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Abstract: Firewall ACLs can contain inconsistencies. There is an inconsistency if different actions can be taken on the 
same flow of traffic, depending on the ordering of the rules. Inconsistent rules should be notified to the 
system administrator in order to remove them. Minimal diagnosis and characterization of inconsistencies is 
a combinatorial problem. Although many algorithms have been proposed to solve this problem, all reviewed 
ones work with the full ACL with no approximate heuristics, giving minimal and complete results, but 
making the problem intractable for large, real-life ACLs. In this paper we take a different approach. First, 
we deeply analyze the inconsistency diagnosis in firewall ACLs problem, and propose to split the process in 
several parts that can be solved sequentially: inconsistency detection, inconsistent rules identification, and 
inconsistency characterization. We present polynomial heuristic algorithms for the first two parts of the 
problem: detection and identification (diagnosis) of inconsistent rules. The algorithms return several 
independent clusters of inconsistent rules that can be characterized against a fault taxonomy. These clusters 
contains all inconsistent rules of the ACL (algorithms are complete), but the algorithms not necessarily give 
the minimum number of clusters. The main advantage of the proposed heuristic diagnosis process is that 
optimal characterization can be now applied to several smaller problems (the result of the diagnosis process) 
rather than to the whole ACL, resulting in an effective computational complexity reduction at the cost of not 
having the minimal diagnosis. Experimental results with real ACLs are given. 

1 INTRODUCTION 

A firewall is a network element that controls the 
traversal of packets across different network 
segments. It is a mechanism to enforce an Access 
Control Policy, represented as an Access Control 
List (ACL). An ACL is in general a list of linearly 
ordered (total order) condition/action rules. The 
condition part of the rule is a set of condition 
attributes or selectors, where |condition|=k (k is the 
number of selectors). The condition set is typically 
composed of five elements, which correspond to five 
fields of a packet header (Taylor, 2005). In firewalls, 
the process of matching TCP/IP packets against 
rules is called filtering. A rule matches a packet 
when the values of each field of the header of a 
packet are subsets or equal to the values of its 
corresponding rule selector. The action part of the 
rule represents the action that should be taken for a 
matching packet. In firewalls, two actions are 
possible: allow or deny a packet. A firewall ACL is 
commonly denominated a rule set.  

Firewalls have to face many problems in real-life 
modern networks (Wool, 2004). One of the most 
important ones is rule set consistency. Selectors of 
rules can overlap (for example, the protocol 
selector), and can even be rules that are totally equal 
to others. Since a packet can be matched with any of 
the overlapping rules, firewalls usually use a 
positional conflict resolution technique, taking the 
action of the first matching rule. An inconsistent 
firewall ACL implies in general a design error, and 
indicates that the firewall is accepting traffic that 
should be denied or vice versa.  

The minimal inconsistency characterization is a 
combinatorial problem. Although many algorithms 
have been proposed to solve it, to the best of our 
knowledge, all of them are brute force. These results 
return an optimal characterization, but make the 
problem intractable for large real-life rule sets. 

In this paper we propose to take a different 
approach in order to make the problem tractable for 
real-life, big rule sets. We propose to divide 
consistency management in three sequential stages: 
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• Inconsistency detection. It is the action of 
finding the rules that are inconsistent with other 
rules 

• Identification of inconsistent rules. Finding the 
rules that cause the inconsistencies among the 
detected inconsistent rules, and whose removal 
produces a consistent rule set. 

• Inconsistency characterization is understood as 
the action of naming the identified inconsistent 
rules among an established taxonomy of faults. 

This paper focuses in the first two parts of the 
process (detection and identification, diagnosis). As 
we will show, detection is a problem that can be 
solved in polynomial time with complete algorithms. 
However, optimal identification and characterization 
are combinatorial problems. In this paper, we 
propose best case O(n) and worst case O(n2) time 
complexity order independent detection and 
identification algorithms with the number of rules of 
the rule set, n. Algorithms are capable of handling 
full ranges in rule selectors without doing rule 
decorrelation, range to prefix conversion, or any 
other pre-process. A Java tool is available. 

We consider this work a significant advance in 
consistency diagnosis in firewall rule sets because 
isolating diagnosis from characterization can reduce 
the effective computational complexity of optimal 
characterization algorithms, since they can now 
applied to several smaller problems (the result of the 
diagnosis stage) rather than to a big one (the full rule 
set). The work presented in this paper is an 
improvement over a previous presented one (Pozo, 
2008). In this paper, best case has been improved by 
and order of magnitude and worst case by a 
constant. Although the worst case improvement may 
not seem representative in theoretical results, we 
will show that this improvement is very important in 
real-life rule sets, since they are near the best case. 

This paper is structured as follows. In section 2, 
we analyze the internals of the consistency 
management problem in firewall rule sets. In section 
3 we propose the consistency-based diagnosis 
algorithms, give a theoretical complexity analysis 
and experimental results with real rule sets. In 
section 4 we review related works comparing them 
to our proposal. Finally we give some concluding 
remarks in section 5. 

