
A FAST ENCRYPTION SCHEME FOR NETWORKS APPLICATIONS

Mohamed Abo El-Fotouh and Klaus Diepold
Institute for Data Processing (LDV), Technische Universität München (TUM), 80333 München, Germany

Keywords: High-speed networks, encryption schemes, SSM, AES.

Abstract: In this paper we studied the two widely used encryption schemes to perform symmetric encryption for a
huge number of concurrent clients in high-speed networks applications. The current schemes consume either
plenty of memory to gain high throughput or low memory with low throughput. The need has aroused for
a scheme that has low memory requirements and in the same time possesses high speed, as the number of
the internet users increases each day. We used the SSM model (El-Fotouh and Diepold, 2008), to construct
an encryption scheme based on the AES. The proposed scheme possesses high throughput together with low
memory requirements. We performed theoretical and practical analyses for the existing and proposed schemes.

1 INTRODUCTION

The number of internet users is increasing continu-
ally world wide. Recent statistics reported the cur-
rent number of internet users is more than 1.24 bil-
lion. This number has increased more than 290 % in
the last seven years and is still increasing daily (Stats,
2008). Consequently, internet and network applica-
tions need to serve an increasing number of concur-
rent clients. The enhanced quality and performance of
internet and modern applications require more band-
width capacity to fullfill the clients’ needs. Today,
modern networks do not only have to fulfill the de-
mand of higher transmission rates but also have to
provide and to guarantee data security and especially
data confidentiality (Jung et al., 2001).

The encryption and decryption key setup laten-
cies are particularly important in applications where
only several blocks of data are encrypted between two
consecutive key changes. IPSec (Kent and Atkinson,
1998a; Kent and Atkinson, 1998b; Kent and Atkin-
son, 1998c) and ATM (Dunn and Martin, 2000), with
small sizes of packets, and consecutive packets en-
crypted using different keys, are two widespread pro-
tocols in which the key setup latencies may play a
very important role (Gaj and Chodowiec, 1999).

Ciphers that require subkeys pre-computation
have a lower key agility due to the pre-computation
time, and they also require extra RAM to hold the
pre-computed subkeys. This RAM requirement does

not exist in the implementations of encryption algo-
rithms, which compute their subkeys during the en-
cryption/decryption operation ”on-the-fly” (Sklavos
et al., 2005).

On October 2, 2000 the National Institute of Stan-
dards and Technology (NIST) announced that Rijn-
dael (Daemen and Rijmen, 1998) has been chosen
to become the Advanced Encryption Standard (AES)
and it was announced as a standard in (NIST, 2001).
Rijndael supports on-the-fly subkeys computation for
encryption, but it requires a onetime execution of the
key schedule to generate all subkeys prior to the first
decryption with a specific key. This places a slight re-
source burden on the key agility of Rijndael (Schneier
et al.,).

In this paper, we studied the two widely used
schemes for generating the cipher’s subkeys in net-
work applications. The first scheme uses subkeys
pre-computation and the second uses on-the-fly sub-
keys computation. We performed theoretical and ex-
perimental analyses on both schemes. Our analy-
ses pointed out some shortcomes in both schemes,
as the scheme that uses on-the-fly subkeys computa-
tion is considered slow, on the other hand the scheme
that uses subkeys pre-computation uses more mem-
ory, which may limit the number of concurrent clients
and is more subjected to cache misses and page faults.

To overcome the shortcomes of both schemes, we
proposed a new scheme. Our scheme is based on
the Static Substitution Model (SSM) (El-Fotouh and

119
Abo El-Fotouh M. and Diepold K. (2008).
A FAST ENCRYPTION SCHEME FOR NETWORKS APPLICATIONS.
In Proceedings of the International Conference on Security and Cryptography, pages 119-127
DOI: 10.5220/0001919101190127
Copyright c© SciTePress

Diepold, 2008). The SSM model can provide a block
cipher with a secondary key. The secondary key is
used to replace some bits of the cipher’s expanded
key. We used the SSM model to construct a variant
of the AES, we named this variant AESS. We used
AESS to construct an encryption scheme for network
applications. In the proposed scheme, each client pos-
sesses two keys. The first key is shared with a group
of clients (a cluster) and it is expanded in memory
(cluster key). The second key is the client’s unique
session key. Encryption and decryption are done us-
ing AESS, where the cluster key is used as the ex-
panded AES key and the client’s session key is used
as the secondary key. Our proposed scheme enjoys
high throughput together with low memory consump-
tion.

