
AN OSGi BASED MOBILE DEVELOPMENT OVERVIEW

Pascal Suetterlin, Olaf Thiele and Hartwig Knapp
Chair in Information Systems III, University of Mannheim, L5,5 , 68131 Mannheim, Germany

Keywords: OSGi, Mobile Architectures, Overview.

Abstract: This paper presents an overview of the three most promising platforms for developing mobile applications:
Titan (Java), Google Android and the iPhone. While the Titan platform already implements most design goals,
Google’s Android platform is in an early development stage. The iPhone platform lacks most functionality,
but will soon be enhanced by a new firmware. The main focus in our comparison lies on the deployment and
management of applications through the Open Services Gateway Initiative (OSGi) framework.

1 INTRODUCTION

Following the immense success of mobile applica-
tions for the consumer market, much research in the
recent years has focused on mobile applications to
support the business side of mobility. Most projects
assumed that processing power as well as the devel-
opment environment on mobile devices are very lim-
ited. With the introduction of new mobile platforms
these assumptions might have to be altered. In this pa-
per we present the three most promising mobile plat-
forms on the market: Sun Java, Google Android and
Apple iPhone. All platforms offer numerous possibil-
ities, but as one of the main aspects of past research
consisted of dynamically deploying and managing ap-
plications, we focus on this area.

The OSGi specification described below has these
features as its main building blocks. Both deployment
and management proved to be hard to implement in
the past due to the need to access many functions of
the underlying operating system. OSGi aims at pro-
viding these basic functions for mobile applications
across several device specifications. Taking the view-
point of a potential developer for a dynamically load-
ing application we present what modern platforms are
capable of as well as how they conform to the OSGi
standard. For both classical cell phones (formerly
J2ME) and the new Google Android platform OSGi
implementations are available and described below.

2 TECHNICAL CONTEXT

This section describes the technical context surround-
ing the OSGi approach.

2.1 Service Oriented Architecture

Due to the increased complexity and size of mobile
applications there is a high motivation to implement a
Service Oriented Architecture (SOA) in both personal
and enterprise environments. Moreover, the growing
number of mobile devices calls for more abstract ar-
chitecture implementations like SOA. Simply speak-
ing, SOA enables programmers to build software ap-
plications composed of loosely coupled components
(Duda et al., 2005). Deployed applications need to
be suited to the user’s requirements, to the resources
of his/her Input/Output device and to the surround-
ing environment (e.g. context). Deployment refers
to all activities following the development of the soft-
ware which make it available to the user/device (Ayed
et al., 2006). These activities consist of installing and
configuring of the software but can also include soft-
ware reconfiguration, updates or even un-installing it.
One of the main benefits of a SOA in networked sys-
tems is that it reduces significantly the overall com-
plexity of building, managing and deploying applica-
tions. Many of the technical requirements for a SOA
are covered by an OSGi implementation.

245
Suetterlin P., Thiele O. and Knapp H. (2008).
AN OSGi BASED MOBILE DEVELOPMENT OVERVIEW.
In Proceedings of the International Conference on Wireless Information Networks and Systems, pages 245-248
DOI: 10.5220/0002027502450248
Copyright c© SciTePress



2.2 OSGi

The Open Services Gateway Initiative (OSGi) has
been actively developing its specifications for almost
10 years and aims at implementing a lightweight
framework for deploying and managing applica-
tions in service oriented architectures (OSGiAlliance,
2007). The OSGi Service Platform was built for the
consumer market and the alliance has already de-
fined a specification for mobile devices such as smart-
phones and PDAs in 2006. Based on the newly cre-
ated version OSGi 4 Nokia and others launched the
JSR 232 which is implemented by the Sprint Titan
Platform as described below. The OSGi framework
creates a host environment for deploying and manag-
ing bundles and the services they provide (Hall and
Cervantes, 2004). A Bundle is a plain jar-file with a
special format manifest file which is specific to the
framework. Bundles are organized hierarchically. It’s
possible that one application uses another bundle or
exports its own packages.

Besides the bundle-mechanism the OSGi stan-
dard describes a layer of four levels which provide
the different functions as described in the specifica-
tions. These are the ”L0 - Execution Environment”,
”L1 - Module”, ”L2 - Life-cycle” and ”L3 - Service
Model”. The first layer L0 consists of the minimum
execution environment so that almost every Java-
enabled device could implement the framework. This
layer can even be executed on older J2ME devices.
The next layer L1 implements the concept of bundles
that uses classes from each other in a controlled way
according to system and bundle constraints. The man-
agement mechanism provided by the framework in
layer L2 allows installation, activation/deactivation,
update and removal of the bundles without restarting
the virtual machine. The final layer L3 describes the
part which provides the publish/find/bind services.

