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Abstract. Recognizing a face from a novel view point poses major challenges 
for automatic face recognition. Recent methods address this problem by trying 
to model the subject specific appearance change across pose. For this, however, 
almost all of the existing methods require a perfect alignment between a gallery 
and a probe image. In this paper we present a pose invariant face recognition 
method centered on modeling joint appearance of gallery and probe images 
across pose in a probabilistic framework. We propose novel extensions in this 
direction by introducing to use a more robust feature description as opposed to 
pixel-based appearances. Using such features we put forward to synthesize the 
non-frontal views to frontal. Furthermore, using local kernel density estimation, 
instead of commonly used normal density assumption, is suggested to derive 
the prior models. Our method does not require any strict alignment between 
gallery and probe images which makes it particularly attractive as compared to 
the existing state of the art methods. Improved recognition across a wide range 
of poses has been achieved using these extensions. 

1 Introduction 

Recent approaches to face recognition are able to achieve very low error rates in the 
context of frontal faces. A more realistic and challenging task is to recognize a face at 
a non-frontal view when only one (e.g. frontal) training image is available. Pose 
variation in terms of pixel appearance, is highly non-linear in 2D, but linear in 3D. 
Notable work such as [2] shows good results for recognition in the presence of pose 
mismatch. A drawback of this, however, is the requirement of multiple gallery images 
or depth information of the subject. From a practical stand point, we have at most a 
single 2D gallery image per subject, and thus 2D appearance based methods have to 
be further investigated for view independent recognition. 

In the context of 2D appearance based methods, approaches addressing pose 
variation can be categorized into two main bodies of work. Multi-view face 
recognition is a direct extension of frontal face recognition in which the algorithms 
require gallery images of every subject at every pose [1]. In this context, to handle the 
problem of one training example, recent research direction has been to use specialized 
synthesis techniques to generate a given face at all other views and then perform 
conventional multi-view recognition[7][4]. Such synthesis techniques, however, 
suffers from severe artifacts and are not sufficient to preserve the identity of a person 
in general. 
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The other very recent line of work has been to directly model the local appearance 
change, due to pose, across same subjects and among different subjects. Differences 
exist among different methods, in how these models are built, but the goal of all is 
same i.e. trying to approximate the joint probability of a gallery and probe face across 
different pose [5][11][17]. Such an approach is particularly attractive in that it does 
not depend on error prone synthesis and it also automatically solves the one training 
image problem in a principled way as these appearance models can be learned 
effectively from an offline database of representative faces. Another benefit of such a 
line of work is that adding a new person’s image in the database does not require 
training the models again. We note, however, almost all of these methods proposed in 
literature until now intrinsically assume a perfect alignment between a gallery and 
probe face in each pose. This alignment is needed, because, otherwise, in current 
appearance-based methods it is not possible to discern between the change of 
appearance due to pose and change of appearance due to the local movement of facial 
parts across pose.  

In this contribution, we introduce novel extensions in this line of work and propose 
to build models on features which are robust against misalignments and thus do not 
require the facial landmarks to be detected as such. Our approach, briefly, is to learn 
probabilistic models describing the approximated joint probability distribution of a 
gallery and probe image at different poses. Since we address the problem where at 
most one training image (e.g. frontal) is available, we learn such models by explicitly 
modeling facial appearance change between frontal and other views when identity of 
a person is same and when it is different across pose. This is done by computing 
similarities between extracted features of faces at frontal and all other views. The 
distribution of these similarities is then used to obtain the likelihood functions of the 
form.  

g pp (I ,I |C ), C {S,D}∈   (1) 
‘C’ refers to classes where the gallery ‘Ig’ and probe ‘Ip’ images are similar (S) and 
dissimilar (D) in terms of subject identity. For this purpose an independent generic set 
of faces, at views we want to model, is used for offline training. 

A contribution is made in this paper towards improved recognition performance 
across pose without the need of properly aligning gallery and probe images. To 
achieve this, we propose to use an extension of SIFT features [12], that are 
specifically adapted for the purpose of face recognition in this work. This feature 
description captures the whole appearance of a face in a rotation and scale invariant 
manner, and is shown robust with regards to variation of facial appearance due to 
localization problems [14]. Furthermore, we propose to synthesize these features at 
non-frontal views to frontal by using multivariate regression techniques. The benefit 
of this in recognition performance is demonstrated empirically. To approximate the 
likelihood functions in equation 1, we propose to use local kernel density estimation 
for deriving models as opposed to commonly used Gaussian Model. 
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2 Modeling whole Face Appearance Change across Pose 

Our approach is to extract whole appearance of the face in a manner which is robust 
against misalignment due to localization. For this we use feature description [12] that 
is slightly adapted for the purpose of face recognition in this work. It models the local 
parts of the face and combines them into a global description. We then synthesize 
features at non-frontal views to frontal. Computing similarities using these features 
between frontal and other poses provides us with prior distribution for each pose. 
These distributions are then modeled using a variant of local kernel density estimator 
instead of commonly assumed Gaussian model. 

