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Abstract: We introduce a new kind of logic for agents in different localities, which works in tiers or layers.
At the base are local worlds with their own logic. Above them is a global logic that takes statements from the
local worlds and combines them. This allows communications between the different localities.
We give a basic example using first order logic as the local logic and propositional calculus at the global level.
As a more sophisticated example we use the algebraic specification language CASL and take the locations as
specificationsm. Moreover we then permit the combination of such specifications according to the architectural
specifications of CASL.
Although we only consider two layers in the present paper, we see no reason why the approach should not be
extended to any finite number of tiers. We prove soundness and completeness proofs for our logics.

1 INTRODUCTION In the field of Al and, by association, Logic, there
are two major styles of embedding localifiés a log-
It is well established that the work of agents in a ical system. The first is in the Propositional Logic
multi-agent system is enhanced by the presence of on-of Context (PLC) of Buvac-Mason (Buvac et al.,
tologies. For an ontology to be useful, people will 1995) and their extension of this to FOL. The second
have to agree to its terms and usage in the spirit of is the Local Models Sematics/MultiContext Systems
sharing. However, human nature ensures that people(LMS/MCS) of (Giunchiglia and Ghidini, 2000; Ghi-
will not agree nor use something like an ontology con- dini and Serafini, 1998). By no means do we imply
sistently. Thus the idea of arriving atgdobal ontol- that these are the only two possible styles: there are
ogyfor a domain of application appears to be wishful others such as in (Akman and Surav, 1996).
thinking. So it seems more appropriate to conceive of  One example of an LMS approach in the field of
pockets of communities sharing their ontologies and Description Logic (DL) is that taken by Borgida and
coping with any differences. It is more realistic to Serafin, who describe a Distributed DL in (Borgida
think of communities adopting a number of ontolo- and Serafini, 2003). A major problem has been the
gies, each created within thédacal community. transfer of knowledge between localities. Bridge
We shall adopt an approach which contextualizes rules (see Section 2) were introduced in (Ghidini and
the logics that support these ontologies, and therebySerafini, 1998), but the form of the rules was very
point a way for agent systems to deal with heteroge- limited and only allowed the (partial) identification of
nous ontologies. We shall describe two logiasfirst one concept as a subset of another in a different lo-
order logic of localitiesTiered FOL, which we use  cality. The idea is to align ontologies (or knowledge
as a basis, then we extend this technique to a languagdases) by expressing the connections between them.
Tiered CASL, where the localities are architectural The intent is that the logical system should allow the
specifications in the Common Algebraic Specifica- relationship of concepts to be stated in the said ontolo-
tion Language, CASL, see (CASL, 2001; Bidoit and gies, for example subsumption of concepts between
Mosses, 2004). We prove completeness results forontologies. To do this, Borgida and Serafini extend
both these logics. the usual DL formulation, taking their cue from the
Distributed First Order Logic (DFOL) of (Ghidini and

*The authors would like to thank four referees for their Serafini, 1998). In their formulation a DL statement is

