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Abstract: In this work, an improved algorithm for Montgomery modular inversion over GF(2m) is proposed. 
Moreover, A novel scalable hardware architecture for the proposed algorithm is presented which is 
parameterizable and amenable to interfacing to special purpose processors such as microcontrollers.  The 
architecture supports operations over finite fields GF(2m)  up to  m 571≤  without the need to reconfigure 
the hardware. The results show that, this work can be exploited to construct low resource elliptic curve 
cryptosystems (ECC). 

1 INTRODUCTION 

Since their introduction by Miller and independently 
Koblitz in 1985 (D. Hankerson, 2004), Elliptic curve 
cryptosystems are considered the best compromise 
between the required security and the attainable 
performance for many low resource constrained 
security systems. Scalability versus performance, in 
particular for low resources applications, has always 
been a challenging trade-off in ECC hardware 
implementations. The efficiency of of this trade-off 
depends significantly on the efficient 
implementation and scalability of the modular 
arithmetic of the underlying field. The computation 
of the modular inversion is the most challenging 
from this perspective. Hence, the contribution of the 
work presented in this paper. 

In the literature, several algorithms for 
computing the multiplicative inverse in GF(2m) have 
been proposed (D. Hankerson, 2004). Some of them 
are based on performing modular multiplication like 
Fermat’s little theorem. In contrast, others apply the 
greatest common divisor algorithm GCD which has 
many variants. All these variants can compute the 
modular inverse in about 2m iterations. However, 
the Montgomery inversion algorithm (B. Kaliski, 
1995) offers better performance and can perform the 
inversion in less than 2m iterations. Consequently, 
this work investigates Montgomery modular 
inversion and develops algorithmic modifications 
that reduce the hardware complexity whilst offering 

scalable and parameterized inversion with low area 
architecture over FPGAs. 

A modified algorithm for Montgomery is 
therefore proposed and implemented on the smallest 
and lowest cost Xilinx FPGA. The architecture is 
parameterized to support variable word lengths and 
has been implemented with 8, 16, 32 and 64 bit 
word lengths for finite field lengths m=163 and 
m=571. The results obtained show that the 32-bit 
data path designs are the best compromise between 
the low area requirements and the practical 
performance in terms of throughput (4.63 Mbps for 
m = 163).  

This paper is organized as follows: section 2 
presents a theoretical background about ECC over 
GF(2m). Section 3 gives an overview about the 
Montgomery modular inversion. The proposed 
improved algorithm is presented in section 4. The 
description of the circuit operation and the FPGA 
implementation are in Section 5. Finally, Section 6 
shows the performance and results of the 
implementation on a state of the art FPGA. 

2 ELLIPTIC CURVE ITHMETIC 
OVER GF(2m) 

Briefly, a cryptosystem based on an elliptic curve E 
over finite fields GF(2m) is mainly used for 
encipherment of point P by key K such that, Q=K.P. 

2 3Y XY X aX b+ = + +  (1)
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This operation is called scalar multiplication 
(N.Koblitz, 1984). Practically, P is a point lies on the 
curve E or equally the data to be encrypted. 
Multiplying K by P can be achieved by many 
methods e.g. double and add or shift and add, etc. 
Actually, this operation dominates the execution 
time. Both Q and P must satisfy the equation that 
represents the elliptic curve E over GF(2m), namely, 
Where ma, b GF(2 )∈ . Equation (1) is called the 
simplified Weierstarss equation over the finite field 
GF(2m) with characteristic 2=  in the affine  
(Euclidean) coordinates .  
For two points 1P  and 2P mGF(2 )∈ .  
1. Point addition ( )1 2 3 3P  P  (x , y )+ = : 
Let 1 1 1P  (x , y )= , 2 2 2P  (x , y )= and ( )1 2 3 3P P  (x , y )+ =     
Where 1 2P P≠ ±  and ( ) m

1 2 1 2P ,P , P P GF(2 )+ ∈ . Then, 

2. Point doubling 2P : 
Let 1 1 1P  (x , y )= mGF(2 )∈ , 1 1P P≠ − and 1 3 32P  (x , y )= . 

Thus, we can observe from equations (2,3) that one 
inversion is involved in both point addition and 
point doubling over the elliptic curve E. 
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3 MONTGOMERY INVERSION   
AND ITS VARIANT 

Based on the extended binary algorithm and 
Montgomery trick for computing the modular 
multiplication (L. Montgomery, 1985). B.Kaliski 
was the first to propose the Montgomery inverse 
algorithm for a given irreducible polynomial p(x) 
and for any element a(x)∈GF(p) or GF(2m). 
Montgomery inversion for element a(x) is defined 
as, 1 mMonInv(a(x)) a .2 mod p(x)−=  

