INTERACTIVITY FOR REACTIVE ACCESS CONTROL

Yehia ElRakaiby, Frederic Cuppens and Nora Cuppens-Boulahia

Networks, Security and Multimedia Department, TELECOM Bretagne, 2 rue de la chataigneraie, Rennes, France

Keywords:

Abstract:

Access Control, Multi-way Control, Interactivity, Pervasive Environments.

Technological advances enhanced the computing and communication capabilities of electronic devices bring-
ing us new pervasive environments where information is present everywhere and can be accessed from any-
where. These environments made way to new intelligent and context-aware applications which have more
sophisticated access control requirements. So far, there have been two main categories of access control sys-
tems: passive security systems which evaluate access requests according to static predefined permissions; and
dynamic security systems which integrate the context in the evaluation of access requests. These models can
thus be justly classified as anticipative models since all security rules have to be completely defined before an
access request is made. In this paper, we present a formal access control model that extends context-based
models to allow just-in-time specification of access control policies. The model relies on interactivity to sup-
port active participation of users in the evaluation of the security policy, thus enabling them to participate in
the definition of the access policy at the time of the request.

1 INTRODUCTION

Technological advances in computers and networks
have enabled new device and networking capabili-
ties bringing us new service models, applications and
lifestyles. These pervasive environments require so-
phisticated access control systems to fulfill the new
application and user requirements. In this paper, we
present a formal model that extends context-based ac-
cess control models by allowing the specification of
some aspects of the access control policy at the time
of the request. So far, there have been two main
categories of access control systems: passive secu-
rity systems which evaluate access requests accord-
ing to static predefined permissions e.g. the RBACy
model (R.S. et al., 1996); and dynamic security sys-
tems which integrate the context in the evaluation of
access requests e.g. GRBAC (Moyer, 2001) and Or-
BAC (Cuppens and Miege, 2003). In these systems,
access request evaluation relies on the consultation of
predefined rules. Therefore, they require that the ad-
ministrator foresee all possible access requests and
configure how each is to be evaluated in advance.
Thus, these systems can be justly characterized as an-
ticipative models since all security rules have to be
completely defined before an access request is made.

However, since the future is inherently unpre-

EIRakaiby Y., Cuppens F. and Cuppens-Boulahia N. (2008).
INTERACTIVITY FOR REACTIVE ACCESS CONTROL.

dictable, it is often more effective to create more op-
tions for the policy designer. We argue that access
control systems can go one step further by allowing
the specification of the access control policy at the
time of the request through interactivity with subjects.
This approach has many benefits: Firstly, policy de-
signers do not have to fully define the access policy
and some aspects of the policy may be left unspeci-
fied until subsequent access requests are made. Sec-
ondly, they permit subjects to be aware of access oper-
ations to sensitive objects which can be an important
requirement of a security system. Finally, it makes
possible to deal with unexpected access requests if
it is for any reason impossible to foresee all possi-
ble access requests. For example, a security rule may
specify that in the case of an emergency, access to a
patient’s file by one of the hospital’s doctors has to be
authorized online by one of the patient’s parents.

In this paper, we present an access control system
model that allows policy designers to fully define se-
curity policy in advance as in traditional models or
at the time of the request. This composite approach
makes the model capable of supporting requirements
that are difficult to fulfill using traditional models.
We also show how our policy can be enforced using
event-condition-action (ECA) rules.

The article is organized as follows. In section 2,

57

In Proceedings of the International Conference on Security and Cryptography, pages 57-64

DOI: 10.5220/0001924900570064
Copyright © SciTePress

SECRYPT 2008 - International Conference on Security and Cryptography

we discuss related work and motivate our approach.
Section 3 introduces informally the system architec-
ture and operation. In section 4, the language and
the concepts used for the formalization of the model
are introduced. Section 5 presents the model’s formal
representation. In section 6, we discuss the policy in-
terpretation and enforcement. Section 7 shows some
use cases. Section 8 briefly discusses a prototype im-
plementation of the model. Finally, section 9 gives
our conclusions and discusses future work.

