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Abstract: Elliptic curve cryptosystem protocols use two main operations, the scalar multiplication and the pairing com-
putation. Both of them are done through a chain of basic operation on the curve. In this paper we present new
formulas for supersingular elliptic curve in characteristic 2 and 3. We improve best known formulas by at least
one multiplication in the field.

1 INTRODUCTION

For elliptic curve cryptosystems, scalar multiplica-
tion on the curve is the most important but time-
consuming operation. So the research on speeding up
this operation continues to get increasing attraction
since the elliptic curve cryptography has been pro-
posed (Koblitz 1987, Miller 1986).

The scalar multiplication is generally performed
by a chain of elementary curve operations like point
addition, point doubling and point tripling. This is
the case for example in double and add method (Han-
kerson et al., 2004) or triple and add method (Page
and Smart, 2002). Each curve operation requires sev-
eral field operations on the point coordinates (addi-
tion/subtraction, multiplication and eventually inver-
sion or powering).

Consequently to get an efficient scalar multiplica-
tion and an efficient pairing it is important to decrease
the number of field operations involved in basic curve
operations.

Here we focus on supersingular elliptic curve in
characteristic two and three. Projective versions of
arithmetic on supersingular elliptic curves have been
proposed in characteristic 3 by N. Koblitz (Koblitz,
1998), P. Barettoet al. (Baretto et al., 2002) and K.
Harrisonet al. (Harrison et al., 2002). For character-
istic two the main result is the worket al.(Scott et al.,
2006). The cost of their respective formulas are given
in Table 1.

Table 1: Complexity comparison.

Method Trip. Mixed add. Doub.
(Scott et al., 2006) − 9M +3S 1M +7S

Proposed − 9M +5S 8S

(Koblitz, 1998) 6C 10M +1C
(Baretto et al., 2002) 6C 9M +1C

(Harrison et al., 2002) M +6C 8M +3C 7M +2C
Proposed 8C 7M +3C 6M +4C

In this paper we first propose a new coordinate
system in characteristic 2 called theXZ-projective co-
ordinate system. We provide in this system formulas
for doubling and mixed addition. We propose also a
new coordinate system for characteristic 3 called ML-
projective coordinate system. Again we give formulas
for adding, doubling and tripling. The cost of these
formulas are given in Table 1

Table 1 shows that our formulas provide some im-
provement in the efficiency of curve operations.

This paper is organized as follows. Basic concepts
and previous work on arithmetic on supersingular el-
liptic curves are summarized in Section 2. We present
our contribution for supersingular curve in character-
istic 2 (resp. 3) in Section 3 (resp. Section 4). Finally
we briefly conclude in Section 5.
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Table 2: Curve operations Affine coordinates.

Characteric2 Characteric3

Add

λ = y1+y2
x1+x2

,

x3 = λ2 +(x1 +x2),
y3 = y1 +1

+λ(x1 +x3),

λ = y1−y2
x1−x2

,

x3 = λ2− (x1 +x2),

y3 = (y1 +y2)−λ3,

Doub.
x3 = x4

1 +1,
y3 = y4

1 +x4
1

λ = 1
y1

x3 = x1 +λ,
y3 = −(y1 +λ3),

Trip. −
x3 = x9

1−b,
y3 = −y9

1.

2 ARITHMETIC ON
SUPERSINGULAR ELLIPTIC
CURVES

Given a finite group with underlying difficult discrete
logarithm problem (DLP) and efficient group law, one
could use this group to implement cryptographic pro-
tocols such as ElGamal encryption or Diffie-Hellman
key exchange.

Recall that given a finite fieldFpn with p prime an
elliptic curveE over Fpn is the set of pairs(x,y) ∈
Fpn × Fpn satisfying a Weierstrass equation of the
form y2 + a1xy+ a3y = x3 + a2x2 + a4x+ a6 where
ai for i = 1, . . . ,6 are constants inFpn. Elliptic curves
have a natural group structure given by chord and tan-
gent method. This provides efficient group arithmetic
and difficult DLP suitable for cryptographic applica-
tions.

In this paper we consider special elliptic curves,
the supersingular elliptic curves defined over field of
characteristic 2 and 3. Their equation are the follow-
ing

E(F2n) Y2 +Y = X3 +X +b whereb∈ {0,1} (1)

E(F3n) Y2 = X3−X +b whereb∈ {−1,1} (2)

These curves are really interesting for efficient im-
plementation of pairing-based cryptosystems. Indeed,
to implement protocol based on pairing on an elliptic
curveE(Fq), the curve must have an embedded de-
greek not too big. The embedded degree is the small-
est integerk such that the Tate pairing, for instance,
can be computed. It has been shown that supersin-
gular elliptic curves satisfy this condition (Galbraith,
2001).