 
 
 

2 ANALYSIS OF THE 
CONSISTENCY PROBLEM 

To understand the problem, it is important to firstly 
review the inconsistencies characterized in the 
bibliography. A complete characterization that 
includes shadowing, generalization, correlation and 
redundancy has been given in (Al-Shaer, 2006). 
Although all of these are inconsistencies, usually not 
all are considered to be errors, as it can be used to 
cause desirable effects. All of these inconsistencies 
except redundancy are graphically represented in 
Fig. 1. For the sake of simplicity, only two rule 
inconsistencies with one selector are represented. An 
example of an ACL is presented in Table 1. 

 
Figure 1: Graphical representation of three 
inconsistencies. 

In this paper, we propose to divide consistency 
management in three sequential stages (Fig. 2). In 
the first step, all inconsistent rules are detected. 
Then, the minimal number of rules that cause the 
detected inconsistencies should be identified. Their 
removal guarantees that the resulting rule set is 
consistent. These two stages are called Inconsistency 
Diagnosis. Finally, the identified inconsistent rules 
are characterized among a established taxonomy of 
firewall rule set inconsistencies. The detection part 
of the process can be solved with complete 
polynomial algorithms (the most important are 
reviewed in the related works section, and a new one 
is proposed in this paper). The minimal 
identification is a combinatorial problem, as is going 
to be showed in the next section. A polynomial 
heuristic algorithm is proposed in this paper. The 
third and last problem is also combinatorial (Pozo4, 
2008) (the most important works are reviewed later 
in this paper). Diagnosis is also rule-order
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Table 1: Example of a Firewall Rule Set. 

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action 
R1 tcp 192.168.1.5 any *.*.*.* 80 deny 
R2 tcp 192.168.1.* any *.*.*.* 80 allow 
R3 tcp *.*.*.* any 172.0.1.10 80 allow 
R4 tcp 192.168.1.* any 172.0.1.10 80 deny 
R5 tcp 192.168.1.60 any *.*.*.* 21 deny 
R6 tcp 192.168.1.* any *.*.*.* 21 allow 
R7 tcp 192.168.1.* any 172.0.1.10 21 allow 
R8 tcp *.*.*.* any *.*.*.* any deny 
R9 udp 192.168.1.* any 172.0.1.10 53 allow 
R10 udp *.*.*.* any 172.0.1.10 53 allow 
R11 udp 192.168.2.* any 172.0.2.* any allow 
R12 udp *.*.*.* any *.*.*.* any deny 

 
independent, contrarily to characterization. The main 
difference of this work with other ones is that other 
authors apply brute force algorithms to solve directly 
the characterization problem, with no previous 
diagnosis. This yields algorithms that cannot be 
applied to big rule sets. With the proposed approach, 
the same characterization algorithms can be applied 
to several smaller problems, rather than to the full 
rule set. However, the number of these smaller 
problems is not minimal with the given heuristic 
algorithms proposed in this paper. In addition, 
heuristic characterization algorithms (Pozo4, 2008) 
can also be used to make the problem fully tractable. 

 
Figure 2: Consistency management process. 

2.1 One to One Consistency in Firewall 
Rule Sets 

First, it is needed to formalize a firewall rule set. 

• Let RS be a firewall rule set consisting of n 
rules, { }1 , ... nRS R R= . 

• Let 5, ,R H Action H=< > ∈`  be a rule, where 
{ },Action allow deny=  is its action. 

• Let [ ],1 ,jR k k n k≤ ≤ ∈   

• { }, _ , _ , _ , _protocol src ip src prt dst ip dst prt
 be a selector of a firewall rule Rj. 

• Let ‘<’ and ‘>’ be operators defined over the 
priority of the rules, where Rx < Ry implies that 
then Rx has more priority than Ry and its action 
is going to be taken first, and vice versa. 

Attending to Al-Shaer characterization, two rules 
(Rx, Ry) are correlated if they have a relation 
between all of its selectors, and have different 
actions. Fig. 1(c) represents a correlation 
inconsistency between two rules with one selector 
each. As the figure shows, the relation between the 
rules is not subset, nor superset, nor equal (rules R1 
and R3 of Table 1 are correlated). Fig. 1(a) 
represents a shadowing inconsistency between two 
rules. The relation is equality or subset of the 
shadowed rule, Ry, respect to the general rule, Rx, 
with Rx>Ry (R4 is shadowed by R3 in Table 1 
example). Fig. 1(b) represents a generalization 
inconsistency between two rules, which is the 
inverse of shadowing respect to the priority of the 
rules. The relation is superset of the general rule 
respect to the other one (R2 is a generalization of R3 
in Table 1 example). 

Since we are only interested in diagnosis and not 
in characterization, let’s try to remove names and 
give a general case of inconsistency based on these 
inconsistency characterizations (except redundancy). 
In a closer look at shadowing and generalization 
inconsistencies in Fig. 1, it can be seen that, in 
reality, these two inconsistencies are the same one, 
and the only thing that differentiates them is the 
priority of the rules. Thus, if priority is ignored, 
these two inconsistencies are special cases of a 
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correlation. That is, shadowing can be redefined as a 
correlation where all selectors of one rule (the 
shadowed one) are subsets or equal of the general 
rule. As generalization is the inverse with respect to 
the priority of shadowing, a generalization 
inconsistency can also be redefined as a correlation 
where of all selectors of a rule (the general one) are 
supersets of the other rule. So, the correlation 
inconsistency can be redefined as the superset of all 
inconsistencies, representing the most general case. 
For that reasons, it is possible to define rule 
inconsistency in only one priority independent case 
that recognizes all characterized inconsistencies. 
This is a key issue for our diagnosis process. 

