business Process Management: A Survey. Int.
Conference on Business Process Management,
Eindhoven, The Nederlands, pp. 1–12.

Vossen, G., Weske, M., 1999. The WASA2 Object-
Oriented Workflow Management System. Int.
Conference on Management of Data, Philadelphia,
Pennsylvania, USA, pp. 587–589.

Zhao, X., Liu, C., 2007. Version Management in the
Business Change Context. Int. Conf. Business Process
Management, Brisbane, Australia, pp. 198–213.

ICE-B 2008 - International Conference on e-Business

278

