
A POLYNOMIAL BASED HASHING ALGORITHM

V. Kumar Murty
Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, M5S 3G3, Canada

Nikolajs Volkovs
GANITA Lab, Department of Mathematical and Computational Sciences

University of Toronto - Mississauga, 3359 Mississauga Road, Mississauga, Canada

Keywords: Hash function, data integrity, polynomials over finite fields.

Abstract: The aim of this article is to describe a new hash algorithm using polynomials over finite fields. It runs at
speeds comparable to SHA-3. Hardware implementations seem to run at significantly faster speeds, namely
at 1.8 Gb/sec on an FPGA. Unlike most other existing hash algorithms, our construction does not follow the
Damgaard-Merkle philosophy. The hash has several attractive features in terms of its flexibility. In particular,
the length of the hash is a parameter that can be set at the outset. Moreover, the estimated degree of collision
resistance is measured in terms of another parameter whose value can be varied.

1 INTRODUCTION

There is much discussion now about how to construct
a good hash algorithm. The main difficulty stems
from the fact that the design principles of a hash func-
tion are not completely understood. However, some
desirable features of a future hash function have been
enumerated (NIST,2006). In particular, the algorithm
should provide for

1. a changeable length of hash

2. collision resistance measured in terms of a tunable
parameter

3. different functions for online and offline usage.

There are some methods that have been studied in
the literature to produce new hash functions from old
functions. For example, one might consider the con-
catenation of two existing hash functions. Or, one
might increase the number of rounds in an existing
function. It is not clear what effect these methods
have on collision resistance. In general, it seems that
the design principles of hash functions are not well
understood.

The aim of this article is to describe a new hash
algorithm, which incorporates some of the features
specified in (NIST,2006). In particular, the output
length of the function is a parameter that can be set
at the beginning. Moreover, the degree of collision

resistance is expected to depend on another parame-
ter that can also be specified at the outset.

The performance of the algorithm is comparable
to that of the SHA-family. In particular, for a 384 bit
hash, the speed is comparable to SHA-384. For a 512
bit hash, the speed is 5% faster than SHA-512.

The hardware implementation of the algorithm is
especially effective. Modelling shows that the speed
of the function may reach 1.8 Gbits/sec (on an FPGA
V running at 299 MHz). Analysis also suggests that
on an ASIC, we may obtain speeds of approximately
4 Gbits/sec (600 MHz). We note that the structure of
the algorithm is such that the performance improves
for longer files and larger hash sizes. The algorithm
has two phases, the second of which does not depend
on the length of the message being hashed.

The collision resistance of the function is depen-
dent on the difficulty of solving a family of systems
of iterated exponential equations in a finite field. This
is not a problem that has been studied in the literature.
However, it does not seem to be tractable by standard
methods of analytic number theory.

Summarizing, the hash function that we construct
has the following important attributes. Firstly, the
length of the output can be changed simply by chang-
ing a few steps of the calculation. Secondly, an aspect
of the construction, namely the use of “bit strings”
allows us to choose the degree of collision resistance

103
Kumar Murty V. and Volkovs N. (2008).
A POLYNOMIAL BASED HASHING ALGORITHM.
In Proceedings of the International Conference on Security and Cryptography, pages 103-106
DOI: 10.5220/0001929501030106
Copyright c© SciTePress

for a fixed output length. Thirdly, the computation is a
bit-stream procedure as opposed to a block procedure.
Finally, we note that creating a collision requires the
solution of a system of non-linear iterated exponential
equations. As far as we are aware, such equations can-
not be solved by standard methods of analytic number
theory. Moreover, we are not aware of any other hash
function in the literature whose collision resistance in-
volves such iterated exponential equations.

For its performance characteristics, design fea-
tures and dependence on what appears to be an in-
tractible mathematical problem, we believe this hash
function is worthy of further attention, and so we
present this preliminary report.