Definition 2.1. Inconsistency. Two rules 
,i jR R RS∈  are inconsistent if and only if the 

intersection of each of all of its selectors R[k] is not 
empty, and they have different actions, 
independently of their priorities. The inconsistency 
between two rules expresses the possibility of an 
undesirable effect in the semantics of the rule set. 
The semantics of the rule set changes if an 
inconsistent rule is removed. 

{ }

( , ) 1 1 ,

[ ] [ ] [ ] [ ]

, _ , _ , _ , _

, ,

i j i j

i jInconsistent R RS i n R RS j n j i

R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

≤ ≤ ⇔ ∃ ∈ ≤ ≤ ≠ •

≠ ∅ ∧ ≠

∀ ∈

∩

Inconsistency of one rule in a RS 
 

{ }

( , , ) 1 , ,

[ ] [ ] [ ] [ ]

, _ , _ , _ , _

,

i j i j

i jInconsistent R R RS i j n i j

R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

≤ ≤ ≠ ⇔

≠ ∅ ∧ ≠

∀ ∈

∩  

Inconsistency between two rules in a RS 

This definition can be extended to more than two 
rules, as is going to be explained in the next section. 
Attending to Definition 2.1, all cases represented in 
Fig. 1 are of the same kind, and are called 
inconsistencies without any particular 
characterization. Priority is only required if 
inconsistencies are going to be characterized. We 
showed that all inconsistencies between pairs of 
rules can be detected by pairs of two with Definition 
2.1, but more complicated situations must also be 
analyzed in order to illustrate this definition. In next 
sections we show that no extension is needed to 
Definition 2.1, since the case of n to one rule 
inconsistency can be decomposed in several 
independent two-rule inconsistencies. 

2.2 One to Many Consistency in 
Firewall Rule Sets 

All base situations are presented in Fig. 3, which is 
an extension to Fig. 1. This figure is a simplification 
to three inconsistent rules, but can easily be 
extended to more rules that can be composed in 
several ways. 

Fig. 3(a1) represents an inconsistency where the 
union of two independent rules Rx, Ry overlaps with 
another one, Rz (Fig. 4(a) taken from (García-Alfaro, 
2007) exemplifies this situation). As Rx is 
inconsistent with Rz, and Ry is also inconsistent with 
Rz, both in an independent manner, this situation can 
be decomposed in two independent inconsistencies, 
and can easily be diagnosed. 

Rx
Action=deny

Rx
Action=allow

Ry
Action=allow

Rz
Action=deny

(a1)

Ry
Action=allow

Rz
Action=allow

Rx
Action=deny

(b1)

Ry
allow

Rz
allow

(a2) (b2)

Rz
Action=deny

Rx
allow

Ry
allow

Rx
Action=deny

(c)

Rz
Action=deny

Ry
Action=allow

 
Figure 3: Graphical representation of inconsistencias 
between three rules. 

Fig. 3(a2) presents a similar situation, where Rx 
overlaps with the union of Ry and Rz. This situation 
is also decomposable in two independent 
inconsistencies: Rx inconsistent with Ry, and Rx with 
Rz. Note that, in order to diagnose inconsistencies, 
the priority of the rules is not necessary. 

The situations presented in Fig. 3(b1) and Fig. 
3(b2) are the inverse of the two previous ones 
respect to the action. Thus, the diagnosis is 
analogous. This situation is exemplified in Fig. 4(b). 
Finally, Fig. 3(c) represents a relation with three 
overlapping rules (an example is in Fig. 4(c)). This 
situation can also be decomposed in two 
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independent ones: Rx inconsistent with Ry, and Ry 
with Rz. 

In conclusion, it is possible to diagnose 
inconsistencies between an arbitrary number of rules 
with Definition 2.1, because all the presented 
situations can be decomposed in independent two by 
two relations. These examples are easily extendable 
to more than three rules. 

{ } { }
{ } { }
{ } { }

: [10 50]

: [40 90]

: [30 80]

Rx port allow

Ry port allow

Rz port deny

∈ − ⇒

∈ − ⇒

∈ − ⇒

 

(a) 
{ } { }
{ } { }
{ } { }

: [10 50]

: [40 90]

: [0 100]

Ry port allow

Rz port allow

Rx port deny

∈ − ⇒

∈ − ⇒

∈ − ⇒

 

(b) 
{ } { }
{ } { }
{ } { }

: [0 50]

: [60 100]

: [40 70]

Rx port deny

Rz port deny

Ry port allow

∈ − ⇒

∈ − ⇒

∈ − ⇒

 

(c) 

Figure 4:  Inconsistency examples. 

If a new rule, Rz, is added to an inconsistent rule 
set, the new rule can only cause a new inconsistency 
with one to all of the rules in the rule set, in a similar 
way that it did in the previous case (Fig. 5). It cannot 
modify a previous inconsistency, or cause an 
inconsistency between two consistent rules, and 
without the new rule. This inconsistency can also be 
decomposed in two by two inconsistencies, which 
are independent of the inconsistencies that were 
present in the rule set previously to the addition of 
Rz. In the same way, if a new rule is inserted in a 
consistent rule set, a similar decomposition can be 
done (Fig. 6). 