This paper is structured as follows. In section 2 we
present the current encryption schemes together with
our general assumptions. In section 3 we propose a
variant of the AES and present our proposed encryp-
tion scheme for networks applications. In section 4
we present the memory analysis of the schemes. In
section 5 present a simulation to help us better un-
derstand the behavior of the schemes in real systems.
In section 6 we present the security analysis of the
schemes. We conclude in section 7.

2 CURRENT SCHEMES

2.1 General Assumptions

Assumptions:

1. We have a Server that serves N (large/huge num-
ber) of concurrent secure sessions.

2. Each client has a unique random session key of
size 256-bits and a unique random initial vector
(IV) of size 128-bits. .

3. We are going to use the AES (with 256-bits key)
for encryption and decryption.

4. For decryption, we are going to use the Equiva-
lent Inverse Cipher of AES (Daemen and Rijmen,
1998), that has the same sequence of transforma-
tions as AES, thus offers a more efficient structure
than the normal Inverse Cipher (NIST, 2001) and
is used in many optimized software and hardware
systems (Gladman, 2006; Lai et al., 2004; Li and
Li, 2005; Tillich and Groschdl, 2006).

5. The encryption/decryption is done in CBC
mode (Menezes et al., 1996), which is used
by most network applications (Tan et al., 2004;
Walker, 2000).

2.2 Scheme 1

Scheme 1 is a speed dedicated scheme, where the ex-
panded key for encryption and decryption for each
session are computed at the start of that session,
stored in memory and then recalled whenever an en-
cryption or decryption operation for that session is
needed. It executes as follows:
• Setup Routine: is executed for every client num-

ber i (Ci), once it is connected:
– A unique cryptographic random key (Ki) of

length 256-bits and a random (IVi) of length
128-bits are generated and sent to the client.

– Ki is expanded, using AES key setup algo-
rithm to produce the client’s encryption ex-
panded subkeys (Ei) and the client’s decryption
expanded subkeys (Di). Note that both Ei and
Di are of size 1920-bits.

– Ei, Di and IVi are stored in memory.
• Encryption Execution Routine: To encrypt a

plaintext (PT) for Ci:
– Ei and IVi are fetched from memory and are

used to encrypt PT using CBC mode.
• Decryption Execution Routine: To decrypt a ci-

phertext (CT) for Ci:
– Di and IVi are fetched from memory and is used

to decrypt CT using CBC mode.

2.3 Scheme 2

Scheme 2 is a memory dedicated scheme, where the
subkeys for encryption and decryption are computed
on-the-fly, whenever an encryption or decryption op-
eration is needed. It executes as follows:
• Setup Routine: is executed for every client Ci,

once it is connected:
– A unique cryptographic random key (Ki) of

length 256-bits and a random (IVi) of length
128-bits are generated and sent to the client.

– Ki and IVi are stored in memory.
– Encryption Execution Routine: To encrypt a

plaintext (PT) for Ci:
∗ Ki and IVi are fetched from memory.
∗ PT is encrypted using Ki, where the encryp-

tion subkeys are computed on-the-fly, and IVi
using CBC mode.

– Decryption Execution Routine: To decrypt a
ciphertext (CT) for Ci:
∗ Ki and IVi are fetched from memory.
∗ CT is decrypted using Ki, where the decryp-

tion subkeys are computed on-the-fly, and IVi
using CBC mode.

SECRYPT 2008 - International Conference on Security and Cryptography

120

3 PROPOSED SCHEME

3.1 The Requirements of Encryption
Schemes for High-Speed Networks

1-High Throughput. The faster the encryption the
better.

2-Low Memory. The less memory requirements the
better.

3-Maximum Number of Clients. The more served
clients the better.

3.2 Motivation

Scheme2 satisfies all these requirements except the
most important one (high throughput), on the other
hand Scheme1 can not serve a large number of con-
current clients (see Section 5). A need for a scheme
that satisfies all the requirements has aroused.