2 RELATED WORK &
MOTIVATION

Access control in pervasive environments has at-
tracted many researchers in the last few years. Most
works have focused on introducing RBAC extensions
to add context-awareness and dynamic activation of
permissions to the model (Moyer, 2001; Zhang and
Parashar, 2004). In accordance with the spirit of the
RBAC model, these extensions have introduced the
notion of contextual or environmental roles which are
roles that are activated/deactivated as a result of the
occurrence of events in the system. Consequently,
permissions given to subjects are updated whenever
relevant changes in the system are detected.

In this paper, we tackle a different problem which
is the active access control decision-making. Active
access control may be also considered as one possible
solution to the multi-way control problem. Multi-way
control refers to the situation where there are more
than one party that hold some rights over a resource
and therefore may request to exercise some control
over its use. To the best of our knowledge, this issue
has been rarely identified (Park and Sandhu, 2004) or
dealt with in access control systems. In most systems
today, control decision is one-way where the resource
provider solely determines the access requester’s ac-
cess rights. A patient file on some hospital’s database
is a typical example of situations where multi-way de-
cision may be necessary as it may be required that the
patient be an active party in the access control on-
line decision-making process to his/her personal files.
Today’s pervasive environments offer the necessary
mechanisms to support active multi-way control de-
cisions and the benefits of having active access con-
trol are clear: awareness of important accesses, just-
in-time specification of the access control policy and
dealing with some possibly unexpected accesses.

Requiring a subject’s consent before authorizing
access to his objects has been considered in the work
of Becker and Sewell (Becker and Sewell, 2004).
They have studied the specification of access control

58

policy in an Electronic Health Record system based
on the requirements for the UK health Service pro-
curement exercise. Getting the patient’s consent for
accessing his/her personal information was one of the
requirements. They have proposed to solve the prob-
lem using role activation: to allow a clinician to be
e.g. a Treating-physician and thus enabling the clin-
ician to access his/her files, a patient has to activate
a consent role. In order for the patient to be allowed
to activate a consent role, the clinician has to have
first asked the activation of the role which is repre-
sented by the activation of a consent-request role. In
our model, consent is just a subset of the control op-
erations that the patient is allowed to perform as the
patient can choose the set of operations to allow such
as “my clinician can view only my last medical record
and not my entire history” or “can only read but not
write” or specify a set of requirements of the access
such as the clinician can look at my file but “only at
the hospital”. The specification of such requirements
using a role approach is more complex as it requires
the specification of different roles corresponding to
the different possible sets of operations and the speci-
fication of a set of role activation constraints to model
the context in which the permission is to be granted.
We believe that our approach is more intuitive as it
is more direct and avoids an unnecessary indirection
created by the use of roles.

In (Goffee et al., 2004), a decentralized PKI-based
authorization for wireless LANs is presented. The au-
thors studied granting access to the wireless network
only after they are authorized by local users. They
have proposed a PKI-based authorization mechanism
allowing internal users to delegate access rights to
guests: first, the guest uploads its public key on a web
server, the internal user searches for the guest’s key
and signs it. The guest uses the signed certificate to
access the wireless network. Their work shows the
relevance of our proposal to distributed network envi-
ronments as it is an example of situations where ac-
cess to the resource (the wireless network) needs to
be authorized by some subject (the local users) when
the access request is made (when the guest uploads its
certificate).

Stiemerling and Wulfin (Stiemerling and Waulf,
2004) investigated the necessary access control mech-
anisms for group interaction. They identified sev-
eral potential requirements namely: the role of a
trusted third person, awareness and negotiation. They
have developed and implemented six technical mech-
anisms to fulfill the aforementioned requirements.
What distinguishes our work with respect to theirs
is that our access control decision-making is context-
aware allowing better expressiveness of access con-

trol requirements. Additionally, we have proposed a
formal model for our access control system and pro-
posed an appropriate enforcement mechanism of our
policy in the form of event-action-condition (ECA)
rules. Although our current model does not support
negotiation, it is one possible extension to this work
(Haidar et al., 2007).