In affine coordinates, operations on the curve can
be computed using the following formulas give in Ta-
ble 2

Since the proposition of ECC by Koblitz and
Miller, research have been done to improve the cost of

operations on the curve. We see in Table 2 that dou-
bling and tripling is free of field inversion and field
multiplication. But the other operations require inver-
sion in affine coordinate.

A popular idea to avoid inversion in curve opera-
tions consists to use projective coordinates. The most
interesting projective systems are the following

1. Ordinary projective (X,Y,Z) ↔ (x,y) =
(X/Z,Y/Z) in affine.

2. Lopez-Dahab projective(X,Y,Z) ↔ (x,y) =
(X/Z,Y/Z2) in affine.

3. Jacobian projective(X,Y,Z) ↔ (X/Z2,Y/Z3)

Each system provides different operation cost for
addition, doubling and tripling, but all of them avoid
field inversion. Mixed addition is simply an addition
with a point in the current projective system sayP1
and a second pointP2 in affine coordinate. It is gener-
ally cheaper than a general addition.

Field operations. Let us denoteI a field inversion,
M a multiplication,S a squaring andC a cubing in
the ground field. These operations have different
time consuming depending on the characteristic of the
field. Specifically

• In characteristic two we haveI ≫ M ≫ SandC =
M +S.

• In the case of characteristic three we haveI ≫
M ∼= S≫C (see (Ahmadi et al., 2007)).

The curve operations are optimized regarding these
relative costs of field operations.

3 OPERATIONS IN
CHARACTERISTIC 2

In this section we present our work concerning arith-
metic on an supersingular elliptic curve in characteris-
tic 2. Specifically we would like to improve the arith-
metic on the curve

E(F2n) Y2 +Y = X3 +X +b whereb∈ {0,1}.

To reach this goal we use a new system of repre-
sentation calledXZ-projective coordinates. This sys-
tem can be seen as an improvement of the Lopez-
Dahab (Lopez and Dahab, 1998) projective coordi-
nates.

Definition 1 (XZ-projective coordinates). The XZ-
projective coordinates of a point P on an elliptic curve
E is a quadruple(X,Y,Z,T) such that T= XZ and
the affine coordinate(x,y) of P are given by

x = X/Z, y = Y/Z2.
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In this system we obtain the formulas given in the
following proposition for addition and doubling on
the curve defined by (1).

Proposition 1 (Curve operation inXZ-projective co-
ordinate). Let E(F2n) a supersingular curve defined
by the following equation

Y2 +Y = X3 +X +b where b∈ {0,1}.

Let P1 = (X1,Y1,Z1,T1) and P2 = (X2,Y2,1,T2 =
X2) be two points on E(F2n) expressed in XZ-
projective coordinates. Then

Mixed Addition. Let P3 = P1 + P2, the XZ-
coordinates(X3,Y3,Z3,T3) of P3 can be computed
as

Z3 = (X2Z2
1 +T1)

2, T3= X3Z3,
X3 = (X2Z2

1 +T1)(X2Z1 +X1)
2

+(Y2Z2
1 +Y1)

2,
Y3 = Z2

3(Y2 +1)
+(X2Z3 +X3)(X2Z2

1 +T1)(Y2Z2
1 +Y1).

(3)

And the cost of these formulas is9M +3S
Doubling. Let P3 = 2P1, the XZ-coordinates
(X3,Y3,Z3,T3) of P3 can be computed as

X3 = (X1 +Z1)
4, Y3 = (Y1 +T1)

4,
Z3 = (Z2

1)2, T3 = (T1 +Z2
1)

4.
(4)

The cost of these formulas is equal to8S.

Proof. Mixed Addition.To prove that the formulas (3)
are correct, we have to prove thatX3/Z3 andY3/Z2

3 are
equal to the expression ofx3 andy3 in Table 2. Using
(3) we have

X3/Z3 =
(X2Z2

1 +T1)(X2Z1 +X1)
2 +(Y2Z2

1 +Y1)
2

(X2Z2
1 +T1)2

.

If we factorizeZ4
1 in the numerator and the denomi-

nator we get

X3/Z3 =
(X2+X1/Z1)(X2+X1/Z1)

2+(Y2+Y1/Z2
1)2

(X2+X1/Z1)2

= (x2 +x1)+
(

y2+y1
x2+x1

)2
.

This means thatX3/Z3 satisfies equation of Table 2.
Now let do the same thing in the expression ofY3/Z2

3

Y3/Z2
3 = (Y2 +1)+

(X2+X3/Z3)(X2Z2
1+T1)(Y2Z2

1+Y1)
Z3

= (Y2 +1)+
(X2+X3/Z3)(X2+X1/Z1)(Y2+Y1/Z2

1)

(X2+X1/Z1)2

but this last expression is equal the expression of Ta-
ble 2.
Doubling. This case is simpler, and the proof is sim-
ilar to the proof of addition formulas. For the sake of
simplicity we leave this part to the reader.