(solely) constructive comments and suggestions for reduc-

ing the length of this paper. A full account of technicalites

may be found in (Cruz and Crossley, 2008). SWe use "locality” rather than "context” because the lat-
2We use natural deduction systems throughout. ter is so ambiguous.
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preceded by a label that stands for the ontology. Then  For agents in localities we again have the problem
they statebridge rules which relate a conceptin one of them communicating across different languages.
ontology to another one in a different ontology (see This paper is an attempt to provide a basic method
(Borgida and Serafini, 2003)). Thus they have seman- of formalizing such situations.
tic mappings in the system. We give the first presentation of what we call
Serafini/Borgida/Ghidini take their technique “Tiered Logic”, which allows the inclusion of pow-
from Giunchiglia’'s LMS which they call the erful bridge rules. In our logic, statements made in a
compose-and-conquexay of dealing with differ- local language are tagged with that local locality and
ences of languages in contexts. PLC uses a divide-then become “atomic” statements or basic proposi-
and-conquer technique and since we take our cuetions in a higher tier of what we call trgdoballogic.
from PLC, Tiered Logic is a divide-and-conquertech- With bridge rules any statement in one locality can
nigue, though the terminology may not be entirely ap- have consequences in another. So information can be
propriate as there are similarities to both. conveyed, or even translated, from one locality to an-
In relation to Gabbay’s Fibring of Logics, see e.g. other.
(Gabbay and Nossum, 1997), we can easily see that We provide soundness and completeness proofs
the way we chose the global model has strong affini- for two varieties of our underlying idea of tiered logic.
ties in fibring. This can be seen in how we define what For simplicity we assume that all our localities have
modelsxX, and note thafib evaluates tany itself in the same underlying logic, but different languages.
our system(see Section 2). This restriction is not essential but a completely gen-
In global (natural language) discourse one often €ral approach would be notationally horrendous. The
sees or hears statements in a foreign language usegomplications in our presentation come from the in-
in the middle of something in the local language, for teractions between the tiers: when a sentence from
example in a television broadcast where the spokenone locality is used in a different locality, one has to
foreign language is accompanied by subtitles. Refer- refer back to the first locality in order to determine the
ences may then neeed to be changed or at least clarisemantics.
fied. Consider the following two assertions: Additionally we use SaSa Buvac'’s, see e.g. (Buvac
et al., 1995) notion oflatnesg(see Section 2). This
entails that once a statement has been made (and its
semantics determined for its own locality) then the
truth or falsehood of the statement is unaffected by
reporting it in another locality. Thus in the example
Here the references are to the same country, howeveabove, a US newspaper reporting what had been said
the reference to the president refers, in the first case,in the USA might include the statement that it had
to the French one, and in the second, to the US Pres-been reported in France that the (US) President had
ident® There is no contradiction between the quota- said there were weapons of mass destruction in Iraq.
tions, but there is between the two men. The semantics here would only depend on what was
In the media there would be an indication of the said in the US, not what was reported in France (as-
locality, i.e. country. Thus we might have found inthe suming that the media tell the truth).
USA: “The Presidendf Francesaid that there are no
weapons of mass destruction in Iraq,” and in France:
“Aux Etats Unis, le Présidenta ditquily aarmesde 2 TIERED FOL
destruction de masse en Irak”. Finally, in a third coun-
try: “In the USA, the President said there are weapons
of mass destruction in Iraq, but in France, its Presi- " .
dent said there are no wegpons of mass destruction."number. of_IocaI|t|es, think of France, th.e USA, etc.,
each with its own local theory. In our first example

Semantically we understand these utterances becausg ~~ . , . :
we tag each utterance with its context or, as we shall We simply use first order logic at each locality. These

say, “locality”, in these cases, France and the USA, comprise Tier 0. At each locality we have a traditional

) . : ; model of the local theory, that is to say, a first order
respectively. Then we interpret them in that locality. model. We collect these{ogether to forym a model for

4“The President said that there are no weapons of masst.he global (t_ler 1) language. The qnderlylng S?ma”'
destruction in Iraq.” tics at tier 1 is the standar(_jlsemantlcs of proposmonal
5The reference to weapons of mass destruction was c@lculus except that traditional propositional letters

more problematic because we did not know whether there are replaced by what we call "basic” global formulae.
were any in Iraq! However, we also have interaction between the

“Le président a dit qu'il n'y a aucune arme de
destruction de masse en Irak.”

“The President said that there are weapons of
mass destruction in Iraq.”

First we consider the informal semantics. We have a
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Figure 1: The transfer rules. Note thatand B must be
local formulae ofl for the (Exit) and (Entry) rules. (Of
course this includes global formulae).

global scene and the localities. So we have to specify
how the semantics (the models) interact between tier

0 and tier 1. From an intuitive point of view the inter-
action is relatively simple and reflects our earlier in-
formal example. Intuitively: a formula is interpreted
in its local locality, so that a tier O formula is inter-
preted in a traditional first order logic model (in tier
0 at a locality|, say). On the other hand a global, or
tier 1, formulais interpreted using the values from the
tier 0 model (or models) according to the usual rules
for propositional calculus. When we go back down
from tier 1 to tier 0, the semantic value is unchanged.
(This depends on the fact that our formulae at tier 1

have no free variables and are therefore true or false.)

The formal definitions follow the usual pattern.