3.3 Proposed Scheme Objectives

1. High Throughput: It should be faster than
Scheme2 and possesses a comparable perfor-
mance as that of Scheme1.

2. Low memory: The memory requirements should
be comparable to that of Scheme 2.

3. Maximum number of clients: The maximum
number of concurrent clients should be compara-
ble to that of Scheme2.

Refer to Section 5 for more details.

3.4 AESS

AESS is a variant of AES with 256-bits key. It
is constructed using the SSM model (El-Fotouh and
Diepold, 2008). It accepts two 128-bits secondary
keys. The listing of AESS is found in table 1, where:

X: is the input plaintext, that will be encrypted using
AESS.

EK: is the expanded AES encryption key.

K1: is the first part of the secondary key of size 128-
bits.

K2: is the second part of the secondary key of size
128-bits.

Substitute(EK,K1,i): replaces the ith 128-bits of EK
with K1 (Note that: the first round of the AES is
round zero and it is the pre-whitening process).

Table 1: AESS encrypting function.

Encrypt-AESS(X,EK,K1,K2)
Substitute(EK,K1,5)
Substitute(EK,K2,10)
C=Encrypt-AES(X,EK)
return C

Encrypt-AES(X,EK): encrypts X (using AES en-
cryption routine with 256-bits key), with EK as
the expanded encryption key and return the result.

C: the output ciphertext.

In AESS, two rounds subkey are replaced:

1. The subkeys of the fifth round are replaced with
K1.

2. The subkeys of the tenth round are replaced with
K2.

3.5 SchemeSn

We propose to use AESS to build a scheme for high-
speed networks, where:

• (Kc) is the cluster key used as the AES secret key,
and is shared by n clients (where n is the size of a
cluster).

• Each client i (Ci) has its own two unique 128-bits
keys (Ck1

i) and (Ck2
i).

SchemeSn tries to eliminate the key setup latency,
it executes as follows:

• Cluster Setup Routine: is used to prepare the
system and is executed once for each cluster of
n-clients.

– A cryptographic secure shared random key (Kc)
with length 256-bits is generated.

– Kc is expanded, using AES key setup algorithm
to produce the cluster’s shared encryption ex-
panded subkeys (Ec) and the cluster’s shared
decryption expanded subkeys (Dc).

– Ec and Dc are stored in the server’s memory.

• Client Setup Routine: is executed for every
client number i (Ci), once it is connected:

– Three unique cryptographic 128-bits random
numbers Ck1

i , Ck2
i and IVi are generated and

sent to the client together with Kc.
– Ck1

i , Ck2
i and IVi are stored in the server’s mem-

ory.

• Encryption Execution Routine: To encrypt a
plaintext (PT) for Ci:

– Ck1
i , Ck2

i and IVi are fetched from the server’s
memory.

A FAST ENCRYPTION SCHEME FOR NETWORKS APPLICATIONS

121

– PT is encrypted with AESS, where Ec, Ck1
i , Ck2

i
serve as EK, K1 and K2 respectively defined in
table 1 and IVi is used as the initial vector for
the CBC mode.

• Decryption Execution Routine: To decrypt a ci-
phertext (CT) for Ci:

– Ck1
i , Ck2

i and IVi are fetched from the server’s
memory.

– CT is decrypted with the decryption routine of
AESS using Dc, Ck1

i , Ck2
i as EK, K1 and K2

respectively defined in table 1 and IVi is used
as the initial vector for the CBC mode.

4 MEMORY ANALYSIS

The less the memory the scheme needs, the more
available memory to other applications and the larger
the number of concurrent clients the server can serve.
Memory access has a great role in the overall scheme
performance. If a server has insufficient physical
memory space to cache all of the data necessary for
the execution of its local threads, it has to perform
page replacements for data not located on physical
memory. Although the technology of virtual memory
makes the server able to complete the work of its lo-
cal threads, the latency of memory accesses caused by
page replacements postpones the execution of those
threads. This factor currently becomes more impor-
tant to program performance since the cost of disk ac-
cesses is very expensive compared to the cost of data
computation (Liang et al., 2003).

Table 2 presents the memory requirements in bits
of each scheme per client to hold the key material.

For scheme1:

• The AES Equivalent Inverse Cipher uses different
subkeys for decryption than those for encryption,
except for the first and last round. That is why we
need to store only 3584-bits instead of 3840-bits.