Figure 5: Graphical representation of a new inconsistent 
rule added in an inconsistent rule set. 

Note that, as the diagnosis process is order-
independent, the new rule can be inserted anywhere 

in the rule set. Again, these two situations can be 
easily extended to more than three rules. 

 

 
Figure 6: Graphical representation of a new inconsistent 
rule added in an consistent rule set. 

3 CONSISTENCY-BASED 
DIAGNOSIS OF RULE SETS 

The presented analysis has motivated the separation 
of characterization from diagnosis, and to solve the 
diagnosis problem in isolation, as a first stage for the 
optimal inconsistency characterization problem. As 
it is going to be showed, the result of the diagnosis 
process is the identification of the rules that cause 
the inconsistencies in the rule set and for each one, 
the set of the rules which they are inconsistent with. 
Each of these sets and their corresponding identified 
conflicting rule can be taken as input to the 
characterization part of the process, resulting in an 
effective computational complexity reduction 
(solving several small combinatorial problems is 
faster than solving a big one). However, recall that 
as the optimal identification of inconsistent rules is a 
combinatorial problem, the application of an optimal 
characterization algorithm to the result of the 
proposed heuristic diagnosis process is senseless. In 
contrast, heuristic characterization algorithms 
(Pozo4, 2008) can be used, with a heavy 
improvement in computational complexity of the 
full process. 

In this section, two algorithms which implement 
Definition 2.1 and the diagnosis process explained in 
the previous section are presented. Algorithms are 
capable of handling ranges in all selectors. 

 

SECRYPT 2008 - International Conference on Security and Cryptography

434



 

3.1 Stage 1. Detection of Inconsistent 
Pairs of Rules 

The first stage of the process detects the inconsistent 
rules of the rule set and returns an Inconsistency 
Graph (IG, Definition 3.1) representing their 
relations. Note that the detection process, like 
Definition 2.1, is order independent. Also note that 
the presented algorithm is complete, as it 
implements Definition 2.1 (which is complete). 

Definition 3.1. Inconsistency Graph, IG. An IG is 
an undirected, cyclic and disconnected graph whose 
vertices are the inconsistent rules of the rule set, and 
whose edges are the inconsistency relations between 
the these rules. Note that |IG| is the number of 
inconsistent rules in RS, and ||IG|| corresponds with 
the number of inconsistencies pairs of rules in RS, or 
simple the number of inconsistencies in RS. 

( ) ,1 ( , )

( ) , ,1 , , ( , , )

Let ,  be an undirected, cyclic and disconnected graph

i

i j i j

iV IG R RS i n Inconsistent R RS

E IG R R V i j n i j Inconsistent R R RS

IG V E
•= ∈ ≤ ≤

= ∈ ≤ ≤ ≠ •

=< >  

Algorithm 1 presented in Figure 7 (implemented 
in Object Oriented paradigm and using abstract data 
types)  exploits the order independence of the 
inconsistency definition and only checks 
inconsistencies between rules with different actions, 
dividing the ACL in two lists, one with allow rules 
and the other with deny ones. The algorithm receives 
two rule sets. One of them is composed of allow 
rules and the other of deny rules of the original rule 
set. This decomposition is a linear complexity 
operation. The algorithm takes one of the rule sets 
and, for each rule, it checks if there is an 
inconsistency with other rules in the other one. As 
all inconsistencies can be decomposed in two by two 
relations, there is no need to check combinations of 
more than two rules. Each time the algorithm finds 
an inconsistency between a pair of rules, the two 
rules are added as vertices to the IG, with a non 
directed edge between them. The algorithm returns 
an IG. Since all possibilities have been checked, 
Algorithm 1 detects of all possible inconsistent rules 
(i.e. it is complete). Fig. 8 presents the resulting IG 
of the Table 1 example. 

Time complexity of Algorithm 1 is bounded by 
the two nested loops (lines 8 and 10). Each rule in 
ruleSetAllow is tested for inconsistency against rules 
in ruleSetDeny. The worst case for the loop is 
reached when ruleSetAllow.size()= 
ruleSetDeny.size() (i.e. half rules allow and the other 
half deny), and the best case when 
ruleSetAllow.size()=n and ruleSetDeny.size()=0 or 
ruleSetAllow.size()=0 and ruleSetDeny.size()=n. 

Thus, the complexity of the improved detection 
algorithm depends on the percentage of allow and 
deny rules over the total number of rules. 