PDL (Lobo et al., 1999) and Ponder (Damianou
et al., 2001) are two highly-cited policy specification
languages. Policies in PDL and obligation policies
in PONDER are expressed in the form of ECA rules.
Our use of ECA rules is different since active rules in
our framework are domain independent rules which
are used to interpret and enforce the policy. In other
words, we separate between the policy expression and
the policy interpretation. In PDL and PONDER, ac-
tive rules are domain dependent rules that represent
the system policy.

3 SYSTEM DESCRIPTION &
OPERATION

The proposed system architecture is centered around
the access control system which communicates with
entities of its environment through messages. The
environment includes subjects and context providers.
Subjects are active entities in the environment capa-
ble of interaction with the system. Context providers
store contextual information relevant to the evaluation
of the access control policy e.g. presence servers, lo-
calization servers, etc.

The access control system evaluates its policy
when messages are received from the system sub-
jects. The policy evaluation process is shown in fig-
ure 1: when an access request is received (1), the pol-
icy is evaluated (2). We consider two different types
of permissions in the policy: contextual permissions
which are permissions that are associated with a set
of conditions that must be true for the permission to
be active (3); and in which case the access request is
granted (4). The other type of permissions are dy-
namic permissions. Dynamic permissions require in-
teraction with the subject who manages the resource.
Interaction with resource-managers is accomplished
using two messages namely the system-request mes-
sage that is sent to the resource manager (4’) and the
subject-response message which represents the sub-
ject response to the access control system (5°). In
the user response, the resource manager can autho-
rize or deny the access, limit the current access to a
subset of the operations defined in the dynamic per-
mission or specify some extra conditions that are ver-
ified by the system before access is granted (67). If

INTERACTIVITY FOR REACTIVE ACCESS CONTROL

the newly defined conditions are true, a grant is is-
sued (7’). Consider the following example from an
intelligent home environment: suppose Jack wishes
to control access to his CD collection. Jack can set up
a dynamic-permission rule that states that he is to be
contacted when an access request is made to his CD
collection by a member of his family. Thus, when an
access request is made, Jack is contacted. Jack can
subsequently specify several access requirements that
dynamically apply on that particular access request:
for example, he can limit the access to only his rock
music collection or if the access requester is one of
his sons, Jack can specify some conditions such as
his son can access his CD collection but only if he has
done his homework; or Jack can control what oper-
ations are authorized during the access such as only
read operations are permitted.

4 The
Access Context
Control Provider

Policy

“) (1)
1) Access Request Access Grant/Deny Policy

Control b—"—| Enf
System nforcer

@) System.| (&) User-
Request Response

Subject 52

Subject $1

Figure 1: System Architecture.

4 BASIC CONCEPTS

OrBAC Policies. Security policies in the OrBAC
model (Abou El Kalam et al., 2003) are tied to an
organization. An organization represents the author-
ity that has issued the policy and to which the pol-
icy pertains; thus the organization entity plays an im-
portant role in the administration of security policies
(Cuppens and Miege, 2004). In a distributed envi-
ronment where every subject specifies policies that
apply to his managed resources, the different subject
policies are easily modelled in the OrBAC model by
considering each subject as a separate organization.
However, since administration is not our primary ob-
jective, throughout the paper, we consider one policy
pertaining to one single organization; and therefore,
all references to the organization entity are omitted in
the following.

Policy Element Representation. System objects
are subjects, resources and actions. Objects are rep-
resented using constant symbols starting with lower-
case letters e.g. tom, newspaper and read. Variables

59

SECRYPT 2008 - International Conference on Security and Cryptography

are represented using capital letters identifiers. Vari-
ables and constants are ferms of the language.

Relations between system objects are described
by relation symbols called predicate symbols e.g.
Permission(sub ject,operation) is a binary relation of
type Permission and is a relation linking the sub-
ject and operation. Relation symbols are rep-
resented by identifiers starting with capital let-
ters. Facts describe permissions in the sys-
tem and are expressed using atomic formulas e.g.
Permission (tom, O(read ,newspaper)) is a permission
for Tom to perform the operation (read,newspaper).