For scheme2:

• 256-bits are needed for encryption/decryption to
hold the intermediate round subkeys, as not to
overwrite the key itself.

• In case both encryption and decryption are
needed, 512-bits are required to hold the interme-
diate values of encryption and decryption round
keys, to allow simultaneous encryption and de-
cryption operations to take place.

For SchemeSn:

• 256-bits are needed for encryption/decryption to
hold Ck1

i and Ck2
i for the client Ci .

Table 2: Memory required in bits by each scheme for every
client.

Encryption Decryption Both
Scheme1 1920 1920 3584
Scheme2 512 512 768
SchemeSn (1920/n)+256 (1920/n)+256 (3584/n)+256

• In case of encryption: an expanded key is required
for each n clients.

• In case of decryption: an expanded key is required
for each n clients.

• As n increases the overhead of storing the cluster
expanded key decreases.

5 SIMULATION ANALYSIS

In order to gain more insight on the practical behavior
of the schemes, we designed a simulation program to
explore the schemes properties. We ran the simulation
with different parameters to investigate their influence
on each scheme. This simulation analysis is intended
to demonstrate the performance and behavior of the
schemes. We have developed four scenarios that can
model various classes of network applications, these
scenarios are:

Scenario 1: models network applications that do not
use disk operations (e.g. a chat server, where the
encrypted packets are transmitted from client to
another).

Scenario 2: models network applications that read
form the disk (e.g. a query server, where the client
sends a query and receives the results).

Scenario 3: models network applications that write
to the disk (e.g. a database server, where the data
sent by the client is stored in the database).

Scenario 4: models network applications that read
from and write to the disk (e.g. a query server that
logs the queries of the clients, where the client
sends a query and receives the results and the
client’s query is stored in the database).

5.1 Server Configuration

We implemented NoCrypto, Scheme1, Scheme2 and
SchemeS* using C++ language and run a simulation
to examine their practical behavior. Table 3 shows
the server configuration. Note that NoCrypto does not
perform any encryption or decryption functions, it is
illustrated here to show the cryptographic overhead
and in SchemeS* all the clients share the same cluster.

SECRYPT 2008 - International Conference on Security and Cryptography

122

Table 3: Server configuration.

Processor PIV 3 GHz
RAM 2048 MB
Processor Cache 2 MB
Paging file 2048 MB
OS Microsoft Windows XP
Data pool 1 GB
Compiler Visual C++ 2005
Code optimization Maximum speed

5.2 Parameters
• α is the tested packet size, we chosen α to be ei-

ther 40 or 1500 bytes. As the current packet sizes
seem mostly bimodal at 40 and 1500 bytes (Greg,
1998; Sinha et al., 2007).

• P is the number of packets sent by each client, we
chose P equals to 10 in case α=1500 and P equals
to 100 in case α=40. This is to reduce the cost of
client setup and gives us a better understanding on
how each scheme works.

• Zi is the current number of clients served by the
server.

– We measured N, the maximum number of
clients that the server can serve for Scheme1
(as Scheme1 can serve the minimum number
of clients).

– We construct the set Z = { Zi }, where 0≤ i≤
9 and Zi = (N ÷ 10) × (1 + i), here we divide
N to ten equal intervals.

• F is a file of size 1 GB used to demonstrate the
effect of disk operations.

5.3 The Scenarios

We constructed a multi-client/server TCP socket ap-
plication to demonstrate the behavior of the schemes.
The server and the clients are connected via a LAN
(100 Mbps). The scenarios work as follows:
1. The server allocates 1 GB as a shared data pool.

This pool hold the encrypted and decrypted data
for all the client and is used to illustrate the effect
of reading and writing to the RAM.

2. The server allocates the memory needed by the
tested scheme to serve Zi clients, where for each
client, the server allocates (M+ β) bytes, where M
is the number of bytes required by each client us-
ing the tested scheme to allocate the key material
and β equals to 20 bytes (4 bytes as clients iden-
tification number and 16 bytes to hold the client’s
IV).

3. The server waits until 10 computers are con-
nected, then send the start command to all
the computers (each computer simulates Zi/10
clients). Note that each computer is served using
a different thread, to illustrate the effect of multi-
threading.