We show, in section 2.4, that deriving model using local kernel density results in a 
better fit than assumed Gaussian model. The effectiveness of our method is 
demonstrated using CMU Pose, Illumination and Expression (PIE) database [15]. 

2.1 Facial Database 

We use CMU PIE database for training and testing of our models. The PIE database 
consists of 68 subjects imaged under 13 poses, 21 illumination conditions and 3 
expression variations. We use the pose portion of this database with frontal 
illumination and neutral expression in all 13 poses. Each pose is approximately 22.5o 
apart. As depicted in figure 1, the pose varies from pose 1(frontal) to pose 9(left-
profile) with pose 5(Right-profile). Where pose 10, 11, 12 and 13 correspond to up 
and down tilt of the face in corresponding poses. 

Fig. 1. 13 poses covering left profile (9), frontal (1) to right profile(5), and slightly up/down tilt 
in pose 10, 11, 13 and 12 of corresponding poses in 8, 1 and 4 respectively. 

Images of half of the subjects are used as offline training set for training of models, 
while other half are used for testing. Face windows are cropped from the database 
without employing any commonly used normalization procedure. Therefore images 
contain typical variations that may arise due to miss-localization like scale, part 
clippings and background. All images are then resized to 128x128 pixels.  

Typical variations present in the database are depicted in few of the example 
images in figure 2.  
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Fig. 2. Examples of cropped facial images depicting typical variations due to miss-localization 
e.g. scale, part clipping, background etc. 

Note that, since we do not employ any kind of normalization such as fixing eye 
location or eye-distance, face images across pose suffer from typical misalignment. 

2.2 Feature Extraction 

As described earlier, commonly used facial representations are related directly to 
pixel intensities and, as such, are not invariant to changes in scale, position, 
orientation, brightness and contrast of a face. Since these types of transformations are 
to be expected after a face detector stage, alignment by using several facial landmarks 
is needed. 

 We propose to use a representation based on gradient location-orientation 
histogram (GLOH) [12], which is more sophisticated and is specifically designed to 
reduce in-class variance by providing some degree of invariance to the 
aforementioned transformations. GLOH features are an extension to the descriptors 
used in the scale invariant feature transform (SIFT) [9], and have been reported to 
outperform other types of descriptors in object recognition tasks [12].  

The extraction procedure has been slightly adapted to the task of face recognition 
and will be described in the remainder of this section. 

 The extraction process begins with the computation of scale adaptive spatial 
gradients for a given image I(x,y). These gradients are given by 

tw(x, y, t) t L(x, y; t)xyxy t
∇ ≡ ∇∑  (5) 

 
where L(x,y; t) denotes the linear Gaussian scale space of I(x,y) [8] and w(x,y,t) is a 

weighting, as given in equation 6.  

4tt L(x, y; t)xy
w(x, y, t)

4tt L(x, y; t)xy
t

∇
=

∇∑

 (6) 
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Fig. 3. (a-b) Gradient magnitudes (c) polar-grid partitions (d) 128-dimentional feature vector 
(e). Example image. 

The gradient magnitudes obtained for two example images (figure 3. e) are shown 
in figure 3.b. The gradient image is then partitioned on a grid in polar coordinates, as 
illustrated in figure 3.c. The partitions include a central region and seven radial 
sectors. The radius of the central region is chosen to make the areas of all partitions 
equal. Each partition is then processed to yield a histogram of gradient magnitude 
over gradient orientations. The histogram for each partition has 16 bins corresponding 
to orientations between 0 and 2π, and all histograms are concatenated to give the final 
128 dimensional feature vector, see figure 3.d. 

It should be noted that, in practice, the quality of the descriptor improves when 
care is taken to minimize aliasing artifacts. The recommended measures include the 
use of smooth partition boundaries as well as a soft assignment of gradient vectors to 
orientation histogram bins.  

2.3 Synthesizing Features at Non-Frontal Views to Frontal 

It is well known that when a large number of subjects are considered, the recognition 
performance of appearance-based methods deteriorates significantly. It is due to the 
fact that distribution of face patterns is no longer convex as assumed by linear models. 
By transforming the image in the previous section into a scale and rotation invariant 
manner, we assume that there exists a certain relation between these features of 
frontal and posed image that we can linearly transform. We justify this assumption by 
comparing the similarity distributions estimated from non-synthesized GLOH features 
and synthesized features. One simple and powerful way of relating these features is to 
use the regression techniques. Let us suppose that we have the following multivariate 
linear regression model, for finding relation between  the feature vectors of frontal ‘IF’ 
and  any other angle IP. 