Object attributes are represented using the pred-
icate symbol Attribute(AttrType, Object,Value) which
states that the attribute At¢rType of the object Ob ject
has the value Value. The variable symbol AttrType is
a variable over the set of attribute types, and Value is
a variable over the attributes of objects.

OrBAC Contexts. Contexts are requirements or
conditions on object attributes and on the current
state. The context modelling and evaluation follows
the context modelling of the Organization-based ac-
cess control model (Cuppens and Miege, 2003). The
specification of contexts in OrBAC is separated from
the permission which allows context reusability, con-
text composition and easier interpretation and spec-
ification of policy rules. OrBAC contexts are eval-
uated using the predicate Hold(S,A,R,Context) where
Context is an identifier of the set of conditions on the
subject S requesting to perform the action A on the
resource R. The context definition may also specify
conditions on the system’s state. In order to spec-
ify conjunctive, disjunctive and negative conditions,
a simple context language with three operators AND,
OR and NOT operators is used:

e Hold(S,A,R,Ctx &Ctxy) «—
Hold(S,A,R,Cix1), Hold(S,A,R,Ctx;)

Hold(S,A,R,Ctx;)V Hold(S,A,R,Ctx;)

(
(
e Hold(S,A,R,Ctx; V Cixp) «—
(
e Hold(S,A,R,~Ctx)) < —Hold(S,A,R,Ctx))

For example: the set of requirements that the ac-
cess requester’s age be less than 10, that he/she be at
school and that the request be made during the morn-
ing can be specified using the following two contexts:
Hold(S,A,R,childAtSchool) —

Attribute(age,S,X),X < 10, Attribute(location, S, school)

Hold(S,A,R,morning) —
after_time(08 : 00),be fore_time(12 : 00)

The composed context Hold(S,A,R,childAtSchool
& morning) represents the desired set of requirements.

60

Organizational Entities. System objects are man-
aged using the organizational entities roles, views
and activities. Roles, views and activities are used
to group subjects, resources and operations, respec-
tively. Policies defined over organizational entities
apply to all its members (Sloman and Twidle, 1994).
Roles, views and activities are hierarchical and a pol-
icy that applies to a role, view or an activity do-
main propagates to its sub-roles, sub-views and sub-
activities, respectively. The used base relations defin-
ing roles are shown in table 1. Hierarchy over views
and activities is similarly defined. Every resource has
a type. Every resource type supports a number of ac-
tions. A system operation is represented by the func-
tion symbol O(Action, Resource). To facilitate the orga-
nization of objects and the policy definition, we logi-
cally interconnect views and activities using the rela-
tions defined in table 2.

CD3 read

| CD3,write |
| CD4,read |
CD4 write }

CDf,read |

¢ i CD1,write |
| cD2read |

| CD2,write |

subDnmam
,:f:"/ readOnlyRoc

S
NG

supports | rand | O~ | CD1 read |

3wr|teg ©r CDZ vead

Figure 2: Object Organization Example.

Consider the example shown in figure 2: subject
Jack wants to organize his CD collection composed of
two rock CDs CD; and CD»; and two classical CDs
CD3 and CDy; and that a resource type CD supports
the operations read and write. Jack creates the two
views rockCDs and classicalCDs and adds the two
rock CDs and the two classical CDs to the rockCDs
and the classicalCDs views respectively. The logi-
cal consequences of the relations defined in table 2
are: every resource represents an activity contain-
ing the operations supported by the resource; for ex-
ample, CD; is an activity containing the operations
{O(read,cdy),O0(write,cdy)}; and every view is an ac-
tivity containing all the operations of its derived re-
source members; thus the activity rockCDs contains
{O(read,cdy),O(write,cdy), O(read,cdy),O(write,cdy)}.
To specify a restricted subset of the operations of
the activity rockCDs, Jack creates a sub-activity
readOnlyRockCDs from rockCDs to which he adds as
members the operations {O(read,cd,),O(read,cdy)}.

S FORMAL MODEL

Formally, the model is represented as follows:

INTERACTIVITY FOR REACTIVE ACCESS CONTROL

Table 1: Organizational Entities.