4. As the computer receives the start command, it
sends P packets to the server, each of size α.

5. In senario 1, when the server receives a packet:

(a) The packet is decrypted for client Ci and en-
crypted to client Cx, where i and x are positive
random numbers less than Zi.

(b) The server sends the encrypted packet (from
the previous step), to the computer that serves
client Cx.

6. In senario 2, when the server receives a packet:

(a) The packets is decrypted for client Ci, where i
is a positive random number less than Zi.

(b) A random record of size α is read from the file
F. This record is encrypted for the client Ci.
This is to illustrate the disk read operation.

(c) The server send the encrypted packet (from
the previous step), to the computer that sends
the packet.

7. In senario 3, when the server receives a packet:

(a) The packets is decrypted for client Ci, , where
i is a positive random number less than Zi.

(b) The decrypted packet is encrypted and saved
at a random location to a file F. This is to il-
lustrate the disk write operation.

(c) The server sends the packet back to Ci.

8. In senario 4, when the server receives a packet:

(a) The packets is decrypted for client Ci, where i
is a positive random number less than Zi.

(b) The decrypted packet is saved at a random lo-
cation to a file F. This is to illustrate the disk
write operation.

(c) A random record of size α is read from the
file F, this record is encrypted for the client Ci.
This is to illustrate the disk read operation.

(d) The server send the encrypted packet (from
the previous step), to the computer that sends
the packet.

9. When all the P packets are processed by the server
and received by the computer, the computer starts
to send P packets for the next client it simulates.

A FAST ENCRYPTION SCHEME FOR NETWORKS APPLICATIONS

123

10. The average time τ (in milliseconds) for process-
ing a packet of size α for Zi clients is reported
(from the time the server starts to receive the in-
coming packet, till the time the server sends the
outgoing packet).

11. Note that for all the scenarios, we assume that the
incoming and outgoing packets are of the same
size for simplicity.

5.4 The Simulation Results

• We constructed and measured a set σ = { σi },
where 0 ≤ i ≤ 9, where σi is the average time
to process P packets using the examined scheme,
when it process Zi clients, using different values
of α.

• Figure 1 and Figure 2 summarize the results of
the simulation for the four scenarios, where we
plotted the average value of σ for each scheme.

• Note that values in Figure 1 and Figure 2 are mea-
sured in milliseconds.

Figure 1: Average time needed to process 100 packets of
size 40 bytes.

Figure 2: Average time needed to process 10 packets of size
1500 bytes.

5.5 Discussion of the Results

5.5.1 Case α=40

Scenario 1: The encryption overhead ranges from
about 9% to 15%. SchemeS* is faster than
Scheme1 with about 5%, as Scheme1 is more
prone to cache misses and page faults (beacuse it
uses more memory to hold the pre-computed ex-
panded subkeys). Scheme2 possesses almost the
same speed as Scheme1.

Scenario 2: The encryption overhead ranges from
about 14% to 24%. SchemeS* possess almost the
same speed as Scheme1 and they are faster than
Scheme2 with about 8%.

Scenario 3: The encryption overhead ranges from
about 14% to 26%. SchemeS* is faster than
Scheme1 with about 2% and Scheme2 is the slow-
est scheme.

Scenario 4: The encryption overhead ranges from
about 21% to 29%. SchemeS* is faster than
Scheme1 with about 2% and Scheme2 is the slow-
est scheme.

In conclusion, in case of small packets (α= 40, which
represents about 40% of the internet traffic (Sinha
et al., 2007)), SchemeS* is faster than Scheme1 and
Scheme2.

5.5.2 Case α=1500

Scenario 1: The encryption overhead ranges from
about 141% to 231%. SchemeS* is faster than
Scheme1 with about 8%, as Scheme1 is more
prone to cache misses and page faults (beacuse it
uses more memory to hold the pre-computed ex-
panded subkeys). Scheme2 is about 37% slower
than SchemeS*.

Scenario 2: The encryption overhead ranges from
about 136% to 235%. SchemeS* and Scheme1
possess almost the same speed, on the other hand
Scheme2 is about 42% slower than them.

Scenario 3: The encryption overhead ranges from
about 155% to 253%. SchemeS* and Scheme1
possess almost the same speed, on the other hand
Scheme2 is about 38% slower than them.