Our construction uses polynomials over finite
fields. We note that earlier works have used polyno-
mials over finite fields in the construction of hash al-
gorithms. See for example, the work of Krovetz and
Rogoway (Krovetz and Rogoway, 2000). However,
our use of polynomials is very different. Most other
existing hash algorithms are based on the Damgaard-
Merkle (Damgaard,1989), (Merkle,1989) approach.
The reader can find a description of such algorithms
in the book of Menezes, van Oorschot and Vanstone
(Menezes et al,1997).

Following the recent ground-breaking work of
Wang (Wang et al, 2005), the Damgaard-Merkle de-
sign methodology has come under close scrutiny. Our
approach, however, is not based on the Damgaard-
Merkle methodology.

2 BRIEF DESCRIPTION OF THE
STEPS

The main steps are stretching, masking, forming a
collection of tables with bit strings, forming a knap-
sack and performing one exponentiation in a group.
We briefly describe each of these steps.

2.1 Padding, Splitting and Masking

The message is stretched by appending 4096 bits con-
sisting of a fixed string. This stretching operation
is different from the one described in, for example,
Aiello, Haber and Venkatesan (Aiello et al, 1998)
in which a randomized function is used to perform
stretching. In our algorithm, the purpose of stretch-
ing is to populate certain auxiliary bit strings. Let us
denote byk the length in bits of the padded message
M.

The message is then split into overlapping seg-
ments which are interpreted as polynomials overF2
of degree< n wheren is chosen such that 3< n < 11.

More precisely, denote byM(i, j) the substring of
M beginning with thei-th bit and ending with the
j-th bit. Also, denote byM[i] the i-th bit of M.
Let us defineS(M,n) to be the setM(1,n),M(2,n +
1), · · · ,M(k− n + 1,k),M(k− n + 2)M[1],M(k− n +
3)M(1,2), · · ·M[k]M(1,n − 1). EachM(i, i + n − 1)
may be thought of as a polynomial of degree< n over
F2. Thus,S(M,n) consists ofk polynomials of degree
< n. Note that the construction of theS(M,n) is a
stream procedure. We choosec values ofn, wherec
is a variable parameter.

Next, we perform a complicated iterative mathe-
matical procedure which we call masking. It is one-
to-one and length preserving. Though one-to-one, the
procedure is difficult to invert and it involves finite
field arithmetic. Let us denote byCUR1, · · · ,CURk
the effect of this procedure. We view them ask poly-
nomials of degree< n. At any given time, we need to
store 2n of these polynomials.

For any bit stringB, we defineint(B) to be the
integer whose base 2 expansion isB. The registers
CURi are constructed as follows. Set

d1 = d1(i) = i−2− int(Mi−1), (1)

d2 = d2(i) = i−2− int(CURi−1).

Let f (x) ∈ F2[x] be irreducible of degreen. Thus,
there is an isomorphism of fields

F2[x]/(f (x)) ≃ F2n .

Denote byφ f the isomorphism ofF2-vector spaces

F2[x]/(f (x)) −→ F
n
2.

Let δ andβ be generators of(F2[x]/(f (x)))× (resp.
(F2[x]/(g(x)))×) corresponding to polynomialsf (x)
andg(x) say. We set

CUR1 = M1 ⊕φ f (δ) ⊕φg(β), (2)

CURi = Mi⊕

φ f (δ(int(Mi−1)+int(CURi−2)mod2n
)⊕

⊕φg(β(int(CURi−1)+int(CURi−2))mod2n))

for i = 2, ...,2n +1, and

CURi = Mi⊕ (3)

φ f (δint(Mi−1)+int(CURd1
)mod2n

)⊕

⊕φg(β(int(CURi−1)+int(CURd2
)mod2n

)

for i = 2n+2, ...,k with d1 andd2 defined by (1). Once
again, we stress that the procedure just described for
calculating the valuesCURi is a stream procedure.
Moreover, as the result below indicates, the values of
theCURi uniquely determine the original messageM.

SECRYPT 2008 - International Conference on Security and Cryptography

104

Proposition 2.1. Let M and M′ be messages of length
k with CURi(M) = CURi(M′) for i = 1, · · · ,k. Then
M = M′.

