
JAVA-C++ BRIDGE FOR SYMBIAN BASED SMARTPHONES

Balázs Goldschmidt, Gergő Gyánó and Zoltán László
Department of Control Engineering and Information Technology

Budapest University of Technology and Economics
Magyar tudósok krt 2, Budapest, Hungary

Keywords: Symbian, smartphone, j2me.

Abstract: Authors propose a simple framework in order to help smartphone developers gain both from the advantages
of J2ME and C++ in Symbian OS. The idea is that while JNI is not supported by J2ME, with the help of the
built-in networking support a daemon written in C++ can serve as a function-provider in cases when problems
with pure J2ME features can not be solved.

1 INTRODUCTION

The penetration of mobile phones is continuously in-
creasing. In 2006 more than 30 countries passed
100% penetration.(Wallace, 2006) The proportion of
smartphones among recent buyers in 2006 was 8.8%
in Western Europe.(Telephia, 2006; m:metrics, 2007)

The major advantage of smartphones is that new
applications can be installed on them after the device
has been released and sold. In a wide range of devices
the new applications can be Java midlets(J2ME, 2002)
or native applications. The benefit is obvious: at pur-
chase time the phones don’t have to have all possible
applications installed on them, it is the customer who
can install new software later.

When developing a mobile application, the devel-
oper has to choose an implementation basis (J2ME or
native OS). The most widespread native platform is
Symbian(Symbian, 2005) that is supported by major
smartphone manufacturers. This is why authors fo-
cused their attention on this platform alone.

J2ME is a well-defined subset of Java SE that is
supported by smartphones. The phones usually pro-
vide a virtual machine (KVM), that runs the Java ap-
plications, while different specifications describe fur-
ther support like the use of bluetooth, etc.

Advantages of developing J2ME applications are
(1) wide acceptance: most newly released mobile
phones support J2ME, (2) gradual learning curve and
ease of use: programmers with knowledge of Java

standard edition can easily learn the specifics and spe-
cialties of J2ME, and can easily develop and deploy
J2ME midlets.

The disadvantage of J2ME applications is their
limited access to native resources. Although a lot
of JSR-s are specified for accessing native resources
(bluetooth, calendar and files, SMS, etc), only a few
of these specifications are implemented in different
phones (for Nokia phone capabilities see figure 1).

Symbian platform provides an OS and runtime en-
vironment for applications usually written in C++.
The advantages of developing applications for this
platform are (1) wide acceptance: many smartphones
that allow consumers to install new software on them
run a version of Symbian; (2) low level access to
system resources: when writing native applications,
the programmer is allowed to access the phone’s re-
sources – like communication stacks, calendar entries
and files, etc. – directly.

The disadvantages if this platform include (1) a
steep learning curve: learning to develop Symbian
applications even for programmers with firm C++
knowledge is hard. To get accustomed to the devel-
opment process, to conforming special requirements,
etc. need lots of training and effort. (2) Difficult de-
velopment: the development process of Symbian ap-
plications needs significantly greater effort than that
of J2ME.

Authors motivation was to make it possible to
combine the advantages of both platforms. Let the

241
Goldschmidt B., Gyánó G. and László Z. (2008).
JAVA-C++ BRIDGE FOR SYMBIAN BASED SMARTPHONES.
In Proceedings of the International Conference on Wireless Information Networks and Systems, pages 241-244
DOI: 10.5220/0002027402410244
Copyright c© SciTePress



JSR API description
75 File & PIM
172 Web services
177 Security and Trust Services
179 Location
180 SIP
234 Advanced Multimedia Supplements
248 Mobile Service Architecture for CLDC

JSR 5320 6212 6600 N90
N82 N70
E51

75 • • • •

172 • • •

177 • •

179 •

180 •

234 • •

248 •

Figure 1: JSR support of selected Nokia smartphones. JSR-
s supported by all phone types are not shown here. (Source:
http://www.forum.nokia.com).

developers write the major part of an application in
Java, and implement only specific parts C++, parts
that need features not supported by J2ME or the JSRs
implemented in smartphones.

In order to combine the advantages of the two
platforms, however, the usual method used in J2SE,
where the necessary native code based modules can
be inserted into Java applications using Java native in-
terface (JNI, 2003; Liang, 1999), can not be applied,
because J2ME doesn’t support JNI at all. It was also
not an option for authors to create a new J2ME vir-
tual machine that supports such native codes. The in-
tention was to find a solution that is standards-based,
portable and easy-to-use.