Scenario 4: The encryption overhead ranges from
about 124% to 216%. SchemeS* and Scheme1
possess almost the same speed, on the other hand
Scheme2 is about 33% slower than them.

In conclusion, in case of large packets (α= 1500,
which represents about 20% of the internet traf-
fic (Sinha et al., 2007)), SchemeS* and Scheme1 out-

SECRYPT 2008 - International Conference on Security and Cryptography

124

performs Scheme2. Note that the overhead of fetch-
ing the pre-computed expanded subkeys of Scheme1
is considered neglegted in case of large packets.

5.5.3 The Maximum Number of Clients

SchemeS* uses the least amount of memory to hold
its key material, thus can serve the maximum num-
ber of concurrent clients (by using the same mem-
ory, SchemeS* can serve up to 14 times the maxi-
mum number of clients served by Scheme1 and up
to 3 times the maximum number of clients served by
Scheme2).

6 SECURITY ANALYSIS

6.1 Assumptions

1. The secondary key is a part of the secret key and
not controlled by the attacker.

2. AES’ key scheduling routine, produces a random
expanded key.

3. AES is secure, when a random expanded key is
used.

(a) Due to our second assumption, AES is secure.
(b) Note that all the non-linearity of the AES is of-

fered by its fixed S-box (Daemen and Rijmen,
1998), not from the key material.

6.2 Security of CBC

Birthday attacks on CBC mode remain possible even
when the underlying block cipher is ideal (Bellare
et al., 1997), and CBC encryption becomes inse-
cure once 264 (in case of AES) blocks have been en-
crypted, in the sense that at this point partial informa-
tion about the message begins to leak, due to birthday
attacks (Bellare et al., 1998). Therefore, the server
MUST generate a fresh key (random and unused key)
before 264 blocks are encrypted with the same key for
each client. We recommend to encrypt maximum 232

blocks for each client (which is sufficient to encrypt
the largest possible IPv6 jumbogram (Borman et al.,
1999)), then generates a fresh key for that client, to
avoid birthday attacks.

6.3 Security of AES

We assume that, the best attack known against AES
is to try every possible 256-bits key (i.e., perform an
exhaustive key search), this requires about 2255 trails
(when AES with 256-bits is used).

6.4 Security of AESS

For an attacker that does not know either the primary
key and the secondary key, and she tries to attack a
normal AES with some random independent subkeys,
which is secure due to our third assumption.
Notes:

1. The secondary key replaces the subkeys of fifth
and tenth rounds of the AES (with 256-bits en-
cryption key), to achieve full confusion and full
diffusion in both the encryption and decryption
directions, as AES requires only four rounds to
achieve full bit confusion (or mixing) and dif-
fusion (each input bit affecting each output bit)
properties (May et al., 2002).

2. This choice assures that any difference between
two secondary keys, will be associated with full
confusion and full diffusion in both the encryption
and decryption directions.

6.5 Security of the Schemes

The security of Scheme1 and Scheme2 are inherited
from the security of the CBC mode and that of the
AES. As the attacker can either attack the mode of op-
eration or the cipher itself. The security of SchemeSn

is inherited from that of the CBC mode and that of
AESS. As CBC mode security is not based on the
used block cipher. There are two kinds of attackers
on SchemeS, when attacking AESS:

1. An attacker A that watches the ciphertext. For
an external attacker (that does not possess the pri-
mary key), it is hard to gain advantage, when the
secondary keys do not share a common mathemat-
ical relation, to mount a related key attack.

2. An attacker B (which is a client of the server), that
would like to attack another client within the same
cluster. This attacker knows the primary key:

(a) The attacker encrypts the known plaintext
with the known primary key until the 5th

round (without the AddRoundKey operation)
to produce the intermediate state φ.

(b) The attacker decrypts the known ciphertext
with the known primary key until 10th round
to produce the intermediate state γ.

(c) Now, the attacker has managed to re-
duce AESS to an Even-Mansour construc-
tion (Even and Mansour, 1997), where K1
and K2 are the keys and the reduced AES (5
rounds) is considered as the (Pseudo)random
permutation. Note that it was evident that

A FAST ENCRYPTION SCHEME FOR NETWORKS APPLICATIONS

125

the AES has a random profile after only 3
rounds (Soto and Bassham, 2000).

