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Abstract: A speech driven MPEG-4 compliant facial animation system is proposed in this paper. The main feature
of the system is the audio-to-visual conversion based on the inversion of an Audio-Visual Hidden Markov
Model. The Hidden Markov Model Inversion algorithm is derived for the general case of considering full
covariance matrices for the audio-visual observations. A performance comparison with the more common
case of considering diagonal covariance matrices is carried out. Experimental results show that the use of full
covariance matrices is preferable since it leads to an accurate estimation of the visual parameters, yielding the
same performance as in the case of using diagonal covariance matrices, but with a less complex model.

1 INTRODUCTION visual output is made dependent not only on the cur-
rent state, but also on the currentaudio input, resulting

The widespread use of multimedia applications such in improved performance. Brand (Brand, 1999) pro-
as computer games, online virtual characters, video posed a cross-modal HMM under the assumption that
telephony, and other interactive human-machine in- both acoustic and visual data can be modeled with the
terfaces, has made speech driven animation of vir- same structure. The training is conducted using video
tual characters to play an increasingly important role. data. Once a video HMM is learned, the video out-
Several approaches have been proposed in the literaput probabilities at each state are remapped onto the
ture for speech driven facial animation. Among the audio space using the M-step in Baum-Welch algo-
different models used to generate the visual infor- rithm (Baum and Sell, 1968).
mation (animation parameters) from speech data, the  All the above methods rely on the Viterbi algo-
ones based on Hidden Markov Models (HMM) have rithm which is rather sensitive to noise in the audio
proved to yield more realistic results. input. To address this limitation, Chet al (Choi

In the approach proposed by Yamametal (Ya- et al., 2001) have proposed a Hidden Markov Model
mamoto et al., 1998), an HMM is learned from au- Inversion (HMMI) method for audio-visual conver-
dio training data and each video training sequence is sion. HMMI was originally introduced in (Moon and
aligned with the audio sequence using Viterbi opti- Hwang, 1995) in the context of robust speech recogni-
mization (Viterbi, 1967). In the synthesis stage, the tion. In HMMI, the visual output is generated directly
Viterbi alignment algorithm is used to select an opti- from the given audio input and the trained HMM by
mal HMM state sequence for a novel audio and the means of an expectation-maximization (EM) itera-
visual output associated with each state in the au-tion, thus avoiding the use of the Viterbi sequence
dio sequence is retrieved. This technique provides and improving the performance of the estimation (Fu
video predictions of limited quality because the out- et al., 2005). Recently, Xieet al (Xie and Liu,
put of each state is the average of the Gaussian mix-2007) proposed a coupled HMM approach and de-
ture components associated to that state, which isrived an expectation maximization (EM)-based A/V
only indirectly related to the current audio vector conversion algorithm for the CHMMs, which con-
by means of the Viterbi state. Rao and Chen (Rao Verts acoustic speech into decent facial animation pa-
et al., 1998), (Chen, 2001) proposed a mixture basedrameters.
joint audiovisual HMM, least mean square estimation In this paper, a speech driven MPEG-4 compliant
method is employed for the synthesis phase and thefacial animation system is proposed. A joint audio-
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Audi Audio-Visual In a first training stage, feature parameters of the
uaio . . .

AudioVisual | Feature |FERUES audiovisual data are extracted. The audio part of the
Training Data | Extraction ————m> Training g feature vector consists of mel-cepstral coefficients,

Features while the visual part are the coefficients in a ICA rep-
Re.hudio ] resentation of the above mentioned set of reference
TRANING  ———— Qi 77777777777777 marks. In a ;econd t_raining stage, the audio part of

SYNTHESIS i the AV-HMM is re-trained using audio data from a
cocech] Feature | Judio-visual .| Fap speech-only database. Re-tr'alnlng only the audio part

P Extraction Conversion ] Estimation of the model allows to obtain a more robust model

I : against inter-speaker variability, avoiding the need to
. record videos of speakers with the reference marks on

MPEG-4 Facial|__, .
Animation their faces.