The basic idea is to create a simple C++ applica-
tion, a daemon, that provides the necessary functions,
and which can be accessed over TCP/IP by the Java
applications that need the functionality.

2 GENERAL ARCHITECTURE

2.1 Major Modules

The general architecture of the framework can be seen
on figure 2. It consists of the following major mod-
ules:

• C++ Daemon. Generated by the framework. This
module hosts theC++ function skeletonthat im-
plements the necessary functionality. The module

KVM

Symbian OS

SmartPhone

C++ Daemon

Skeleton
Java Midlet

Java Stub

Figure 2: The general architecture of the framework.

Legend: italic: to be implemented by programmer,bold:
generated by framework, roman: shipped with smartphone.

accepts TCP/IP client connections, and calls the
required functions.

• Java Function Stub. Generated by the frame-
work. This function can be called from the Java
midlet, handles serialization, connects theC++
daemon, and returns the values passed back by the
daemon.

• C++ Function Skeleton. Implemented by the de-
veloper. It gets the serialized parameters passed
over TCP/IP, performs the necessary functional-
ity, and returns the result.

• Java Midlet. The Java midlet that performs some
task that depends on a functionality provided by
the C++ daemon. It is implemented by the devel-
oper.

2.2 Communication

The general communication scenario is the following:

1. Midlet needs a functionality provided by the dae-
mon. Calls the function of Stub (e.g.add(3, 5)).

2. Stub serializes parameters into a string, opens a
TCP/IP connection to the daemon, sends the op-
eration id and the parameters as character stream,
then waits for the return values.

3. Daemon accepts the connection, reads operation
id and parameters, calls the skeleton assigned to
the operation id, and passes parameters.

4. Skeleton deserializes the parameter values from
the character stream, then performs its task.

5. Daemon serializes the return value into a string,
and sends it to Stub.

WINSYS 2008 - International Conference on Wireless Information Networks and Systems

242



6. Stub receives the data, and deserializes the return
value and returns it to the caller Midlet. TCP/IP
connection is closed.

2.3 Protocol

The protocol of parameter-passing during the TCP/IP
communication is a simple string-based data-transfer.
Currently only integers, doubles and arrays of integers
or doubles are supported.

sending operation id and parameters uses this
form:

<id><values>

whereid is the operation id coded as an integer,
andvalues is the parameters. Both serialized as
follows.

sending an integer or double uses this form:

<L>:<V>

where <L> stands for the length of variable,V
stands for the value of variable.

Eg.: 3:1234:45.6 → values sent: 123 and 45.6.

sending array of integers or doubles uses this
form:

<LLA>:<LA><L#1>:<V#1>...<L#n><V#n>

whereLLA stands for the length of the integer de-
scribing the length of the array,LA stands for the
length of the array.

Eg.: 1:23:1233:456 → array of two elements
sent: (123, 456)

3 EXAMPLE APPLICATION

In this section a simple example is shown. The task
is to create a function that is passed two integers, and
returns the sum of them. The Java Stub on the client
side looks like this:

public int add(int a, int b) {
ClientCommunication c =

new ClientCommunication ();
c.setCommand (F_ADD);
c.add(a);
c.add(b);
if (!c.communicate ())

return Integer.MIN_VALUE;
return c.getInt();

}

• The constructor ofClientCommunicationinitial-
izes variables and the input and output character-
streams.

• The functionsetCommand()sets the command
parameter toF ADD, a constant that is defined on
both sides of the communication.

• The functionadd() adds the parameters to the
character-stream that is to be sent to the C++ dae-
mon.

• The functioncommunicate()sends the character-
stream to the daemon and receives the return val-
ues, which are then put into the output character-
stream. If the communication fails, it returns
false.

• The functiongetInt()retrieves an integer from the
output character-stream set bycommunicate().

The function is implemented in the skeleton (C++
server side) as follows:

// reads in two integers
// and returns their sum
void CSRemoteFunctions ::add() {

TInt ia = getInt();
TInt ib = getInt();
TInt ret = ia+ib;
addInt(ret);

}

Functionadd() is accessed through an array of
function-pointers. After implementing the function it
has to be put into this array:

#define F_ADD 0
#define F_SUB 1
#define F_SUM 2
...
void CSRemoteFunctions ::ConstructL () {

funcArray[F_ADD] =
&CSRemoteFunctions ::add;

funcArray[F_SUB] =
&CSRemoteFunctions ::sub;

funcArray[F_SUM] =
&CSRemoteFunctions ::arraysum;

...
}

When the daemon receives the client connection
and reads in the function id, it calls the respective
function, and the return value is converted back to
string format and sent back to the Java stub.