(d) The security of Even-Mansour is:

i. About 2255, using exhaustive search over
the key space (K1 and K2 are both of size
128-bits), which is considered large enough
by todays standards.

ii. Daemen demonstrated in (Daemen, 1991)
that a known plaintext attack, will take on
average 2127 calculations, which has the
same complexity as attacking AES with
128-bits key, which is considered secure
with todays technology.

iii. Daemen also demonstrated in (Daemen,
1991) that a chosen plaintext attack, will
take on average 264 calculations using 264

stored blocks. By limiting the number of
encrypted blocks per client, this attack can
be avoided (see Section 6.2, as each client
encrypts maximum 232 blocks using the
same secondary key, if for some applica-
tion more data is needed to be encrypted the
client can join a new cluster ”using a fresh
secondary key” or new fresh secondary key
can be generated for that client).

iv. Biryukov-Wagner demonstrated in
(Biryukov and Wagner, 2000), that a
”sliding with a twist” attack allows an ad-
versary to recover the key using

√
2× 264

known plaintexts and
√

2× 264 work. By
limiting the number of blocks encrypted
per client using the same secondary key,
this attack can be avoided (see Section 6.2).

The most powerful attacker is B, where an inside at-
tacker attack a client in the same cluster. This happens
with probability (n-1)/(N-1). So as n decreases and/or
N increases, the probability of the existence of such
attacker decreases. Even if attacker B exists, the com-
plexity to mount Daemen’s known plaintext attack is
the same complexity to attack AES with 128-bits key,
which is considered secure with todays technology.
On the other hand, to limit the probability of the other
attacks, the number of encrypted blocks per client (us-
ing the same secondary key) MUST NOT reach the
264 boundary. Therefore the server MUST generate a
fresh key (for each client) before 264 blocks are en-
crypted with the same key. We recommend that the
server encrypts maximum 232 blocks for each client,
if for some application more data is needed to be en-
crypted the client can join a new cluster or new fresh
secondary key can be generated for that client.

So SchemeSn is upper bounded with the secu-
rity of AESS and lower bounded with the security of

Even-Mansour.

7 CONCLUSIONS

In this paper, we proposed a novel encryption scheme
for high-speed networks. We analyzed our proposed
scheme with the two most widely used schemes. Our
analysis consists of theoretical and practical parts.
This analysis illustrates that our proposed scheme is
superior than the current schemes, by possessing high
throughput, consuming the lowest amount of mem-
ory, serving the largest number of concurrent clients
and it is also considered secure.

REFERENCES
Bellare, M., Desai, A., Jokipii, E., and Rogaway, P. (1997).

A Concrete Security Treatment of Symmetric Encryp-
tion. In FOCS ’97: Proceedings of the 38th An-
nual Symposium on Foundations of Computer Science
(FOCS ’97), page 394, Washington, DC, USA. IEEE
Computer Society.

Bellare, M., Krovetz, T., and Rogaway, P. (1998). Luby-
Rackoff backwards: Increasing security by making
block ciphers non-invertible. Lecture Notes in Com-
puter Science, 1403.

Biryukov, A. and Wagner, D. (2000). Advanced Slide At-
tacks. In Advances in Cryptology—Eurocrypt ’00 Pro-
ceeding.

Borman, D., Deering, S., and Hinden, R. (1999). IPv6 Jum-
bograms. RFC 2675.

Daemen, J. (1991). Limitations of the Even-Mansour Con-
struction. In ASIACRYPT: Advances in Cryptology
– ASIACRYPT: International Conference on the The-
ory and Application of Cryptology. LNCS, Springer-
Verlag.

Daemen, J. and Rijmen, V. (1998). AES Proposal: Rijndael.
http://citeseer.ist.psu.edu/daemen98aes.html.

Dunn, J. and Martin, C. (2000). Terminology for ATM
Benchmarking. RFC 2761.

El-Fotouh, M. and Diepold, K. (2008). Dynamic Substi-
tution Model. In The Fourth International Confer-
ence on Information Assurance and Security (IAS’08),
Naples, Italy.

Even, S. and Mansour, Y. (1997). A Construction of a Ci-
pher from a Single Pseudorandom Permutation. Jour-
nal of Cryptology: the journal of the International As-
sociation for Cryptologic Research, 10(3):151–161.