Syntax. Because of going up and down between tiers
the syntax looks a little complicated, however the ac-
tual formulae should be easily readable. Welldte

a set of localities. At each localitye . we have a
first order logic with a languagé' as usual. These
generate thaetrictly local formulag which we denote
by ¢,, etc. Going up to the global level (tier 1)
we define the basic global formulae as strictly local
sentences tagged by their locality, eqd. These are
combined as in an ordinary propositional calculus and
we denote global formulae b, W, etc. But now we

can take these back down to the local level, where Lemmal 1.

they interact with formulae already there (including
strictly local formulae). We then take the inductive

closure in the usual way, to get the set of local formu-
lae at that locality.

Thus local formulae and global formulae are in-
ductively defined using a pair of interacting inductive
definitions. Notice that although global formulae are
local formulae (for any locality) the reverse is defi-
nitely not the case. For example, a strictly local for-
mula of localityl is not a global formula.

ExamplesWe assume that the language of local-
ity | hasonlythe predicate lettd?, and that the local-
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ity k hasonlythe predicate lettef®; andP,.

Strictly local formulae:VxP(x) in the localityl;
(P1(X) — P2(x)) in the localityk; and3yP:(y) in the
locality k.

Global formulae: VxP(x)', ((VxP(x))! —
(3xPL(x))%), (3yPa(y))k. Notice that the localities
are superscripts in the global formulae; Each global
example is either a superscripted losahtencer a
propositional combination of such sentences.

Local formulae for the localityk: (VxP(x))',
(PL(X) — P2(x)), and 3y((¥xP(x))" — Px(y)). The
first formula, (VxP(x))', is local (even in the locality
k) because it is a global formula; the second is local
in k because it is a strictly local formula &f and the
third is local ink, because it is a first order logic com-
bination of a strictly local (and therefore also local)
formula,P,(y), of k and a global (therefore also local)
formula, (VxP(x))'.

Our axiom system is designed from reflecting on
the semantics. The (strictly) local syntax is simply
first order logic in the language' for tier 0 and
propositional calculus for tier 1. In addition to these
we have the rules in Figure 1 which are essentially due
to (Buvac et al., 1995). We redd-y Aas ‘T globally
provesA’andl” ) Aas ‘T provesA in the localityl”.

The (Exit) and (Enter) rules allow us to move up
and down between the tiers, provided we appropri-
ately tag or untag the formula. The rules (K), (D) and
(T),® when used together with the (Exit) and (Enter)
rules, ensure that the propositional connectives com-
mute with moving between the tiefs.

The rule (Flat), see (Buvac et al., 1995), ensures
that once a statement has been made in one locality its
truth-value is unchanged when it is taken into another
locality. (Flat-0), which is our addition to the ideas of
BuvaC ensures consistency between local and global
versions of a statement. cf. footnote 7 above.

Remark 1. If = is the strictly local theory in the lo-
cality I, then we define théfting of = to the global
tiertobe=' = {¢' : =+ ¢}.

If @ is a global formula, ther” I

(b« @) for any locality |.
2.ZH ¢ is equivalent t&&' -, ¢'.

Lemma 2. If ® and all formulae inl" are global for-
mulae, and’ k- ®, thenl -y ®.

The proofs of these and all other results may be
found in (Cruz and Crossley, 2008).

6We have retained Buvat's arrangement and labels.

7If we did not have the (Exit) and (Enter) rules we would
be able to have, say, the apparent inconsistency of having
—A at the local level and ye&' at the global level.
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Theorem 1 (CNF for Global Formulae). Every
global formula is provably equivalent to a conjunc-
tion of disjunctions of basic global formulae.

Proof. First show that every global formulais globally
provably equivalent to a propositional combination of
basic global formulae, and then, as usual, put this into
conjunctive normal form. O

Formal Semantics. We first define a strictly local
model for a localityl as being a model in the usual

first order logic sense, and we denote such models as

my. These are the tier 0 models. Then a model for the
globalsystem, otier 1, modelis a set of such models:
M = {m| e ]L}.

In order to define global satisfaction we need si-
multaneously to define local satisfaction, so we have
a double inductive definition. The reader should be
warned that the formal definitions, which may be
found in (Cruz and Crossley, 2008) look much more
forbidding than they are in practice. He or she should
refer back to our motivating section 2, and here we
shall only give an intuitive picture.