For the speech driven animation, speech data is
) _ ) _ used to estimate the visual features by inversion of the
Figure 1: Schematic representation of the speech driven an- a\/.{nMm using a technique described in section 3.
Imation system. From these data, Facial Animation Parameters (FAPS)
of the MPEG-4 (ISO/IEC IS 14496-2, Visual, 1999)
visual Hidden Markov Model (AV-HMM) is trained  standard are computed to generate the facial anima-
using audio-visual data and then Hidden Markov tion.
Model inversion is used to estimate the animation pa-
rameters from speech data. The feature vector corre-

sponding to the visual information during the train- 3 AUDIO VISUAL M ODEL

ing is obtained via Independent Component Analysis
(ICA). Previous approaches based on HMMs consider |, this paper, a joint AV-HMM is used to represent

diagonal covariance matrices for the audio-visual ob- the correlation between the speech and facial move-
servation, invoking reasons of computational com- ments. The AV-HMM, denoted ak,,, is character-
plexity. In this paper, the use of full covariance ma- ;a4 py three probability measures, namely, the state
trices is mvesﬂgatec_;l. Slmulatllon results show that ansition probability distribution matrix), the ob-
the use of full covariance matrices leads t0 an accu- geryation symbol probability distributior8f and the
rate estimation of the visual parameters, yielding the nitial state distribution 1), and a set ofN states

same performance as with diagonal covariance matri- g _ (S1.%,....sv), and audiovisual observation se-
quenc&ay = {Oau, - - .,0ayT}. In addition, the obser-

ces, but with a less complex model and without af-
fecting significantly the computational load. vation symbol probability distribution at stajeand

The rest of the paper is organized as follows. An timet, b;(0ay), is considered a continuous distribu-

overview of the speech driven facial animation system iqny which is represented by a mixturelfGaussian
is presented in section 2. The AV-HMM is introduced  jistributions

in section 3, where a Hidden Markov Model Inversion "
algpnthm for t'he general case of'conS|der|ng fgll co- bj(Oavt) = Z CimA(Oat, Ovt, Mjm, Zjim) 1)
variance matrices for the audio-visual observations is e

also derived. In section 4, the proposed algorithm for
feature extraction is described. The MPEG-4 com-
pliant facial animation technique is presented in sec-
tion 5. Experimental results and some concluding re-
marks are included in sections 6 and 7, respectively.

where cjm is the mixture coefficient for them
th mixture at statej and A(Oat,Ovt, Hjm,Zjm) IS @
Gaussian density with mean, and covariance jm.

The audiovisual observation, is partitioned as

T .
Oat = [0%,0)] . whereoy andoy are the audio

and visual observation vectors, respectively.
A single ergodic HMM is proposed to repre-
2 SYSTEM OVERVIEW sent the audiovisual data. An alternative to an er-
godic model, would be a set of left-to-right HMMs
A block diagram of the proposed speech driven ani- representing the different phonemes (with associated
mation system is depicted in Fig. 1. An audiovisual visemes) of the particular language. These models
database is used to estimate the parameters of a joinhave been used in the context of speech modeling by
AV-HMM. This database consists of videos of a talk- several authors, see for instance (Xie and Liu, 2007).
ing person with reference marks in the region around An ergodic model provides a more compact repre-
the mouth, see Fig. 2(a). sentation of the audiovisual data, without the need of

169



SIGMAP 2008 - International Conference on Signal Processing and Multimedia Applications

phoneme segmentation, which is required when left- mixtures, invoking reasons of computational com-
to-right models are used. In addition, this has the ad- plexity. This assumption is relaxed in this paper al-
vantage of making the system adaptable to any lan-lowing for full covariance matrices. This leads to

guage. more general expressions for the visual feature esti-
mates.
3.1 AV-HMM Training The idea of HMMI for audio-to-visual conver-

sion is to estimate the visual features based on the
o . trained AV-HMM, in such a way that the probabil-
The training of the AV-HMM consists of two stages, jty that the whole audiovisual observation has been