Gaj, K. and Chodowiec, P. (1999). Hardware performance
of the AES finalists - survey and analysis of results.
http://ece.gmu.edu/crypto/AES survey.pdf.

Gladman, B. (2006). AES optimized C/C++ code. http: //
fp.gladman.plus.com/ AES /index.htm.

Greg, C. (1998). The nature of the beast: Recent Traf-
fic Measurements from an Internet backbone. cite-
seer.ist.psu.edu/673025.html.

SECRYPT 2008 - International Conference on Security and Cryptography

126

Jung, O., Kuhn, S., Ruland, C., and Wollenweber, K.
(2001). Enhanced Modes of Operation for the En-
cryption in High-Speed Networks and Their Impact
on QoS. In ACISP ’01: Proceedings of the 6th Aus-
tralasian Conference on Information Security and Pri-
vacy, pages 344–359, London, UK. Springer-Verlag.

Kent, S. and Atkinson, R. (1998a). IP Authentication
Header. RFC 2402.

Kent, S. and Atkinson, R. (1998b). IP Encapsulating Secu-
rity Payload (ESP). RFC 2406.

Kent, S. and Atkinson, R. (1998c). Security Architecture
for the Internet Protocol. RFC 2401.

Lai, Y., Chang, L., Chen, L., Chou, C., and Chiu, C. (2004).
A novel memoryless AES cipher architecture for net-
working applications. In ISCAS (4), pages 333–336.

Li, H. and Li, J. (2005). A High Performance Sub-Pipelined
Architecture for AES. In ICCD ’05: Proceedings of
the 2005 International Conference on Computer De-
sign, Washington, DC, USA. IEEE Computer Society.

Liang, T., Liu, Y., and Shieh, C. (2003). Adding Mem-
ory Resource Consideration into Workload Distribu-
tion for Software DSM Systems. In CLUSTER, pages
362–369.

May, L., Henricksen, M., Millan, W., Carter, G., and Daw-
son, E. (2002). Strengthening the Key Schedule of
the AES. In ACISP ’02: Proceedings of the 7th Aus-
tralian Conference on Information Security and Pri-
vacy, pages 226–240, London, UK. Springer-Verlag.

Menezes, A., Oorschot., P. V., and Vanstone, S. (1996).
Handbook of Applied Cryptography. CRC Press.

NIST (2001). Announcing the ADVANCED ENCRYP-
TION STANDARD (AES). Technical Report 197,
Federal Information Processing Standards Publica-
tion.

Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C.,
and Ferguson, N. Performance Comparison of the
AES Submissions.

Sinha, R., Papadopoulos, C., and Heidemann, J. (2007). In-
ternet Packet Size Distributions: Some Observations.
Technical Report ISI-TR-2007-643, USC/Information
Sciences Institute. Orignally released October 2005 as
web page http://netweb.usc.edu/r̃sinha/pkt-sizes/.

Sklavos, N., Moldovyan, N. A., and Koufopavlou, O.
(2005). High speed networking security: design and
implementation of two new DDP-based ciphers. Mob.
Netw. Appl., 10(1-2):219–231.

Soto, J. and Bassham, L. (2000). Randomness Testing
of the Advanced Encryption Standard Finalist Candi-
dates. Computer Security Division,National Institute
of Standards and Technology.

Stats, I. W. (2008). WORLD INTERNET US-
AGE AND POPULATION STATISTICS.
http://www.internetworldstats.com/stats.htm.

Tan, Z., Lin, C., Yin, H., and Li, B. (2004). Optimization
and Benchmark of Cryptographic Algorithms on Net-
work Processors. IEEE Micro, 24(5):55–69.

Tillich, S. and Groschdl, J. (2006). Instruction Set Exten-
sions for Efficient AES Implementation on 32-bit Pro-
cessors. In Cryptographic Hardware and Embedded
Systems CHES 2006, volume 4249 of Lecture Notes

in Computer Science, pages 270–284. Springer Ver-
lag.

Walker, J. (2000). 802.11 Security Series, Part III: AES-
based Encapsulations of 802.11 Data. http://cache-
www.intel.com/cd/00/00/01/77/17770 80211 part3.pdf.

A FAST ENCRYPTION SCHEME FOR NETWORKS APPLICATIONS

127