Now let us compare our formulas with best known
formulas for curveE(F2n defined by

Y2 +Y = X3 +X +b whereb∈ {0,1}.

We reported the cost of these formulas (Scott et al.,
2006) reported in Table 3.

Table 3: Complexity comparison.
Algorithm Coord. Doubling Mixed add

Classic Aff. 4S I +2M +S
(Scott et al., 2006) Jac. M +7S 9M +3S

Proposed XZ-proj. 8S 9M +5S

We can see that the doubling is cheaper by 1M
compared to Scott. In counter part,we have one more
squaring int the doubling, and two more squaring in
the addition.

4 OPERATIONS IN
CHARACTERISTIC 3

We propose a novel system of representation called
ML-projective coordinates. This system can be seen
as an improvement of the original Jacobian coordi-
nate.

Definition 2. The ML-projective coordinate of a point
P on an elliptic curve E is quadruplet(X,Y,Z,T)
such that T= Z2 and the affine coordinate(x,y) of
P are given by

x = X/T,y = Y/Z3.

In this system we found different formulas for
point addition, point doubling and point tripling on
an elliptic curve defined by (2).

Proposition 2 (Curve operation in ML-projective co-
ordinate). Let E(F3n) a supersingular curve defined
by the following equation

E(F3n) Y2 = X3−X +b where b= ±1

Let P1 = (X1,Y1,Z1,T1) and P2 = (X2,Y2,1,1) be
two points on E(F3n) expressed in ML-projective co-
ordinates. Then

Addition. Let P3 = P1 + P2, the ML-coordinates
(X3,Y3,Z3,T3) of P3 can be computed as

Z3 = Z1(X2T1−X1), T3 = Z2
3,

X3 = (Y2Z3
1 −Y1)

2 +(X2T1−X1)
3

+X2T3,
Y3 = (Y2Z3

1 +Y1)(X2T1−X1)
3

−(Y2Z3
1 −Y1)

3.

(5)

These formulas require7M +3C.
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Table 4: Complexity comparison.

Algorithm Coordinates Tripling Mixed addition Doubling
Classic Affine 4C 1I +2M +1C 1I +1M +1C

(Koblitz, 1998) Ordinary projective 6C 10M +1C -
(Baretto et al., 2002) Ordinary projective 6C 9M +1C -

(Harrison et al., 2002) Jacobian 1M +6C 8M +3C 7M +2C
Proposed ML-Projective 8C 7M +3C 6M +4C

Doubling. Let P3 = 2P1 the ML-coordinates
(X3,Y3,Z3,T3) of P3 can be computed as

Z3 = −Y1Z3
1, T3 = Z2

3,
X3 = (T3

1 )2 +(X3
1 −Y2

1 )Y2
1 +bT3,

Y3 = T9
1 +Y2

1 T3.
(6)

These formulas require6M +4C.

Tripling. Let P3 = 3P1 the ML-coordinates
(X3,Y3,Z3,T3) of P3 can be computed as

X3 = (X1−bT1)
9, Y3 = −Y9

1 ,
Z3 = Z9

1, T3 = T9
1 .

(7)

These formulas require8C.

Proof. Mixed Addition.Let us check thatX3/T3 and
Y3/Z3

3 are equal respectively tox3 andy3 of Table 2.
ForX3/T3 we have

X3/T3 =
(Y2Z3

1−Y1)
2+(X2T1−X1)

3+X2T3
T3

=
(Y2Z3

1−Y1)
2+(X2Z2

1−X1)
3

(Z1(X2Z2
1−X1))

2 +X2

sinceT1 = Z2
1 . We proceed the simplifications

X3/T3 =
(Y2Z3

1−Y1)
2

Z2
1(X2Z2

1−X1)2 +
X2Z2

1−X1

Z2
1

+X2

=
(

y2−y1
x2−x1

)2
− (x2 +x1).

After the cancellation of the power ofZ1 in the
numerators and denominators we get the required ex-
pression (Table 2).

ForY3/Z3
3 and for Doubling and Tripling formulas

we can prove it in the same way.

In Table 4 we give the cost of the operation in ML-
coordinate and also the cost of the best known for-
mulas ((Koblitz, 1998; Baretto et al., 2002; Harrison
et al., 2002)). We remark that our formulas improve
previous mixed addition formulas by 1M or 2M. In
on other hand, the tripling require 2 more cubing.

5 CONCLUSIONS

In this paper we have studied the arithmetic on super-
singular elliptic curve defined over field of character-
istic 2 and 3. We have introduced two new coordinate
systems , theXZ-projective coordinates and the ML-
projective coordinates. We obtain new formulas for
point addition, point doubling and point tripling on
the curve. The formulas are cheaper and provide a
more efficient scalar multiplication on the curve.
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