Algorithm 1. Inconsistency Detection algorithm 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

Func detection(in List: ruleSetAllow, 
ruleSetDeny; out Graph: ig) 

Var 
    Rule ri, rj 
    Integer i, j 
Alg 
    for each j=1..ruleSetAllow.size() { 
        rj= ruleSetAllow.get(j) 
        for each i=1..ruleSetDeny.size() { 
            ri = ruleSetDeny.get(i) 
            if (inconsistency(ri, rj)) { 
                ig.addVertex(ri) 
                ig.addVertex(rj) 
                ig.addEdge(ri, rj) 
            } 
        } 
    } 
End Alg 
 
// Implements the Inconsistency Definition 
Func inconsistency(in Rule: rx, ry; out 

Boolean: b) 
Var 
    Integer i 
Alg 
    b = true 
    i = 1 
    while (i<=rx.selectors.size() AND b) 
        b = b AND intersection(rx.getSelector(i),  
                                               ry.getSelector(i)) 
        i=i+1 
    } 

End Alg 

Figure 7: Inconsistency detection algorithm. 

However, there are other inner operations that 
should be analyzed in lines 12 to 15. The first one, in 
line 12, is inconsistency() which is composed of an 
iteration. This operation implements the 
inconsistency definition. In typical firewall ACLs, 
k=5, and thus the iteration runs 5 times. Anyway, 
the iteration is bounded by the number of selectors, 
which is a constant, k. 

In addition, inside the iteration there is an 
intersection between each selector (lines 28 to 30). 
The typical 5 selectors of firewall ACLs (Table 1) 
are integers or ranges of them, except IP address. 

A HEURISTIC POLYNOMIAL ALGORITHM FOR LOCAL INCONSISTENCY DIAGNOSIS IN FIREWALL RULE
SETS

435



 

Knowing if two ranges of integers intersect can be 
done in constant time with a naïve algorithm which 
compares the limits of the intervals. Knowing if two 
IP addresses intersect can also be easily done in 
constant time by comparing their network addresses 
and netmasks. Other operations of the inner loop 
(lines 12 to 14) are the graph-related ones. If the 
graph is based on hash tables, vertex and edge 
insertions run in constant time, except in some cases 
where rehashing could be necessary. 

 
Figure 8: Inconsistency graph. 

For all these reasons, the complexity of the two 
nested loops is only affected by a constant factor in 
all cases, which depends on the constant number of 
selectors, k. Thus, worst case time complexity of the 
detection algorithm is in O(n2), best case is in O(n), 
and  average case is in O(n·m) with the number of 
allow rules, n, and deny rules, m in the ACL. 

Space used by Algorithm 1 is the sum of the 
space needed to store the ACL, and the one needed 
for the graph. In best case the graph would have n 
vertices and n-1 edges. In the worst case, there could 
be n-1 inconsistent rules and also n-1 edges per 
vertex. Note that the space needed to store an edge is 
fewer than the needed to store a vertex, since only a 
reference between vertices is needed. 

3.2 Stage 2. Detection of Inconsistent 
Pairs of Rules 

The second and last stage of the diagnosis process 
identifies the rules that cause the inconsistencies 
from the set of inconsistent pairs of rules (the result 
of the previous stage) with an heuristic algorithm. 
Algorithm 2 (Fig. 9) was initially presented in 
(Pozo, 2008). It receives the IG as input and takes 

iteratively the vertex with the greatest number of 
adjacencies (lines 6 and 7), that is, the vertex with 
the greatest number of inconsistencies, v. Then, an 
independent cluster of inconsistent rules (ICIR, 
Definition 3.2) is created as a tree with v (the 
conflicting rule of the cluster) as its root, and its 
adjacents (the inconsistent rules) as leafs (lines 8 to 
12). The root of all ICIRs from the Diagnosis Set 
(DS, Definition 3.3), or the set of rules that must be 
removed to get a consistent rule set. Then, v and its 
edges are removed from the IG (line 13). If vertices 
with no edges are left in the IG, then these vertices 
are removed (line 14), since they are consistent by 
definition (they are rules with no relations with 
others). As inconsistencies have been decomposed in 
pair wise relations, ICIRs are always formed by two 
levels. For the analyzed example, the algorithm 
finishes with a diagnosis set of cardinality five 
(|DS|=5), containing the rules DS={R8, R12, R5, R1, 
R4}, which are the ICIR roots or the rules that cause 
an inconsistency with other ones. If all rules of DS 
are removed, the resulting rule set is consistent. R8 
and R12 were the most conflicting ones . A trace of 
the different iterations of Algorithm 1 when applied 
to Table 1 was presented in (Pozo, 2008). 

Algorithm 2. Inconsistent Rule Identification algorithm 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10.
11.
12.
13.
14.
15.
16.

Func identification(in Graph:ig; out List of 
Tree:icirs) 

Var 
    Tree icir 
Alg 
    while (ig.hasVertices()) { 
        Vertex v = ig.getMaxAdjacencyVertex(); 
        List adj = ig.getAdjacents(v) 
        icir.createEmptyTree() 
        icir.setRoot(v) 
        icir.addChildren(adj) 
        icirs.add(icir) 
        ig.removeVertexWithEdges(v) 
        ig.removeNotConnectedVertices() 
    } 

End Alg 

Figure 9: Inconsistency identification algorithm. 

Definition 3.2. Independent Cluster of 
Inconsistent Rules, ICIR. An ICIR(root, CV) is a 
two level tree, rooted in the rule root and where CV 
is a set of rules (its leafs). It represents a cluster of 
mutually consistent rules, CV, which are at the same 
time inconsistent with their root. ICIR(root) is the 
rule which has the greatest number of 
inconsistencies with other rules of the same cluster. 
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Note that the action ICIR(root) is the contrary of the 
actions of all of its leafs in CV.  