each one using a different database. In the first train- generated by the model is maximized. It has been
ing stage, an audiovisual database consisting of aproved (Baum and Sell, 1968) that this optimization
set of videos of a single talking person with refer- problemis equivalent to the maximization of the aux-
ence marks drawn on the region around the mouth, iliary function

is used to estimate the parameters of an ergodic AV- Q(A,y; Aay, Oa, Oy, 0Q)) £

HMM, resorting to the standard Baum-Welch algo- N M

rithm (Baum and Sell, 1968). Details on the com- £ 2 2 P(0a,0y, j,m| Aay) log P(Oa, 0, j,m| Aay)
position of the audiovisual feature vector are given j=1m=1

in Section 4, where procedures to take into account N M ) T
audio-visual synchronization and co-articulation are = jzlrrglp(oa,OV7 i,m| Aay) ['09 T[Jo+tZ|09 aj_4jq

also described. In the second training stage, a speech-
only database consisting of audio recordings from a
set of talking persons is employed to re-train the au-

T i

+ le()g N(oﬁtvo(/tauhmvijtm) + Z|09 Cjtm:| (3)
1= t=

dio part of the AV-HMM, leading to a speaker inde-

LY : - thatis
pendent model. The re-training is carried out using
an only audio HMM (hereafter denoted as A-HMM), 0, = argmax Q(Aay;Aav,0a, Oy, Q) }  (4)
with the same structure, which is constructed from the &

AV-HMM. The A-HMM has the same transition prob-  whereO,, O, andO,, denote the matrices containing
ability and initial state probability matrices obtained the audio, visual and estimated visual sequences from
in the first stage, while the corresponding observationt = 1,..., T, respectivelyrt;, denotes the initial prob-
symbol probability distribution is re-estimated from ability for statej anda;, ,j, denotes the state transi-
the speech-only database. The observation symboltion probability from statg; ; to statej;.

probability distribution is parameterized Ipym, Zjm The solution to the optimization problem in (4)
andcjm, see ed. (1). To emphasize the mix composi- can be computed by equating to zero the derivative of
tion of the AV-HMM, the mean and covariance para- Q with respect ta/,. Considering that the only term

meters can be partitioned as that depends ool; is the one involving the Gaussians,
2 sa_ sav this derivative can be written as
Hjm = { \]/m} Zim= [z\‘f;’ z\]/m:| 2 0Q(Aav; Aav; Oa, Oy, Q) _
Hjm m  Zjm 3ol =0
where the superscrit andv denote the audio and M
visual parts, respectively. During the second train- 0 = 2 z P(Oa,Ov, j,M| Aqy) X
ing stage, onlyf,, andZf, are re-estimated using the j=1m=1
speech-only data. Finally, the re-estimated parame- o [T
ters are fed back into the AV-HMM. X ool ZJOQ N(Oat, 0, Mjgm Zjm ) | (5)
t=
3.2 Audio-to-Visual Conversion Considering that

1
Hidden Markov Model Inversion (HMMI) was orig- log AL(0at, Olt; Hjem» Zjm ) = 10g 20 o]
inally proposed in (Moon and Hwang, 1995) in the

context of robust speech recognition. Choi and co- C1foa—n]" (Ditm P8 | [Oat — Hiim
authors (Choi et al., 2001) used this technique to esti- 2 |0vt — Hjym CDJ-:% P} m ] (Ot — Him
mate the visual features associated to audio features (6)

for the purposes of speech driven facial animation. ) , .
Typically, it is assumed (Moon and Hwang, 1995), Whered is the dimension 0ba and

(Choi et al., 2001), (Xie and Liu, 2007) a diagonal 1 CDj?‘tm[ dni‘fn
structure for the covariance matrices of the Gaussian jtme — q:\llfm \l!tm )
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the estimated visual observation becomes combination of a reduced number of independent vec-
N M -1 tors. The dimensionality reduction can be performed
oy = {Z S P(0a,0y,j,m| Aar) Pl | x by Principal Component Analysis (Hyvarinen et al.,