IF  = IP  B 
 

(7) 

p

TT β βI 1I p 1 (1 ,1 ) (1 ,D )F 1
=    

T T β βI I 1 (D + 1 ,1 ) (D + 1 ,1 )F nn

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦
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Where n > D+1, with D being the dimensionality of each  FI
uur

 and PI
uuv

. B is a pose 
transformation matrix of unknown regression parameters, under the sum-of-least-
squares regression criterion, B can be found using Moor-Penrose inverse. 

T -1 T
P P P FB=(I I )  I I  (9) 

This transformation matrix B is found for each of the poses Ip (±22.5o, ±45, ±65o, 
±90o) with frontal 0o ‘IF’. 

Given a set of a priori feature vectors (from an offline training set1), representing 
faces at frontal ‘IF’ and other poses ‘IP’, we can thus find the relation between them. 
Any incoming probe feature vector can now be transformed to its frontal counterpart 
using:  Ip=IP · Bp 

2.4 Obtaining Prior Pose Models for Recognition 

We approximate the joint likelihood of a probe and gallery face as: 
 

g p
g p pg g pp(I ,I |C,Ø ,Ø ) p( |C,Ø ,Ø )γ≅  (10) 

Where ‘C’ refers to classes where the gallery ‘Ig’ and probe ‘Ip’ images are similar (S) 
and dissimilar (D) in terms of subject identity. ‘ pgγ ’ is the similarity between gallery 
and probe image. Cosine measure is used as a similarity metric. These likelihoods for 
the similar and dissimilar class are then found by modeling the distribution of 
similarities of extracted features between frontal and every pose from offline training 
set.  

Figure 4 depicts the histograms for the prior same and different distributions of the 
similarity ‘ γ ’, for gallery and probe images across a number of pose mismatches. 
Note that, the more separated the two distributions are the more discriminative power 
it has to tell if the two faces are of same person or not, in that particular pose. It is 
clear that the discriminative power decreases as the pose moves away from frontal. As 
shown in figure 4, synthesizing features to frontal dramatically improves this 
discrimination ability over a wide range of poses. 

In order to compute 2
pg pp( |S, )γ φ  and pg pp( |D, )γ φ , i.e. conditional probabilities 

describing similarity distributions when subject identity is same(S) and when it is 
different(D),  these distributions must be described by some form. The most common 
assumption is the Gaussian. We note, however, employing a normal density results in 
a poor fit. We therefore propose to use non-parametric local kernel density estimate. 

There exist various methods to automatically estimate appropriate values for the 
width σ of the kernel function. In this work, we simply set σ to be the average nearest 
neighbour distance:                                               . 

 

                                                           
1 In order to make the estimation of B feasible, 4 images/subject/pose(expression & illumination variants) are considered 
from the PIE database, of  the same 34 training subjects, for offline set.  

2n
i 2

n n
i=1

1 - 1p ( ) = k( ), where k( )= .
N (2 )

e
υγ γγ υ

σ σ π
−

∑  (11) 

127127



 
Fig. 4. x-axis denotes the similarity measure ‘γ’ and y-axis denotes the density approximation. 
1st row depicts histograms for the same and different classes on non-synthesized features across 
4 pose mismatches (see figure 1 for the approx. pose angles). 2nd row depicts the kind of 
separation and improvement we get by using feature synthesis. 

As depicted in figure 5, the kernel density estimate is a better fit, this is because the 
assumption of Gaussian distribution in such scenarios is generally not fulfilled. 
Kernel density estimator, on the other hand, is known to approximate arbitrary 
distributions [16]. 

 
Fig. 5. 1st row shows fitting a normal density, 2nd row shows the kernel density fits on the 
distribution of similarities obtained previously.  
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3 Recognition Across Pose 

Obtained likelihood estimates pg pp( |S, )γ φ  and pg pp( |D, )γ φ , in the previous section, 
can now be directly used to compute the posterior probability. For a probe image Ip at 
pose ‘ pφ ’, of unknown identity, we can now decide if it is coming from the same 
subject as gallery Ig , with each of the gallery image, by using this posterior as a 
match score. 