Symbol Description
Sub ject(Sub) Specifies that Sub is a subject of the system
Role(Role) Specifies that Role is a role. Roles are considered also

subjects of the system. Therefore the following rule is
defined: Subject(Role) < Role(Role)

RoleMember(Sub,Role)

Holds if the subject Sub, is assigned the role Role.

SubRole(Rolel,Role2) — Role(Rolel),Role(Role2),
RoleMember(Rolel,Role2),(Rolel # Role2),
—SubRole(Role2,Rolel)

Holds if the role Rolel is a sub-role of Role2. The body
of the rule is used to ensure that there are no cyclic rela-
tionships in the role structure.

RoleDerivedMember(Sub,Role) —
RoleMember(Sub,Role)
DerivedMember(Sub,Role) —
RoleDerivedMember(Sub,SubR)

SubRole(SubR,Role),

Determines the membership of a role across the entire
structure. The first rule identifies all direct members of
the role Role. The second rule recursively identifies mem-
bers of sub-roles of the role Role.

e The System Basic Elements

— The sets: Subjects (S), Resources (R), resource-
Types (T'), Actions (A), Operations (O), At-
tributes (Att) and Contexts (C).

— Dynamic Context (Cy) is of type boolean C; €
{true, false}. If true, C 4 represents a require-
ment to contact the resource manager for access
authorization.

e The Organizational Entities

— Roles (R), Views (), Activities (4) repre-
senting the sets of the system roles, views and
activities respectively. Membership of organi-
zational entities is determined using the predi-
cates Member and DerivedMember of table 1.

e The Policy consists of a set of contextual and dy-
namic permissions formally represented as fol-
lows:

- PCRXAXCxCy

— Ex: P(family,rockCDs,atHome,true) is a dy-
namic permission which represents an active
authorization requirement when a member of
the role family requests to perform operations
of the activity rocksCDs if the subject request-
ing access is at home. The context atHome is
thus defined as follows:

Hold(S,R,A,atHome) —
Attribute(location,S,atHome)

e The System Messages
— Access-request (AR): represents a subject’s re-
quest to perform an activity: AR C S x 4

— Grant(GR): represents the acceptance of the ac-
cess request: GR C S x O

— System-Request Messages (SR): represent the
possible messages sent by the system to sub-
jects: SRC SxSxAxID
represents that the subject S is contacted to au-

thorize the access request S X 4. ID is a unique
interaction identifier.

— Manager-response Messages (MR): represent
the resource-manager response to a system-
request: MR C S x A x C xID

6 POLICY INTERPRETATION &
ENFORCEMENT

The policy is enforced using domain independent
event-condition-action (ECA) rules. ECA rules have
well-defined semantics and avoid having to resort to
custom-implementations for the interpretation and en-
forcement of security policies. The use of ECA rules
for the enforcement of RBAC and its different exten-
sions in a uniform manner has been investigated in
(Adaikkalavan and Chakravarthy, 2005). An ECA
rule is of the form:

on event if condition then action

The rule is read as: When event occurs and condition
is true, action is executed. Events in the system
are messages received from subjects namely access-
request and manager-response messages. Possible
actions are the output messages grant-access, deny-
access and system-request and the data management
operations add and delete. In the case of interaction,
the function create is used to generate a unique iden-
tifier for every system initiated interaction. The sys-
tem’s policy is default-deny; in other words, if a per-
mission is not found for some access request, access
is denied. The system behavior is therefore modelled
and enforced by the following three active rules:

e The Access-Request/Grant Rule:

on AR(S1,4;)

if P(Ry, Ay, Context, false),
DerivedMember(S1,R),
Compatible(Ay, %),

61

SECRYPT 2008 - International Conference on Security and Cryptography

Table 2: Resources and Operations.