The proof is given in (Murty and Volkovs,2008).
If we choosec valuesn1, · · · ,nc of n, then we cal-

culate the values of registersCURn j for all the ele-
ments of the sequences

S(M,n1),S(M,n2), ...,S(M,nc).

Of course, for differentn j we use different fieldsF2n j

with the corresponding generators. Thus, we have
constructed the following set of collections of poly-
nomials

CURn1
i ,CURn2

i , ...,CURnc
i , (4)

2.2 Construction of Tables

We construct a number (we considered 200) of tables
containing 2n entries each. These tables are initially
set to zero and then individual entries of the table are
incremented according to a simple rule that depends
on the bits of the stretched message and the values of
theCURi. At the end of this operation, we produce
tables the average entry of which isk/(2n ∗200). In
particular, for a message of 1MB and usingn = 4, the
average table entry will be an integer of size 2500. By
construction, the sum of the entries in the tables is the
same as the message length, namelyk.

Choose an integerr > 2n. We will constructr ta-
bles T b1, · · · ,T br as follows. Letq > 0 andg > 0
be chosen so thatq + g < n. For example, we may
take q = g = 1. For any integerm, denote byi =
int(m (mod r)) the integer with 0≤ i < r andm = i
(mod r). Define the function

h = h(M) : {1,2, · · · ,k} −→ {1,2, · · · ,r}

as follows:

h(1) =

{

int(q (mod r))+1 if M[1] = 1
int(q + g (mod r))+1 if M[1] = 0.

For i > 1,
h(i) =

{

h(i−1)+ int(q (mod r))+1 if M[i] = 1
h(i−1)+ int(q + g (mod r))+1 if M[i] = 0.

If on the i-th step of the distribution,M[i] is 1, we
assign polynomialCURi to the tableh(i). By “as-
signing” an elementCURi to a table with indexh(i)
we mean that we increment the counterint(CURi) -
th element of theh(i)-th table by 1. We stress that
r, q andg are chosen so that it is impossible to send
any two neighboring polynomials from any sequence
CUR to one and the same table.

In practice, we have more than one value ofn.
Thus, the above construction requires the choice of
r1, · · · ,rc corresponding ton1, · · ·nc. The construction

produces tablesT b(j)
i for 1≤ j ≤ c and 1≤ i ≤ r j.

2.3 Bit Strings

This is a technical construction which involves asso-
ciating a number of strings to selected entries of each
table. The length of these strings is a parameter that
can be chosen. The number of strings per table is an-
other parameter that can be chosen, with fewer strings
corresponding to greater loss of information. In our
tests, we associated up to 5 bit string to each table.
These strings are constructed so as to capture infor-
mation about the order in which the entries of the ta-
ble are updated. These strings require an additional
memory of about 5KB, assuming one string of length
200 bits per table. Details of this construction will be
presented in (Murty and Volkovs,2008).

2.4 The Spectrum

From these tables, we apply a certain linear trans-
formation to construct a “spectrum”. The maximum
value of a spectrum entry is approximatelyk/10 and
the average value isk/(2n+1∗10). In particular, for a
message of length 1MB, the spectrum from each ta-
ble contains about 25 bits. It is not necessary to store
more than one spectrum at a time.

2.5 Knapsack

Using the spectrum, we perform a Cantor enumera-
tion which computes one single number for each ta-
ble. This number is of the order(k/10)16. In particu-
lar, for a 1MB file, this is about 40 bytes. To the inte-
ger obtained by enumeration, we add the integer cor-
responding to the bit string. This produces, for each
tablet, an integerIt . Now we form the sum

I = ∑ tIt

which is an integer of length 320 bits.

2.6 Exponentiation and the Hash Value

Now fix a groupG andP an element of this group.
We compute the point multipleI.P. For the group, we
can choose, for example, the group of points on an
elliptic curve over a finite field of 2τ elements, where
τ is a parameter that can be chosen. Finally, the hash
value if thex-coordinate of the pointI.P. It belongs
to a finite field of 2τ elements and can be interpreted
as a bit string of lengthτ.

A POLYNOMIAL BASED HASHING ALGORITHM

105

2.7 Outline of the Algorithm

Our algorithm, then, can be described in brief as fol-
lows.