3 COMPETING
ARCHITECTURES

In this section we highlight the specificities of the
three platforms covered in this paper: Titan as a typ-
ical Java implementation, Google Android and the
relatively new Apple iPhone. We start off with a
short introduction into the Java VM. Figure 1 gives
an overview of the OSGi implementations:

3.1 Mobile Java

Java 2 Micro Edition, which is meant for low memory
consumer devices, provides a run-time environment

for applications implemented in a stripped-down ver-
sion of the Java language (Lund and Norum, 2004).
The software implementations on the mobile devices
differ from the reference implementation for desk-
top computers(J2SE) of Sun Microsystems and re-
sult in incompatibilities. Details can be found in the
specification (J2ME, 2005). In addition to the min-
imal J2ME components called ”Connected Limited
Device Configuration” (CLDC), the ”Mobile Infor-
mation Device Profile” (MIDP) offers in version 2.0
new features such as an enhanced user interface, mul-
timedia and game functionality, greater connectivity,
over-the-air (OTA) provisioning, and end-to-end se-
curity (Sun, 2006). Some vendors implement more
functionality defined in Java Specification Requests
(JSR). This could be Bluetooth support (JSR-82) or
access to the locally stored contacts (JSR-75). Nokia,
for example, took the so called lead in several JSRs to
standardize their implementation efforts.

In this context we make use of the ”Connected De-
vice Configuration” (CDC), that runs on the most re-
cent cell phones as full implementations of a Java vir-
tual machine. It already utilizes the JSR-232 which
is the Java specification of the OSGi framework core
and mobile specifications. In contrast to existing
MIDP applications, this implementation can make use
of servlets, allows for better graphical programming
(games) and has direct access to the phone’s hard-
ware. The older CLDC and MIDP standards will
probably give way to the fully J2SE compliant CDC.
However, it has recently been stated that ”the integra-
tion of OSGi with a Java EE environment is challeng-
ing as both technologies want to take control of the
Java runtime” (Kaegi and Deugo, 2008). This might
hold true for mobile applications as well.

3.2 Sprint Titan Platform

The Titan platform by Sprint (developed together with
Nokia) offers built in support for OSGi through a
JSR-232 specification and is therefore an existing im-
plementation of the JSR. Furthermore, it is already
included in the Windows Mobile SDK for Smart-
phones. Another advantage is, that the architecture
is openly accessible. Legacy applications are run as
classical MIDP applications, whereas OSGi bundles
are run by the CDC VM. Generally, bundles are run
in the background. The present Titan version sup-
ports the following application models: plain old MI-
Dlets (POM), OSG bundles and deployment packages
(DPs) and Eclipse embedded Rich Client Platform ap-
plications (eRCP). Future application models include
OAMs (OSGi aware MIDlets) or widget based web
applications.

WINSYS 2008 - International Conference on Wireless Information Networks and Systems

246



Figure 1: Competing Architectures and their OSGi Implementation.

A key OSGi concept of Titan is the possibility to
manage applications at run time. This can be done
remotely through the OMA-DM protocol. All neces-
sary development files are supplied as Eclipse plug-
ins. The plug-in aids in launching the VM, deploying
applications and bundles as well as using a built-in
profiler for debugging. As Titan is a true OSGi im-
plementation, most software written beforehand can
easily be ported to the platform. Effort for deploy-
ment and management is therefore minimal.

In a business context the Sprint platform can be
seen as a full OSGi implementation. It is justified
to say that other vendors will follow. Especially
given the fact that CDC allows for standard Java pro-
gramming instead of building specialized (cut down)
versions with Sun’s mobile J2ME platform. Two
competitors in this area are the relatively new An-
droid platform by Google and the very popular Apple
iPhone. Both are described in the following sections.

3.3 Android

Originally the company Android Inc. worked on a
novel (supposedly simpler) platform for mobile ap-
plication development. While Sun tries to overcome
the limitations of J2ME by introducing J2SE (Java
Standard Edition) features with CDC, Android offers
a simpler unifying approach. Google bought Android
in 2005 and thus drew public attention to the project.
In 2007 Google founded the Open Handset Alliance
together with LG, Motorola, Samsung and others in
order to develop an open mobile platform. This Al-
liance focused on the development of the so called

”GPhone”. Even though no mobile device is yet avail-
able, it can be seen as a competitor to Nokia’s market
power.

The Android platform builds upon a Linux ker-
nel, uses Apache Harmony, offers several APIs and
runs through a newly developed virtual machine name
Dalvik VM. Through this setup, Google avoids pay-
ing the Java licensing costs for mobile devices. Even
though the Dalvik VM draws heavily from the Java
world. Dalvik source code follows the Java syntax,
but offers different mobile APIs. The Android dx tool
offers to port existing Java byte code to executable
Dalvik byte code. Thus, existing Java source code
can easily be ported to Dalvik source code. Gen-
eral Dalvik APIs include SQLite (one of the small-
est database systems), OpenGL, SAX-Handler, Blue-
tooth (BLUEZ), JSON and a WebKit to run a browser
(e.g. Safari).