B.Kaliski proposed two phases to compute the 
inverse of a(x). The first phase is dedicated to 
compute the GCD of both a(x) and p(x) and 
concurrently, calculates the number of halvings L. 
This phase produces the partial Montgomery 
inverse. 1 LPar.MonInv(a(x)) a .2 mod p(x)−= . 
       The number L is in the range m L 2m≤ ≤ . 
Then, the second phase performs L-m right shifting 

on the partial Montgomery inverse to produce the 
final inverse in the Montgomery domain. The 
number of iterations can be adjusted to right shifts or 
left shifts of the output from the first phase to get the 
inverse in the required domain (Montgomery or 
residue). The Montgomery inversion Algorithm uses 
4 vectors to hold the intermediate calculations 
between the successive iterations. Although the 
B.Kaliski Algorithm is simple, it has no fixed 
number of iterations which makes it difficult to be 
mapped into hardware efficiently. M.Shieh, J.Chen, 
and C.Ming (M.Shieh, 2006) developed a new 
modification to the Kaliski’s algorithm, as shown in 
algorithm 1, in which only one phase is required.  
Consequently, by this improvement the data 
dependency between the first phase and the second 
phase has been eliminated. Moreover, this also 
avoided the zero comparison operation required by 
the original algorithm.  

Algorithm 1. 
Input   :        ( ). , ( )ma x x p x  
Output:       1( ).2 .mod ( )− ma x p x  
Initialize : u  p, v a, r 0, s  1, L  0← ← ← ← ←      

For  0 : 2
{If   (u is even)  then
                  u u/2,  s  2s.mod p(x),
else if (v is even) then 
             v v/2 , r 2r mod p(x),
else if (u > v) then 
      u (u v)/2, r  r+s, s  2s mod p(x

L m→

← ←

← ←

← ⊕ ← ← )
else      u (u v)/2, s r + s, r  2r mod p(x)← ⊕ ← ←

 

L  L + l  }
return  r;

←  

4 MODIFIED MONTGOMERY 
MODULAR INVERSE 
ALGORITHM 

In this section, based on algorithm 1, an 
improvement for the Montgomery inversion 
algorithm over GF(2m) is represented. Kim and 
Hong (C.H.Kim, 2003) introduced a development 
based on a modified version of the binary extended 
great common divisor algorithm BGCD. Their 
algorithm is suitable for realizing a compact and fast 
inverters over GF(2m). Simply, they replaced the 
degree comparison employed by the BGCD with a 
counter and state indicator bit. By applying the same 
idea to Algorithm 1 we can define a new modified 
version of the Montgomery inversion algorithm, 

2
3 1 2x x x aλ λ= + + + + & ( )3 1 3 3 1y x x x yλ= + + +  (2) 

2
23 1

1

bx x x= +  & 2
3 1 3 3y x x xλ= + +  (3) 
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Algorithm 2 below, which will save m XORs used 
to perform the degree comparison. Besides, these m 
XORs lie on the critical path of the data path. Hence, 
we can have great savings not only in terms of area 
but also in terms of reducing the delays caused by 
degree comparison in algorithm 1.  
The algorithm 2 proceeds as follows: 

At the beginning, the counter, the state bit, the 
vectors u, v, s and r are initialized. Thus, we have u 
> v at the beginning. This means that degree of u has 
to be decremented according to the BGCD 
algorithm. Further, at the start of the algorithm the 
value of u0 always equals to 1.  

Algorithm 2. 
Input     : ( ). , ( )ma x x p x  
Output  : 1( ).2 .mod ( ),mr a x p x−=  
Initialize :  u p, v a , r 0, s 1, L 0

State 0, Count 0
← ← ← ← ←

← ←
 

F o r   1 : 2
{  I f    ( s t a t e = 0 )   t h e n
   i f  ( u  i s  e v e n )  t h e n
         {  u  u / 2 ,   s   2 s . m o d  p ( x )
                  i f  ( c o u n t  =  0 )  t h e n  
                     c o u n t = c o u n t  + 1  ;   s t a t e  =  1
                  e n d  i f

L m←

← ←

 }
   e l s e  i f  ( v  i s  e v e n )  t h e n
    {  v  v / 2 ,   r   2 r . m o d  p ( x )  ,  c o u n t = c o u n t  + 1 }
    e l s e
{  u  ( u v ) / 2 ,  r   r + s ,  s   2 s  m o d  p ( x ) ,  
     c o u n t = c o u n t  - 1
        i f  ( c o u n t  =  0  ) t h e n  
         c o u n t = c o u n t  + 1  ;  s t

← ←

← ⊕ ← ←

a t e  =  1     
         e n d  i f    }  }
 e l s e  i f  ( s t a t e =  1 )   t h e n
    i f  ( u  i s  e v e n )  t h e n
      {  u  u / 2 ,   s   2 s . m o d  p ( x ) , c o u n t = c o u n t  + 1 }  
    e l s e  i f  ( v  i s  e v e n )  t h e n
      {  v  v / 2 ,   r   2 r . m o d  p ( x ) , c o u n t = c o u n