( , )
( , )

, , ( , )
i i

i j i j

ICIR root CV
R CV Inconsistent root R

R R CV i j Inconsistent R R

⇔

∀ ∈ • ∧

∀ ∈ ≠ •¬

 

Definition 3.3. Diagnosis Set, DS. This is the set of 
rules that cause the inconsistencies, and coincide 
with the root of all ICIRs. 

{ }

{ }

1

1

, ...,

( ), ..., ( )

Let 

be the set of all ICIR of a given , then
m

m

ICIR ICIR

DS ICIR root ICIR root

ICIRS

RS
=

=

 

If the rules from the DS are directly removed 
from the rule set, it gets consistent. Note that this 
heuristic is not necessarily minimal. 

Time complexity of Algorithm 2 is bounded by 
the loop of line 5, which runs as many times as 
ICIRs are formed (it corresponds with the cardinality 
of the Diagnosis Set, |DS|). The worst case is 
reached, as in Algorithm 1, when 
ruleSetAllow.size()=ruleSetDeny.size()=n/2 (Fig. 
11(b)), resulting in a |DS|=n/2. In this case, 
getMaxAdjacencyVertex() (line 7), a maximum 
calculus, runs in O(n) with the number of vertices of 
the graph (the number of inconsistencies). 
Operations of lines 8, 9, 10, 11, and 12 run in 
constant time. removeVertexWithEdges() (line 13) 
runs in linear time with the cardinality of its 
adjacency list (n/2-1 in the worst case). Finally, 
removeUnconnectedVertices() (line 14) is also linear 
with the number of vertices in the graph at each 
iteration, O(n). Thus, the resulting worst case time 
complexity of Algorithm 2 is in O(|DS|·(n+n/2-
1+n))=O(n/2·n)=O(n2). 

The best case is reached, as in Algorithm 1, 
when ruleSetAllow.size()=n and 
ruleSetDeny.size()=0 or vice versa (Fig. 11(a)). The 
IG only has one vertex, v, connected to all the other 
vertices. In this case, |DS|=1 and the algorithm is in 
O(n). In an average case the algorithm is in 
O(|DS|·h), |DS|<<h (h is the number of 
inconsistencies). 

Algorithm 2 needs some space to store the 
ICIRs. Each ICIR needs space for its root and for the 
conflictive rules. But note that, as the algorithm is 
creating the ICIRs, the corresponding vertices and 
edges are removed from the IG, and thus at each 
iteration only the space to store the adjacency list of 
the removed vertex is necessary. Complexities are 
presented in Table 2. 

 
Figure 10: Generated ICIRs and the Diagnosis Set. 

Figure 11: Identification best and worst cases. 

The result of the diagnosis process is the set of all 
ICIRs. As each ICIR represent a different 
independent inconsistency, exhaustive search 
optimal characterization algorithms can be applied 
to each one independently, reducing the effective 
computational complexity of the whole process. In 
addition, heuristic characterization algorithms can 
also be applied (Pozo4, 2008) Also note that the 
presented proposal makes no assumptions about how 
selector ranges are expressed. This is important, 
because if the original rule set is directly used by 
algorithms, inconsistency results are given over the 
original, unmodified rule set. 

Table 2: Detection and Identification Time Complexities. 

Number of 
inserted rules

Best 
case 

Average 
case 

Worst 
case 

Space 
Worst 

Detection O(n) O(n·m) O(n2) 
n 

Rules·h 
Edges 

Identification O(n) O(|DS|·h), 
|DS|<<h O(n2) 

n 
Rules·h 
Edges 

Combined 
(Diagnosis) O(n) O(n·m) O(n2) 

n 
Rules·h 
Edges 
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Table 3: Performance Evaluation. 
Size %Deny |DS| Average ICIR size #Inconsistencies Detection (ms) Identification (ms) TOTAL (ms) 

50 28,21 0 n/a 0 0,06 0 0,06
144 30,91 3 16 48 0,59 0,21 0,8
238 66,43 15 19 291 2,08 0,15 2,23
450 34,73 15 20 312 5,59 0,16 5,75
900 14,8 29 34 1005 13,38 0,64 14,02

2500 6,97 100 43 4337 59,48 4,08 63,56
5000 1,98 32 19 1388 63,93 1,18 65,11

10611 2,05 156 59 18894 346,58 24,79 371,37
 

  
Figure 12(a): Running time. Average case Figure 12(b): Comparison between detection algorithms. 

3.3 Experimental Results 

In absence of standard rule sets for testing, the 
proposed heuristic process has been tested with real 
firewall rule sets (Table 3). The first column 
represents the size of the rule set; the second one the 
percentage of deny rules over the rule set size; the 
third the cardinality of the Diagnosis Set, |DS|, (or 
the number of generated ICIRs), or the 
combinatorial problems to be solved by an optimal 
characterization algorithm; the fourth represents the 
average size of each ICIR (that is, the number of 
ICIRs divided by |DS|), or the average size of the 
characterization problems to be solved (how many 
rules are in them); the fifth the number of 
inconsistencies; and the sixth, seventh and last 
columns the execution time of the detection, 
identification and the sum of them. 