Apache Felix is the successor of the Oscar open
source project and implements the OSGi release 4
core framework specification (Felix, 2008) for gen-
eral use on Java platforms. Its goal is to provide
a completely compliant implementation of the OSGi
framework specification. Through its almost J2SE-
Standard JVM it’s possible to run Apache Felix with
only a few alterations (Offermans, 2007) on Android.
Thus, Android implements OSGi. In the next section
we present the iPhone platform.

3.4 iPhone

The iPhone platform has been developed for the Ap-
ple iPhone. The iPhone combines functions like me-

AN OSGi BASED MOBILE DEVELOPMENT OVERVIEW

247



dia player, mobile smartphone, digital camera and In-
ternet access in one device. Thus we speak of the
iPhone as both the physical device as well as the mo-
bile platform architecture. Comparing to Android, the
iPhone platform currently renounces the Java technol-
ogy due to licence fees which are around 5 - 10 Dol-
lar per device. The operating system is an reduced
Mac OS X (Leopard) which needs about 700MB disk
space. The scope of operations is limited compared
to the desktop version but uses an Linux-kernel (Dar-
win) with an modified development framework (Co-
coa) that supports touchscreen abilities.

Among a lot of helpful features the iPhone has
main limitations in application development compar-
ing to other devices. First, the iPhone has no Java
virtual machine available, all applications are written
in Objective-C. Second, there is currently no possibil-
ity to deploy an application to an iPhone. Facing this
drawback, Apple announced launching the SDK 2.0
in 2008. Developers are then able to send their ap-
plications to Apple and distribute it via the AppStore
software which will cause costs for both, developers
and users. Another option to bring an application on
the iPhone today is to ”jailbreak” it. During this pro-
cess some security key functions are disabled so that
downloading iPhone applications from third parties
like regular developers becomes possible. Of course,
the claim for warranty expires immediately. Hence,
this is not an acceptable option to deploy applications
in a business context, but it might be alright for re-
search purposes. Apple will provide some more key
features for the iPhone which are absolutely necessary
for the application development process.

4 CONCLUSIONS

We presented the three most promising mobile plat-
forms for dynamically deploying and managing appli-
cations available today. At first we looked at Sprint’s
Titan platform which has a built-in OSGi implemen-
tation according to JSR 232. One of the design goals
of the platform was the abililty of an SOA-oriented
framework. In our opinion Titan is a powerful plat-
form for dynamic distribution and collaboration of
software components and applications. There is also
support for the Eclipse embedded Rich Client (eRCP)
application model which means that rich GUI applica-
tions can run across a broad range of devices. A major
drawback is that there is only a Windows Mobile im-
plementation which means a limited device selection.

The second platform presented, Google An-
droid, has no built-in OSGi-Framework. We con-
sidered some OSGi-implementations such as Eclipse

Equinox, Apache Felix and Knopflerfish. Due to the
lack of available hardware, we could only test Apache
Felix in the emulator of Android SDK.

The iPhone SDK as our last platform has no
official mechanism for application distribution yet.
Through the business model of the iPhone Apple
wants to take a ”small” amount of the sales from third-
party applications. Apple created a so called App-
Store to make application delivery as simple as pos-
sible and wants to add it in the next iPhone firmware.
After completion, it should be possible to bring a
JVM to the iPhone (as announced from Sun). The
next step would be to port a OSGi-implementation to
the iPhone. When that task is completed then it would
be possible to use the OSGi-framework on the iPhone.
From hardware aspects Android could also run on the
iPhone. We hope that our insights on present OSGi
implementations will help further research.

REFERENCES

Ayed, Taconet, Bernard, and Berbers (2006). An adap-
tation methodology for the deployment of mobile
component-based applications. InACS/IEEE Interna-
tional Conference on Pervasive Services.

Duda, I., Aleksy, M., and Butter, T. (2005). Architectures
for mobile device integration into service-oriented ar-
chitectures. InICMB 2005: Proceedings of the Inter-
national Conference on Mobile Business.

Felix (2008). Apache felix project: http://felix.apache.org/.

Hall, R. and Cervantes, H. (2004). An osgi implementation
and experience report.CCNC, Consumer Communi-
cations and Networking Conference.

J2ME (2005). Java 2 micro edition:
http://java.sun.com/j2me/.

Kaegi, S. R. and Deugo, D. (2008). Modular java web
applications. InSAC ’08: Proceedings of the 2008
ACM symposium on Applied computing, pages 688–
693, New York, NY, USA. ACM.

Lund, C.-H. W. and Norum, M. S. (2004). A framework for
mobile collaborative applications on mobile phones.
Technical report, Norwegian University of Science
and Technology.

Offermans, M. (2007). Osgi, google android, apache felix:
http://blog.luminis.nl/roller/luminis/entry/osgion
googleandroidusing.

OSGiAlliance (2007). Osgi service platform release 4:
http://www.osgi.org/release4/.

Sun (2006). Mobile information device profile (midp); jsr
37, jsr 118:http://java.sun.com/products/midp/.

WINSYS 2008 - International Conference on Wireless Information Networks and Systems

248