Symbol

Description

Resource(R)

States that R is a system resource

ResourceType(R,T)

States that the type of Ris T

ResourceManager(S,R)

States that the subject S is the manager of resource R

Supports(T,A)

States that the resource type 7' supports the action A

Operation(R,A) < Resource(R),
Supports(T,A)

ResourceType(R,T),

Represents the different possible operations in the system

Activity(R) «— Resource(R)

Specifies that if R is a system resource identifer then it is also an activity

ActivityMember(operation(R,A),R) —
Resource(R),—View(R), Operation(R,A)
ActivityMember(operation(R,A), Act) —
ResourceDerivedMember(R,Act),
—~View(R), Operation(R,A)

View(Act),

Holds if the operation Operation(R,A) is a member of the activity Act. When the
resource is not a view, the first relation adds the operations supported by the resource
to the activity having the same identifier as the resource. If the resource identifier
represents a view, the second relation adds the operations supported by all the derived
resources from the view, which are not views, to the activity with the same identifier
as the view

Compatible(A, 2) «— SubActivity(A;, A)V (A = Z)

The Compatible predicate Holds if 4, is a sub-activity of or equals to the activity 4,

Hold(S, Ay ,Context) «— DerivedMember(Operation(R,A), A)

The Hold(S, A ,Context) is true if the defined context Holds for one of the operations

Hold(S,R,A,Context)

that are derived members of the activity.

62

DerivedMember(Operation(R,A), 4}),
Hold(S1,R,A,Context)

then Grant(Sy, Operation(R,A))

The rule states that when an access request to per-
form some activity occurs, if the request matches
one of the system contextual permissions, a grant
is issued to all operations that are derived mem-
bers of the requested activity and for which the
context holds.

The Access-Request/System-Request Rule:

on AR(S1,4;)

if P(Ra, Ap,Context,true),

DerivedMember(S1,Ra),

Compatible(A,),

Hold(Sy,4;,Context),

ResourceManager(M,R)

then create(id), add(Interaction(Sy, 41 ,id)),
SR(M,Sy,4y,id)

The rule states that when an access request to an
activity is made and the request matches one of
the system’s active dynamic permissions, and the
context holds for one of the operations specified
in the permission, the resource manager is to be
contacted to authorize the access. In the present
paper, we consider that every resource has exactly
one manager:

ResourceManager(M1,R),

ResourceManager(M,,R) — M| = M,

To mark the start of an interaction with a resource
manager, a fact Interaction is added to the
system’s knowledge base.

The Manager-Response/Grant rule:
on MR(S,4,Context,id)

if Interaction(Sy, 41 ,id),

S =81, Compatible(4,4;),

DerivedMember(Operation(R,A),A),
Hold(S,R,A,Context)

then Grant(S,R,A), delete(Interaction(S, 4y ,id))
The rule states that when a manager-response
message is received and if the message corre-
sponds to an ongoing interaction, a grant is issued
to all operations that are derived members of the
activity specified in the new permission given by
the resource manager and for which the context
holds. To mark the end of the interaction with the
resource manager, the fact Interaction is removed
from the system.

6.1 Conflict Detection and Resolution

Several techniques have been proposed for conflict
resolution for policy-based systems (Cuppens et al.,
2007). In the model, only positive permissions are
considered. Thus, the only possible conflict is when a
contextual and a dynamic permission are activated at
the same time. The conflict is dynamically resolved
by prioritizing the dynamic permission active rule.
Assigning priorities to active rules is supported by al-
most all active databases and is one way to guarantee
the confluence property. Prioritizing dynamic permis-
sions allows us to specify backup contextual permis-
sions when the interaction with the resource manager
does not end appropriately as discussed in the next
section.

6.2 Handling Timeout

It is important to plan for situations when the manager
of the resource does not reply to the system-request
message. These situations are managed using sim-
ple timers. When a resource-manager is contacted, a