4 FRAMEWORK API

The functions needed to implement the Java stub are
collected in classClientCommunication. The class
provides the following public methods.XXX stands
for Int or Double, xxxstands forint or double.

• ClientCommunication() Constructor. Initializes
the input-output streams.

JAVA-C++ BRIDGE FOR SYMBIAN BASED SMARTPHONES

243



• void add(xxx i) Adds an integer or a double to the
values sent to the daemon.

• void add(xxx[] array) Adds an array of integers
or doubles to the values sent to the daemon.

• xxx getXXX() Retrieves an integer or double from
the return values.

• xxx[] getXXXArray() Retrieves an array of inte-
gers or doubles from the return values.

• void setCommand(int cmd) Sets the identifier of
the command to be called on the daemon’s side.

• boolean communicate() Opens the network con-
nection, sends the parameters, reads return values,
and closes the connection.

The following functions can be used during C++
skeleton implementation:

• TXXX CSRemoteFunctions::getXXX()
Reads an integer or double value from the input
stream that was received from the Java Stub.

• CArrayFixFlat<TXXX>* CSRemoteFunc-
tions::getXXXArray()
Reads an array of integers or doubles from the in-
put stream that was received from the Java Stub.

• void CSRemoteFunctions::addXXX (TXXX x)
Writes an integer/double to the output stream that
will be sent to the Java Stub.

• void CSRemoteFunctions::addXXXArray
(CArrayFixFlat<TXXX>* array)
Writes an integer/double array to the output
stream that will be sent to the Java Stub.

5 MEASUREMENTS

Tests were conducted to measure the overhead of the
function call in the framework between the Java stub
and C++ skeleton. For the test theadd function intro-
duced above was used. It was called 1000 times from
a J2ME midlet. The function was also implemented
in Java for control purposes. The smartphone used in
the tests was a Nokia N90.

The results show that the average execution time
was78.53mswhen the connection was not opened for
each call,105.33mswhen for each call a new con-
nection was established, and0.014mswhen the Java
implementation of the function was called.

The measurements show that the overhead of the
network communication is considerable. Still, au-
thors are convinced that for numerous problems the
idea proposed offers the only solution.

6 SUMMARY AND FURTHER
WORK

Authors proposed a simple framework in order to help
smartphone developers gain both from the advantages
of J2ME and C++ in Symbian OS. The idea is that
while JNI is not supported by J2ME, with the help of
the built-in networking support a daemon written in
C++ can serve as a function-provider in cases when
problems with pure J2ME features can not be solved.

The results described in the paper are preliminary.
Authors consider the following the major focal points
in further development.

Adding more parameter types.The current set of
parameter types (int, double, and their arrays) is insuf-
ficient. Authors plan to support more primitive types
(boolean, char, byte), as well as compound types (like
structs in IDL).

Automated skeleton and stub generation.Cur-
rently all code is written by the developer. In the near
future authors will develop an simplified IDL-like lan-
guage for specifying the functions, and a simple com-
piler that generates both C++ skeleton code and Java
stub code.

Protocol revision.The protocol currently used has
to be revised regarding efficiency and fault-tolerance.

Performance measurements.It has to be mea-
sured how the framework performs in different cir-
cumstances.

REFERENCES

J2ME (2002).Java 2 Micro Edition. http://www.jcp.org/en/
jsr/detail?id=68.

JNI (2003). Java Native Interface Specification.
http://java.sun.com/javase/6/docs/technotes/guides/
jni/spec/jniTOC.html.

Liang, S. (1999).The Java Native Interface Programmer’s
Guide and Specification. Prentice Hall PTR.

m:metrics (2007). Mobile market measures.
http://images.servicesmobiles.fr/press/passport-
sping2007.pdf.

Symbian (2005).Symbian OS. http://www.symbian.com/.

Telephia (2006). Americans lag behind europeans in smart-
phone adoption.

Wallace, B. (2006). 30 countries passed 100% mobile
phone penetration in q1.Telecommunications Online.

WINSYS 2008 - International Conference on Wireless Information Networks and Systems

244