Given abasic global sentencé' (which means
¢ is a strictly localsentencef locality 1), then¢' is
(globally) true int = {m : | € L}, written =y ¢',
if, and only if, m; = ¢. In this case we also saly is
locally satisfied at,land we write this af)t = ¢'.8

If @ is aglobal sentencethen we use the usual
rules of propositional calculus to compute its truth
value. This also covers local satisfaction.

This only partly defines global satisfaction, for it
only defines it for propositional combinationshsic
global sentences.

Remark 2 (Overlap Requirements). Itis possible to
have overlaps in the languages at the different local-
ities. Then we impose the requirement that if two
atomicsentencefrom different localities, are syntac-
tically identical, then they are semantically identical
also. This will then carry over to more complicated
formulae in the usual way.

It remains to define local satisfaction for local formu-

To determine global satisfaction of a global for-
mula put the formula into conjunctive normal form
by Theorem 1, then determine the truth value of eac h
basic globabubformula¢' by determining the local
truth value ofp in |. Finally compute the global truth
value from these truth values.

Consistency and Soundness. There are many vari-
eties of consistency: strictly local, global and local.
Happily, because of our rule system they are all es-
sentially equivalent. For example, we say that a set of
global formulad™ is globally consistenif I I/, Land
that a set["|, of formulae local il is locally consis-
tentin lif '} 14 L. It then follows that ifZ is a set of
strictly local formulae therk is strictly locally con-
sistent if, and only if, it is locally consistent; K is
a locally consistent set of local formulae in a locality
I, thenZ' = {A' : Ac 3} is globally consistent; and
that if Z is a set of global formulae, then is glob-
ally consistent if, and only if it is locally consistent at
some localityl if, and only if, it is locally consistent
for every locality.

We definesoundnesi the obvious way: A rule
I, A By Cissoundfwhenever ,AandB are satis-
fied (globally, or locally at) then so i<C, respectively.

Theorem 2. 1. The axioms and rules for Tiered FOL
are both globally sound, and locally sound for any
locality I.

2. The rules and axioms for Tiered FOL are con-
sistent. O

Bridge Rules. Bridge rules are global formulae in-
volving local formulae from different localities. The
original rules are given by (Ghidini and Serafini,
1998) and also used in description logics (Borgida and
Serafini, 2003).

In description logic, suppose we have concepts,
andD, in localitiesk andl, respectively, then, our ver-
sion of the rules in (Borgida and Serafini, 2003) would
mean we would writ€X C D' which corresponds to
the informal sentencex(C¥(x) — D'(x)). However,
we cannot model this directly in our systénNever-

lae that are not global formulae. Such formulae may theless we can certainly imitate the intent of Borgida

contain free variables from a particular locality. We and Serafini by adding rules of the form: For all con-

simply do this in the obvious way, except that, be- stantsc common to localitiek andl

cause global formulae are sentences and have no free |

variables, we can simply use the truth values of any r- Do)

global sentences contained in such a formula. I, CX(c)
Thus a local sentencgis locally satisfied in lif,

and only if,m; = A. We also use the locutiong\‘is

(strictly locally) true inmy (atl)”, and “m, is a model

of (the sentence)".

However, our system admits very powerful rules.
For example, we can have rules that depend on not
just one locality influencing another, but more than

9For an implementation of our scheme using description
logic see the first author’s forthcoming thesis (Cruz, 2008).

8There will be no ambiguity, becauséictly local satis-
faction is not defined for such formulae.
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one. We can have bridge axioms of the fogthA

W' — x™ or bridge rules of the form
My ¢! Iy gk

My x™

or with even more premises. Further examples of
bridge rules involving quantification ar&xP(x)k —
IxQ(x)!, and (¥xPy(x) — YyPa(y))* — ((3zQu(2) —
YWQz (W) A FvQs(v))'.

Completeness and Decidability. In order to prove

TIERED LOGIC FOR AGENTS

express the sentence as a propositional combination
of basic global sentencé$.Now use the truth values

of these basic globalentenceso compute the value

of the sentence.