timer is set. If the timer elapses, a default system be-
havior is executed. For this purpose, our definition
of dynamic contexts is modified and two parameters,
namely a deadline and a default action, are added to
the definition of dynamic contexts:
CisCDxDA
where D is an integer representing the delay after
which a timeout occurs and DA represents the sys-
tem’s default action when a timeout is reached and
can be any of the following: DA € {accept,deny,other}.
When DA = accept, the access request is accepted
when the timeout is reached, when DA = deny, the ac-
cess is denied and when DA = other the system checks
if the access request is allowed by one of the pol-
icy’s contextual permissions. The default setting of
the de fault parameter is deny. The above behavior is
modelled and enforced by the following active rules:
e The Create-Timer Rule:
on add(Interaction(Sy,4;,C4(D,DA),id))
then create(timer(id),D)
The rule initiates a timer that produces a timeout event
when the timer elapses.
e The Timeout Rule(1):
on timeQOut (id)
if Interaction(S1,4;,C4(D,DA),id), DA = deny
then Deny(S;,4))
e The Timeout Rule(2):
on timeOut (id)
if Interaction(Sy,4;,C4(D,DA),id), DA = accept,
DerivedMember(opertion(R,A), 4;)
then Grant(S1,operaion(R,A))
e The Timeout Rule(3):
on timeOut (id)
if Interaction(Sy,4;,C4(D,DA),id),
DA = other, P(Ry, A, Context, false),
DerivedMember(S1,Ry), Compatible(A, 4y),
DerivedMember(Operation(R,A), 2)
Hold(S1,R,A,Context)
then Grant (S,operation(R,A))

7 APPLICATION EXAMPLE

In this section, we reconsider our example from an
intelligent home environment. Jack wishes to control
his family’s access to his CD collection. He defines
the following set of permissions:

o Py: P(family,classicalCDs,default, false)

o P, P(family, rockCDs, jackAvailable, dc(60,0ther))
The context jackAvailable is defined as:
Cy: Hold(S,R,A, jackAvailable) —
Attribute(status, jack,available)

e P3: P(family,onlyReadRockCDs,atHome, false)

The context atHome is defined as:
Cy: Hold(S,R,A,atHome) —
Attribute(location, S, home)

INTERACTIVITY FOR REACTIVE ACCESS CONTROL

The first is a contextual permission giving mem-
bers of the role family the right to perform operations
in the classical CDs activity in the default context
which is a context that is always true. The second
is a dynamic permission stating that if Jack is avail-
able, the access control system should contact him to
authorize requests to perform operations on his rock
CDs. When an access request to the rock CDs is
made,

® AR(tom,rockCDs)

The system contacts Jack. Jack using his mobile,
PDA or laptop can specify any of the following:

e Limit the authorized operations to a subset of the
operations in the dynamic permission
MR(tom,readOnlyRockCDs,default,id)

e Deny the access
MR(tom,rockCDs, false,id)

e Require the verification of some context; for ex-
ample that his wife Mary is not at home

MR(tom,rockCDs, maryNotAtHome,id)
Hold(S,R,A,maryNotAtHome) «—
—Attribute(location,mary,atHome)

If a timeout occurs after the delay specified in the
dynamic permission, the system enforces the default
action specified in the dynamic permission, in our
case, the specified action is other thus, the access is
checked against the system’s contextual permissions
and therefore the access is granted only to operations
that are members of the activity read OnlyRockCDs.

8 IMPLEMENTATION

We have developed the basic functionalities of the
model using the rule engine Jess: a java-based rule en-
gine combining declarative logic programming with
object-oriented programming. Jess supports both
The prototype uses a mixture of java code (for pro-
cedure calls and various interactions with the environ-
ment such as the sending and receiving of messages)
and jess code (to code the policy rules and logical
derivations). The prototype works as follows: the ac-
cess control system first loads the policy rules coded
in jess. Then it loads the permissions from a simulated
database into the engine’s working memory. When
an access request is received, a fact representing the
request is injected into the policy engine’s working
memory. The engine evaluates the request accord-
ing to the access policy rules. When there are remote
conditions to evaluate, information is retrieved from
the appropriate context provider. At the end of the

63

SECRYPT 2008 - International Conference on Security and Cryptography

processing, the rule engine produces the policy deci-
sion reached which is then enforced by the appropri-
ate mechanisms.

9 CONCLUSIONS AND FUTURE
WORK

In this article, we have introduced an access control
model capable of supporting interactivity with users
to enable them to specify aspects of the access con-
trol policy at the time of the access request. We have
shown how it is possible to express clearly access re-
quirements difficult or impossible to express in tradi-
tional models and how different contextual conditions
fit into the model.