= 2001). The PCA stage yields an uncorrelated set of
N M vectors. It is desirable to have a statistically inde-
x Z‘ > P(0a,0v, j,m| Aav) [¢Ymu‘,~’m—¢‘j’%(0at—u?m)] pendent set of vector so that information contained
J=1m=1 in each vector will not provide information on any of
() the others. This is the main idea in ICA. Summa-
rizing, ICA after PCA will be performed on the data
For the case of diagonal matrices, equation (7) re- matrix D.
duces to Several algorithms are available in the litera-
-1 ture for ICA computation. The reader is referred
X to (Hyvarinen et al., 2001) and the references therein.
In this paper, the symmetric decorrelation based Fast-
ICA algorithm as implemented in (Gavert et al., 2005)
P(0a,0v, J, M| Aav) P, (8) was employed.
As a result of the ICA processing, any facial de-
formation can then be computed as

\",

P(oa70Va j?m | )‘av)cbjm

L.
I

z ,!;MZ
Mz IM=

=

X
1
i

which is equivalent to the equation derived in (Choi

etal., 2001). K
As is common in HMM training, the estimation fi = z Ovi Uk + fo (10)
algorithms (7) and (8) are implemented in a recursive k=1

way, initializing the visual observation randomly. Where{uk}fle are the indSBendent components from

D andoy, is thek-th component of the visual vector
ow. The coefficient®,;, are computed in two stages.
4 FEATURE EXTRACTION In the first stage, thzv;knark locations are estimated us-
ing image processing techniques. In the second stage,
The audio signal is partitioned in frames with the the Coefﬁcients)vtk are Computed in such a way that
same rate as the video frame rate. A number of the facial expression is given by the linear combina-
Mel-Cepstral Coefficients in each frarf@) are used  tion of the ICs vectors that best match the mark es-
in the audio part of the feature vector. To take timation computed in the first stage. Details of this

into account the audiovisual co-articulation, several procedure can be found in (Terissi and Gomez, 2007).
frames are used to form the audio feature veofpt

T 4
[r?‘tT—tc’ . ﬁll? a,al,,,....8 | corresponding to
the visual feature vectay;.

For the visual part, the coefficients in an Indepen- 5 FACIAL ANIMATION
dent Component representation of the coordinates of ] ] o ]
marks in the region around the mouth of the Speaking As already mentioned, the facial animation tEChnlque

person are used, see Fig. 2(a). Eet {f1,f,...,fr} proposed in this paper is MPEG-4 compliant. The
represent the training data collected from videos. MPEG-4 standard defines 64 Facial Animation Para-

EENOING) (OENGING! GI%s meters and 84 Feature Points (FPs) on a face model in
Each .vectorft N [X_l "2 ’<£)"’()t(;° Y1'Y2 oY ] its neutral state (Ostermann, 2002). FAPs represent a
contains the coordinatézy’,yp’) of each mark g = complete set of basic facial actions such as head mo-
1,2,...,P)forthet-th framet =1,2,....T. tion, and eye, cheeks and mouth control. FPs are used

~ Letfo be the neutral facial expression, mainly de- as reference points to perform the facial deformation.
fined as the expression with all face muscles relaxed  g55ed on the estimated facial expression for each
and the mouth closed (ISO/IEC IS 14496-2, Visual, frame, the associated FAPs can be determined by
1999), the relative facial deformation (with respect to computing the displacement of a set of marks from

the neutral expression) at each frame can be computedpeir corresponding position in the neutral facial ex-
asdy = ft —fo, and a deformation matrix can then be  ression. For instance, the marks encircled in red in
defined as Fig. 2(a) can be associated to FAP3 corresponding to
D = [d1,dy,...,dr] (9) jaw opening. Figure 2(b) shows the resulting expres-

The different facial expressions in the training sion after applying the estimated FAP3 to the neutral
data are represented by the columns of maiX he expression (several other FAPs, in addition to FAP3,
idea is to represent any facial expression as the linearhave also been applied to produce the mouth opening
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(b)

Figure 2: (a) Real person facial expression. Marks asso-

ciated to FAP3 are encircled in red. (b) Synthesized facial
expression.

and cheek movements). Similarly, several subsets of

marks can be associated to the different FAPs.