PARAMETERS: c, n1, · · · ,nc, {r j,s j,g j,q j}, τ
INPUT: Message M of length k
OUTPUT: Hash value H of M of τ bits
1. Compute the stretching and splitting
S(M,n j) (1≤ j ≤ c)
2. Compute the masking CUR

n j
i for 1≤ j ≤ c

and 1≤ i ≤ k.

3. Compute the tables T b
(n j)
i for 1 ≤ j ≤ c

and 1 ≤ i ≤ r j. Each table has 2n j entries
and each entry has s j bits.
4. Compute bit strings and their
associated integers BS

n j
i .

5. From the tables, compute the spectra
and their associated integers E

n j
i .

6. Use both sets of integers to compute
an integer I j (for 1≤ j ≤ c).
7. Compute H j in the group.
8. Put the H j together to form final
hash value H.

3 PRELIMINARY ANALYSIS

We tested the algorithm on the randomness tests pro-
vided by NIST. The results were as follows. For all
five output lengths, namely 160, 224, 256, 384 and
512 bits, all the tests were successfully passed. More-
over, all of the results we obtained during running
the NIST tests (NIST2,2006) show that we passed the
tests with certain reserve. For instance, for the Fre-
quency Test, in accordance with which “the number
of 1’s must be between 9,654 and 10,346”, we got
that the interval of number of 1’s for the 256-th bit of
the output was between 9817 and 10225.

The collision resistance of the algorithm is depen-
dent on the difficulty of solving several problems in-
cluding the problem of iterated exponential equations
over a finite field. Details will be given in the ex-
tended paper (Murty and Volkovs,2008) in prepara-
tion.

4 SUMMARY

The hash function that has been briefly described in
this announcement offers several attractive features
such as tunable output length, a tunable measure of
collision resistance. Moreover, in hardware it is run-
ning at 1.8 Gb/sec on an FPGA and it is expected to

run even faster on an ASIC. The design methodology
is not based on the Damgaard-Merkle approach and is
a bit-stream procedure.

REFERENCES

Aiello, W., Haber, S., and Venkatesan, R. (1998). New
constructions for secure hash functions (Extended ab-
stract). InFast Software Encryption, LNCS vol.1372,
pages 150-167. Springer Verlag, Berlin.

Damgaard, I. (1989). A design principle for hash functions.
In Advances in Cryptology, LNCS 435, pages 416-427.
Springer Verlag, Berlin.

Hankerson, D., Menezes, A., and Vanstone, S. (2004).
Guide to Elliptic curve cryptography. Springer-
Verlag, New York.

Krovetz,T., and Rogoway,P. (2000). Fast universal hash-
ing with small keys and no preprocessing: the PolyR
construction. InInformation Security and Cryptology
ICICS 2000, LNCS vol. 2015, pages73-89. Springer-
Verlag, Berlin.

Mal’cev, A.I. (1970) Algorithms and recursive functions.
Wolters-Noordhoff Pub.Co.

Menezes, A., van Oorschot, P.C., and Vanstone, S. (1997)
Handbook of Applied Cryptography. CRC Press.

Merkle, R. (1989). A Certified Digital Signature. In
Advances in Cryptology, LNCS 435, pages 218-238.
Springer Verlag, Berlin.

Murty, V. Kumar, and Volkovs, N. (2008). ERINDALE: A
polynomial based hashing algorithm. In preparation.

National Institute of Standards and Technology (2006).
Second NIST Workshop on Hash functions.
http://csrc.nist.gov/groups/ST/hash/second work-
shop.html, August 24-25, 2006.

National Institute of Standards and Technol-
ogy (2006). Computer Security Divi-
sion, Computer Security Resource Center.
http://csrc.nist.gov/groups/STM/cavp/standards.html

Wang, X., Yin, Y., and Yu, H. (2005). Finding collisions
in the full SHA-1. InAdvances in Cryptology, LNCS
3621, pages 17-36. Springer Verlag, Berlin.

SECRYPT 2008 - International Conference on Security and Cryptography

106