Employing these likelihoods, using Bayes rule, we write: 

 
(12) 

Since the pose pφ  of the probe image is in general not known, we can marginalize 
over it. In this case the conditional densities for similarity value pgγ  can be written as 

 

 
(13) 

 
(14) 

Similar to the posterior defined in equation 12, we can compute the probability of 
the unknown probe image coming from the same subject (given similarity pgγ ) as 

 
(15) 

If no other knowledge about the probe pose is given, one can assume the pose prior 
P( pφ ) to be uniformly distributed. We, however, use the pose estimates for a given 
probe face by our developed front-end pose estimation procedure [13]. Our pose 
estimation system provides us with probability scores for each pose that can be used 
directly as priors in equation 15. Due to a reasonably high accuracy of our pose 
estimates, these probabilities can act as very strong priors and thus increase the 
chances of a probe to be recognized correctly. 

We compute this posterior for an unknown probe image with all of the 
gallery images and choose the identity of the gallery image with the highest score as 
recognition result. 

4 Recognition Results 

As mentioned earlier, we use half of the subjects (34) in PIE database for training the 
models described in the previous section, while images of remaining 34 subjects are 
used for testing. As the gallery, the frontal images of all the 68 subjects are used. Note 
that, since we do not assume any alignment between gallery and probe images, 
therefore models are trained for the main 9 poses i.e. pose 1-9 in figure 1. While pose 
10,11,12 and 13 corresponding to up/down tilt of the face are treated as the variations 
due to misalignment for corresponding poses in the test set. All 13 poses for a subject 
in the test set are therefore considered.  
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Our results show that using our method one can achieve comparable results 
without putting any hard constraints on alignment of facial parts. We, however, 
include the Eigenface algorithm [11] for comparison, as it is the common benchmark 
in facial image processing.  

For our first experiment we assume the pose of the probe images to be un-known. 
We therefore use equation 15 to compute the posterior probability that probe and 
gallery images come from the same subject, where we use priors P(S)<<1 and 
P(D)=1-P(S).  

For an incoming probe image, we extract features as described in section 2.2. In 
order to synthesize these features to frontal we need to know the probe pose, as we 
have to use the corresponding pose transformation matrix B. Since we use a front-end 
pose estimation step, as described in previous section that provides us with the 
probabilities for different possible poses, we can directly use equation 13 and 14 by 
transforming the extracted feature vector of given probe to frontal for all poses. As 
these pose prior probabilities P( pφ ) act as weights and since they are only high for the 
nearest poses, therefore this does not affect the recognition performance much. 

Figure 6 summarizes the recognition performance for each of the 13 poses for the 
test set. 

 
Fig. 6. Recognition results for our method and Eigenface for unknown probe pose, using 
estimated pose probabilities (P( pφ )) as priors. 

 
Fig. 7. comparison between recognition results of our method for with and without feature 
synthesis. 
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For the second experiment, we compare the performance with and without feature 
synthesis. Figure 7 shows the performance gain achieved by using feature synthesis. 
As much as 20 % of performance gain is observed for probe poses moving away from 
frontal. 

Note that when a probe is at frontal (pose 1), the scores are 100% since exactly the 
same images are used in the gallery for frontal pose. 

5 Discussion and Conclusions 

Keeping in view the preceding discussion, we can now make some comments on the 
performance of our method. Note in figure 6 and 7, as the probe pose moves away 
from frontal, the scores deteriorate. The larger the width at which scores remain high, 
the more pose invariant the algorithm is. The scores here are presented for the more 
practical situation where the probe pose angles are not assumed known a priori. In 
order to cope with that, we use marginalization over probe poses. However, since we 
use feature synthesis, we need strong priors for the pose angles as opposed to using 

uniformly distributed assumption i.e. p
1P(  ) =

13
φ  (for the 13 poses). As these priors act 

as weights while computing the posterior in equation 15, using equal priors for every 
pose results in degrading recognition performance.  It is because an incoming probe 
feature vector has to be transformed first to every pose using corresponding pose 
transformation matrix. We have therefore used a front end pose estimation step, 
which provides us with probabilities scores for each pose.  

The clear advantage of using feature synthesis is shown by comparing recognition 
performance with and without synthesis in figure 7. On concluding remarks, we have 
presented a pose invariant face recognition method centered on modeling joint 
appearance of gallery and probe images across pose in a Bayesian framework. We 
have proposed novel extensions in this direction by introducing to use a more robust 
feature description as opposed to pixel-based appearances. Using such features we 
have proposed to synthesize the non-frontal views to frontal. The clear advantage of 
this has been demonstrated experimentally. Furthermore using kernel density 
estimate, instead of commonly used normal density assumption, is proposed to derive 
the prior models. Our method does not require any strict alignment between gallery 
and probe images and that makes it particularly attractive as compared to the existing 
state of the art methods. Improved recognition across a wide range of pose has been 
achieved using these extensions.  

Although, we have presented results by using gallery as fixed at frontal pose, we 
note that it is straight forward to use our method for any pose as gallery. 
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