The conducted performance analysis represents a 
wide spectrum of cases, with ACLs of sizes ranging 
from 50 to 10600 rules, and percentages of allow 
and deny rules ranging from 2% to 65%. Recall that 
worst case for the improved detection algorithm is 
half rules allow and the other half deny. Also note 
that real ACLs have some important differences with 
synthetically generated ones. The most important 
one is the number of deny and allow rules: as real 
firewall ACLs are usually designed with deny all 
default policy, most rules are going to have allow 

actions. In ACLs designed with allow all policy, 
most rules would have deny actions. Also note that, 
as the percentage of allow or deny rules decrease, 
the number of inconsistencies does necessarily not, 
because the number of inconsistencies depend on 
how many rules with different actions intersect. The 
result is that the worst case would not normally 
happen in real firewall ACLs. Experiments were 
performed on a Java implementation with Sun JDK 
1.6.0_03 64-Bit Server VM, on an isolated HP 
Proliant 145G2 (AMD Opteron 275 2.2GHz, 2Gb 
RAM DDR400). Execution times are in ms. Tests 
have been run without wildcard rules (RW, deny all 
or allow all rules) because WR provide no useful 
information to the diagnosis process: they are 
conflictive by definition with all rules with the 
contrary action. 

The experimental comparison of the efficiency of 
the proposed algorithms with others of the reviewed 
in the bibliography is a very difficult task for two 
main reasons. In one hand, there are no standard rule 
sets to be used. In other hand different algorithms 
cover different parts of the process. One of the most 
important parts of the presented experimental 
analysis is the average reduction of the full problem, 
and the size of each reduced part. Recall that optimal 
characterization algorithms can be applied now to 
each of these problems and solve them faster than 
running the characterization over the full rule set. 
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Unfortunately, there are neither standardized rule 
sets nor syntactic generation tools that can be used to 
test how near is the proposed heuristic to the 
optimum. 

As Table 3 and Fig. 12(a) show, execution time 
for the diagnosis process is very reasonable, even in 
large rule sets. Note that rule set of sizes 238 and 
450 are very near worst case. Rule set of size 10611 
has not been represented to prevent image scale 
distortion, but note that even with a very high 
number of inconsistencies (18894) execution time of 
the full process is 371ms. Take into account that a 
rule set of 10611 rules is a very big one (Taylor, 
2005). Fig. 12(b) presents a comparison between the 
previous detection algorithm (Pozo, 2008) and the 
one presented in this paper. Note how the previous 
version (DetectionV1) (Pozo, 2008) scale 
quadratically with the number of rules. However, the 
complexity of the new algorithm (DetectionV2) 
depends on the percentage of allow and deny rules. 
As can be seen, there is a huge difference with real 
rule sets. 

 
Figure 13: Identification with and without wildcard rules. 

Fig. 13 represents a comparison of running times 
of the identification algorithm with and without 
wildcard rules, in order to highlight the impact these 
rules have in processing time. As we previously 
noted, leaving trailing wildcard rules for diagnosis 
purposes gives no useful information to the process, 
since they are conflictive with all rules with contrary 
action. 

Other important things worth noting are the 
related with problem reduction. The average ICIR 
size in Table 3 (fourth column) represents the 
average number of children of each generated ICIR 
(the number of ICIRs is represented in the third 
column as the size of the Diagnosis Set, |DS|). That 
is, |DS| is the number of characterization problems to 
be optimally solved if optimal characterization 
algorithms are going to be used, and Average ICIR 

Size is their average size. Clearly, solving (optimally 
or not) such small number of small problems is 
faster than solving a big combinatorial one. 

Finally, due to its low computational complexity, 
the presented detection algorithm can be used with 
very big rule sets or even in resource constrained 
devices (Pozo2, 2008) in a real time process. 

4 RELATED WORKS 

The closest works to ours are related with 
consistency detection in general network filters. In 
the most recent work, Baboescu et al. (Baboescu, 
2003) provide algorithms to detect inconsistencies in 
router filters that are 40 times faster than O(n2) ones 
for the general case of k selectors per rule. Although 
its algorithmic complexity is not given, it improves 
other previous works (Hari, 2000), (Eppstein, 2001). 
However, they preprocess the rule set and convert 
selector ranges to prefixes, and then apply the 
algorithms. This imposes the implicit assumption 
that a range can only express a single interval, which 
is true (pozo3, 2008). However, the range to prefix 
conversion technique could need to split a range in 
several prefixes (Srinivasan, 1998) and thus the final 
number of rules could increase over the original rule 
set. Thus, results are given over the preprocessed 
rule set, which could be bigger and different from 
the original one.  

Other researchers apply brute force, 
combinatorial algorithms for the characterization 
problem. Thus, the resulting worst case time 
complexity will be exponential in all these proposed 
algorithms. One of the most important advances was 
made by Al-Shaer et al. (Al-Shaer, 2004), where 
authors define an inconsistency model for firewall 
ACLs with 5 selectors. They give a combined 
algorithm to diagnose and characterize the 
inconsistencies between pairs of rules. In addition, 
they use rule decorrelation techniques (Luis, 2002) 
as a pre-process in order to decompose the ACL in a 
new, bigger, one with non overlapping rules. Results 
are given over the decorrelated ACL, which has the 
disadvantages commented above. Although the 
proposed characterization algorithm proposed by Al-
Shaer is polynomial, a decorrelation pre-process 
imposes a worst case exponential time and space 
complexity for the full process.  