← ←

← ← t  -  1
         i f  ( c o u n t  =  0 )  t h e n  
          c o u n t = c o u n t  + 1  ;    s t a t e  =  0
         e n d  i f  }
     e l s e
{  v  ( u v ) / 2 ,  s   r + s ,  r   2 r  m o d  p ( x ) ,
      c o u n t = c o u n t  - 1
       i f  ( c o u n t  =  0  ) t h e n  
          c o u n t =

← ⊕ ← ←

c o u n t  + 1  ;  s t a t e  =  0  
        e n d  i f    }  }
}
r e t u r n     r   ;

 

We have two possible conditions for the vector 
v. If v0=1, hence, in the second iteration the counter 
will be incremented by one and the state bit will 
equal one. The procedure for decreasing the degree 
of u is performed by XORring u and v, dividing the 
value by 2 and saving the result in u. In parallel, 
vector s is XORed with r and vector s is doubled. 
The results of the two operations will be stored in r 
and s respectively. The other possible condition is 
v0=0. Thus, the vector v is even. Hence, the counter 
will increment by one but the state bit will remain 
zero. Next, the vector v will be divided by two and 

the vector r will be doubled. Accordingly, the value 
of the state bit =0 and the counter >0. For the state 
bit = 1, If u0 = 1 and v0=1. This means that the 
degree of v>u. Hence, the degree of v has to be 
reduced. Thus, the vector v is XORed with u and the 
result will be stored back in v. In parallel, vector r is 
XORed with s and vector r is doubled; the results of 
the two operations will be stored in s and r 
respectively and the counter value will be 
decremented by one. If the value of the counter 
becomes zero the state bit will be equal to zero 
otherwise will remain one. The algorithm keeps 
track as the procedures in algorithm 2 until 2m 
iterations. After 2m iterations, the value of the 
vectors u converges to one. Meanwhile, the values 
of the vectors v and s converge to zero. Finally, the 
inverse of the vector a(x) represented in the 
Montgomery domain will be the value in the vector r 

5 CIRCUIT DESIGN 

Figure 1 depicts the new architecture for the 
Montgomery inverter. The data path consists of two 
blocks, namely, u-v block and s-r block. The first is 
to compute the intermediate values for vectors u and 
v and the second to compute in parallel the 
intermediate values for vectors s and r. A control 
block is designed for, interfacing the dual block 
RAMs (DBRAM), decisions required by the 
algorithm and the operations necessary for 
computing the inverse (shifting operation, reduction, 
checking the even-non even condition. etc).  

As shown in figure 2 and figure 3, both u-v and 
s-r blocks have a (DBRAM) that acts to hold the 
vectors u, v, s, and r. The (DBRAM) in each block is 
addressed by a counter controlled by the control 
block. Counters are scalable and they accommodate 
addressing the (DBRAM) up to 
2*( (m-m.modWord-Length)/Word- Length+1) memory 
depth, where m is the length of the vector a(x). Both 
u-v and s-r blocks have two shifting units. In the u-v 
block, the shifting unit is right shifting. Meanwhile, 
in the s-r block, the unit is left shifting. Both units 
load the word to be shifted, storing the most 
significant digit MSD for the left shift unit or the 
least significant digit LSD for the right shift unit to 
be added to the next word, shif left or right by the 
corresponding number of shift counts, and then write 
the shifted word to the (DBRAM) port. The 
Reduction unit is designed to be parameterized and 
scalable to accommodate finite fields up to m 571≤  
in addition to different data path widths. NIST 
recommended reduction polynomials (NIST, 2000) 
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are used to implement the reduction unit as they are 
designed to provide both security and high 
performance. 

6 CONCLUSIONS AND RESULTS  

The proposed modified algorithm for Montgomery 
inversion has been fully modelled in VHDL and 
implemented on the smallest and lowest cost chip 
available from Xilinx Spartan III family (XC3S50). 
The proposed architecture is parameterized in order 
to support variable word lengths. A scalable 
architecture has been implemented with 8, 16, 32 
and 64 bit word lengths. Table 1-2 shows the 
implementation results for the different widths after 
place and rout for finite field lengths m=163 and 
m=571. As expected, the control block and counters 
dominate the critical path of the design. Thus, the 
increment of the operand size has a lesser effect on 
the working frequency. The results show that the 32-
bit data path designs are the best compromise 
between the low area requirements and the practical 
performance in terms of throughput (4.63 Mbps for 
m = 163). Further, the proposed architecture with 
low hardware resources is expected to yield 
correspondingly lower power budgets and therefore 
would be suited for low resource ECC 
implementations.  

Table 1: FPGA Implementation Results for Different Data 
Path Widths on Spartan III XC3S50 assuming m =163. 

Table 2: FPGA Implementation Results for Different Data 
Path Widths on Spartan III XC3S50 assuming m =571. 

 
 
 

 
Figure 1: Montgomery inverse basic building block. 

 

 

 

 

 

 

Figure 2: Montgomery inverse s-r block. 

 

 
Figure 3: Montgomery inverse u-v block. 
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