We are currently working to add support of ongo-
ing controls to the model (Park and Sandhu, 2004).
An important security requirement that we are also
looking into is to enable the user to add static rules
to the access control system e.g. to deny for always
or for a certain period of time requests from a par-
ticular subject as we recognize that the model is vul-
nerable to some social engineering attacks. We are
also considering integrating delegation with interac-
tivity to allow the users to delegate their capabilities
to others in a just-in-time manner (Ben Ghorbel-Talbi
et al., 2007). The ability to contact several contacts by
having more than one resource manager and handling
several user-responses for the same access request is
also studied.

Finally, we believe the model will prove to be an
interesting model for access control in pervasive and
collaborative environments and that it lays the foun-
dation to a new generation of access control systems
that integrate interactivity with users to add flexibility
to traditional access control systems.

ACKNOWLEDGEMENTS

This research is partially sponsored by the Polux
project funded by the French “Agence Nationale de la
Recherche”. Yehia El Rakaiby’s PhD thesis is funded
by a grant from the Britany region.

REFERENCES

Abou El Kalam, A., Baida, R. E., Balbiani, P., Benferhat,
S., Cuppens, F., Deswarte, Y., Miege, A., Saurel, C.,
and Trouessin, G. (2003). Organization Based Access
Control. In Policy’03.

64

Adaikkalavan, R. and Chakravarthy, S. (2005). Active au-
thorization rules for enforcing role-based access con-
trol and its extensions. In Proc. of The 21st IEEE In-
ternational Conference on Data Engineering (ICDE).

Becker, M. and Sewell, P. (2004). Cassandra: distributed
access control policies with tunable expressiveness. In
POLICY 2004, pages 159-168.

Ben Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia,
N., and Bouhoula, A. (2007). Managing delegation
in access control models. ADCOM 2007, pages 744—
751.

Cuppens, F., Cuppens-Boulahia, N., and Ghorbel, M. B.
(2007). High level conflict management strategies
in advanced access control models. Electron. Notes
Theor. Comput. Sci., 186:3-26.

Cuppens, F. and Miege, A. (2003). Modelling contexts in
the or-bac model. In /9th Annual Computer Security
Applications Conference (ACSAC '03).

Cuppens, F. and Migge, A. (2004). Administration Model
for Or-BAC. In Computer Systems Science and Engi-
neering (CSSE’04).

Damianou, N., Dulay, N., Lupu, E., and Sloman, M. (2001).
The ponder policy specification language. In POLICY
’01, pages 18-38, London, UK. Springer-Verlag.

Goffee, N., Kim, S., Smith, S., Taylor, P., Zhao, M., and
Marchesini, J. (2004). Greenpass: Decentralized, pki-
based authorization for wireless lans. 3rd Annual PKI
Research and Development Workshop Proceedings.

Haidar, D. A., Cuppens-Boulahia, N., Cuppens, F., and De-
bar, H. (2007). Access negotiation within xacml ar-
chitecture. SARSSI. Annecy, France.

Lobo, J., Bhatia, R., and Naqvi, S. (1999). A policy descrip-
tion language. In Sixteenth national conference on Ar-
tificial intelligence, pages 291-298, Orlando, Florida,
United States.

Moyer, M. J. (2001). Generalized role-based access con-
trol. In 21st International Conference on Distributed
Computing Systems.

Park, J. and Sandhu, R. (2004). The uconabc usage control
model. ACM Trans. Inf. Syst. Secur, pages 128—174.

R.S., S., Coyne EJ., F. H., and C.E., Y. (1996). Role-based
access control models. IEEE Computer.

Sloman, M. and Twidle, K. (1994). Domains: a framework
for structuring management policy. pages 433-453.

Stiemerling, O. and Wulf, V. (2004). Beyond yes or no”
- extending access control in groupware with aware-
ness and negotiation. Group Decision and Negotia-
tion, pages 221-235.

Zhang, G. and Parashar, M. (2004). Context-aware dynamic
access control for pervasive computing. In Commu-
nication Networks and Distributed Systems Modeling
and Simulation Conference.