A modification to their algorithms was provided 
by García-Alfaro et al. (García-Alfaro, 2007), where 
they integrate the decorrelation and characterization 
algorithms of Al-Shaer, and generate a decorrelated 
and consistent rule set. Thus, due to the use of the 
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same decorrelation techniques, this proposal also has 
worst case exponential complexity. The resulting 
ACL is also bigger and different from the original 
one. However, García-Alfaro et al. provide a 
characterization technique with multiple rules. 

A similar approach to García-Alfaro was 
followed in (Abedin, 2006), where authors provide 
worst case O(2n) time complexity algorithms with 
the number of rules (they also use rule decorrelation 
techniques). 

Ordered Binary Decision Diagrams (OBDDs) 
have been used in Fireman (Yuan, 2006), where 
authors provide a diagnosis and characterization 
technique with multiple rules. A very important 
improvement over previous proposals is that they do 
not need to decorrelate the ACL, and thus, results 
are given over the original one. Note that the 
complexity of OBDD algorithms depends on the 
optimal ordering of its nodes, which is a NP-
Complete problem (Bollig, 1996). This results in a 
worst case O(2n) time complexity with the number 
of rules, as other proposals. 

There are several differences of our work with 
these ones. In one hand, we provided an analysis of 
the consistency diagnosis problem in rule sets, 
separating diagnosis (detection and identification) 
from characterization, which enabled us to design 
heuristic polynomial diagnosis algorithms. The 
result of the diagnosis process is several independent 
clusters of inconsistencies, where optimal 
characterization algorithms can be applied, 
effectively reducing the computational complexity 
(in time and space) of the whole process. In addition, 
heuristic characterization algorithms can also be 
applied. This heuristic process provides an 
alternative to the reviewed brute force algorithms for 
big rule sets. However, characterization algorithms 
are not the focus of the paper, but the presentation of 
a novel process and diagnosis algorithms for the 
diagnosis part of the process. Our diagnosis 
algorithms have a theoretical best case O(n) and 
worst case O(n2) time complexity with the number 
of rules in the rule set, n. More precisely, the 
complexity of our algorithms depends on the 
percentage of allow and deny rules over the total 
number of them (in the case of detection), and on the 
cardinality of the minimal diagnosis set and the 
number of inconsistencies (in the case of 
identification). Our process is capable of handling 
full ranges in all selectors, and does not need to 
decorrelate or do any range to prefix conversion to 
the ACL as a pre process to the algorithms. We think 
that for a result to be useful for a user, it should be 
given over the original ACL. However, our proposal 

does not cope with redundancies, because we 
redundancies are not a consistency problem.  

5 CONCLUSIONS 

We have deeply analyzed the consistency diagnosis 
problem in firewall ACLs, and decided to divide the 
consistency management process in three sequential 
stages: detection, identification, and 
characterization. Inconsistency detection is a 
polynomial problem, but minimal identification and 
characterization are combinatorial ones. Detection 
plus identification is called diagnosis. All reviewed 
proposals deal with the full characterization problem 
with brute force algorithms, with yield unusable 
results for real-life, big rule sets.  
In this paper we take a different approach, isolating 
the combinatorial parts of the full problem (optimal 
identification and characterization) from the 
polynomial one (detection). We have proposed an 
abstract definition of inconsistency that covers all 
previously characterized cases in the bibliography. 
Based on this definition, we revisited the 
consistency problem in firewall rule sets and showed 
that all relations between more than two rules can be 
decomposed in simpler pair wise relations. 

We have proposed two polynomial algorithms 
that should be applied sequentially to get a diagnosis 
of the inconsistent rules in the rule set. The first one 
detects the inconsistent rules and is complete. The 
second one identifies the rules that cause the 
detected inconsistencies, and is based in a heuristic. 
The diagnosis can then be taken as input to optimal 
characterization algorithms resulting in an effective 
computational complexity reduction (solving several 
small combinatorial problems is faster than solving 
one big one), or to heuristic ones. 

A theoretical complexity analysis has been done 
and showed that the full process has best case O(n) 
and worst case O(n2) time complexity with the 
number of rules in the rule set, n. An experimental 
performance evaluation with real rule sets of 
different sizes was also presented, showing that real 
rule sets are very near to the best case, and the 
effective problem reduction. Unfortunately, there are 
neither standardized rule sets nor syntactic 
generation tools that can be used to test how near is 
the proposed heuristic to the optimum. We 
compared our proposal with other works in the 
bibliography and showed that, to the best of our 
knowledge, no proposals that split the consistency 
management process have been made. Thus, our 
work represents a completely different way to treat 
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the problem with algorithms that are useable with 
real-life, big rule sets. We have implemented the 
algorithms in Java language in a tool which is 
available under request. 

However, our approach has some limitations that 
give us opportunities for improvement in future 
works. The most important one is that our process 
can diagnose inconsistent rules, but cannot diagnose 
redundant rules. 
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