6 EXPERIMENTAL RESULTS

For the audio-visual training, videos of a talking per-

For the quantification of the visual estimation ac-
curacy, a separate audio-visual dataset, different from
the training dataset, was employed. The following re-
sults correspond to a co-articulation paramgter 5,
which proves to be the optimal value in the given
range. Fig. 3(a) and Fig. 3(b), show the AMSE and
the ACC as a function of the number of states and the
number of mixtures for an AV-HMM with full covari-
ance matrix. In this case, equation (7) applies for the
estimation of the visual observation§. As can be
observed, as the number of states and the number of
mixtures increase, the AMSE increases and the ACC
decreases, indicating that the accuracy of the estima-
tion deteriorates. This is probably due to the bias-
variance tradeoff inherent to any estimation problem.
The optimal values for the number of the states and
mixtures would be for this casd = 4 andM = 2,
respectively, corresponding ¢o= 0.47 andp = 0.75.

Fig. 3(c) and Fig. 3(d), show the AMSE and the

son with reference marks on the region around the ACC as a function of the number of states and the
person’s mouth were recorded at a rate of 30 framesnumber of mixtures for an AV-HMM with diagonal

per seconds, with a resolution of (32R40) pixels.

covariance matrix. In this case, equation (8) applies

The audio was recorded at 11025Hz synchronized for the estimation of the visual observatioo{g. As
with the video. The videos consist of sequences of the can be observed, to obtain a similar accuracy a more
Spanish utterances corresponding to the digits zero tocomplex model (larger number of states or mixtures)

nine in random order. For the re-training of the audio
part of the AV-HMM, an only-audio database consist-

is required. For this case, the optimal valuesidre
19 andM = 3, corresponding te = 0.47 andp =

ing of recordings of sequences of the utterances cor-0.76.

responding to the digits zero to nine by 25 speakers
(balance proportion of males and females) was col-

lected.

Experiments were performed with AV-HMM with
full and diagonal covariance matrices, different num-
ber of states and mixtures in the rangd@s20] and
[2,19, respectively, and different values of the co-
articulation parametet; in the range[2,5]. In the
experiments, the audio feature vec#pis composed
by the first eleven non-DC Mel-Cepstral coefficients,
while the visual feature vectax, is of dimension two
(K =2 in equation (10)). The performances of the
different models were compared by computing the
Average Mean Square Error (AMSE){ and the Av-
erage Correlation Coefficient (AC@)( between the
true and estimated visual parameters, defined as

1.8 1 7
e\s T_ZEZOW o\,tk (11)
1 L& (o — ) (0l — )
P TRAL ouo, (12)

respectively, whergy,, andoy, denote the mean and

the variance of the true visual observation, respec-

tively, andi, andaj, denote the mean and variance
of the estimated visual parameters, respectively.
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The use of full covariance matrices affects the
computational complexity during the training stage
but, since this is carried out off-line, this does not rep-
resent a problem. During the synthesis stage (visual
estimation through HMM inversion), and due to the
low dimension of the visual feature vectdt & 2),
the computational load is similar to the case of using
diagonal covariance matrices for the same number of
states and mixtures.

The above arguments allow one to conclude that
the use of full covariance matrices is preferable from
the point of view of both computational complexity
and accuracy.

The true and estimated visual parameters for the
case of full covariance matrices with= 4 states and
M = 2 mixtures (optimal values) are represented in
Fig. 4, where a good agrement can be observed.

7 CONCLUSIONS

A speech driven MPEG-4 compliant facial animation
system was introduced in this paper. A joint AV-
HMM is proposed to represent the audio-visual data
and an algorithm for HMM inversion was derived for
the general case of considering full covariance matri-
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L e I covariance matrices, as opposed to diagonal ones, was
0al | investigated. Simulation results show that the use of

full covariance matrices leads to an accurate estima-
tion of the visual parameters, yielding the same per-
formance as with diagonal covariance matrices, but
osf ] with a less complex model and without affecting sig-
nificantly the computational load.
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