3 CASL

In the previous part of the paper there was no direct
interaction between localities except in the presence
of bridge rules, or overlapping languages (cf. Re-
mark 2). There are other possibilities dealing with

the completeness of our system under the tier schemegtryctured localities (Gabbay and Nossum, 1997).

we follow the technique of Leon Henkin (Henkin,
1949). Given a sef;, of consistent global formulae,
we extend this to a maximal consistent d&t, and
show this has a modéf. The main difference from

the classical scheme is that we make maximal consis-

tent sets of sentences both at the global ldv&),and
at each locality:

Now consider the strictly local sentencegiif?’);.
These include the atomic (strictly) local sentences and
it is just these that are used, in the standard Henkin
way, to build docal model,m;. Then we collect these
intoMt = {m : | € L} as a global model far®.

The only unusual part is to show that is closed
under the (Enter) and (Exit) rules. Supposes a
local sentence dfnotin (I'*);. Then we cannot have
AlinT=. Hence~(A') isin®, and by rule (D)(—-A)'
isinin ™ and finally by (Enter)Ais in (I'*);, which
is a contradiction.

Theorem 3 (Completeness). The system of rules and
axioms for Tiered FOL is complete (both locally and
globally).

For decidablility we restrict ourselves to systems in
which the first order logics in every locality are de-
cidable and there is only a finite number of localities
in our system.

Theorem 4. If 1. the global system has only a finite
number of localities and the strictly local theories at
each locality are decidable, and 2. there is a finite
number of bridge rules, them the global system is de-
cidable.

Proof. To decide whether
M A= lis alocality — @

10The restriction to global formulae is merely for conve-
nience. (Replace local formuldein a locality| by the set
of global formulae{¢' : ¢ € A} and use the rules (Enter)
and (Exit).

11The proof is as usual except that we have to ensure con-
sistency across localities. This is ensured by the model com-
monality requirement, see Remark 2 above.

Here we consider algebraic specifications, where new
specifications are built from old ones, as the local-
ities. From an ontology point of view, there is a
strong reason to use CASL typed languages as ontol-
ogy languages, primarily because the operations pro-
vided by CASL flow over to the operations one might
want to do to ontologies, e.g. translate one to an-
other (with operation), combine themafid opera-
tion), hide some partshide operation), extend them
(then operation).

Each localityl will now be a specification de-
scribed in a language such as CASL (CASL, 2001;
Bidoit and Mosses, 2004). There is no necessity for
these specifications to be finite but in practice we
would expect them to be so.

CASL stands for “Common Algebraic Specifi-
cation Language”, see (CASL, 2001; Bidoit and
Mosses, 2004). It was designed by the Common
Framework Initiative (CoFI) for algebraic specifica-
tion and development. It is a tool for specifying the
modular and functional requirements of software, and
has first order logic as its base language and as such it
may be used for for tier 0. A good overview of CASL
from an applied logic standpoint may be found in (Po-
ernomo et al., 2005) but we give a very brief review
of CASL here. We note that the constructions we use
are architectural specifications, this is to ensure the
uniformity of constructions and to avoid clashes of
notationst3

CASL builds other specifications frobasic spec-
ifications A basic specification is an ordinary first or-
der many-sorted logic of the fori®% =< %, Ax >,
whereX =< S TF,P > is thesignaturewhich com-
prises sorts, functions and predicatés,is a set of
axiom formulae whose members come from the set
of well formed formulae oSp (WFF(SP)). Mod-
els for CASL specifications are ordinary many-sorted
models for first order logic. Such a modd| is az-
structure comprising non-empty carrier sgfsfor all

125ee Remark 1 and Corollary 1 re the definitiorEbf
13Thanks to Peter Mosses for clarification on this point.
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se S, afunctionfMfromwM — M for eachf € TRy,
a relationPMC &) x ... x Mfor eachP € Py with
W= 5;...%, as the set of alE — models We also de-
note the set of modelsrSy Mod(Sp).

CASL Algebraic Operations. CASL provides al-
gebraic operations for building specifications. One
starts with basic specifications and then uses the op-
erations of translation, union, extension and hiding,
which we briefly describe below. We use thgchi-
tectural specificationef CASL so that we preserve
the categorical structuring of the set of specifications.
In practice this means that we have no problems of
clashes of names.

When one views a CASL specification as a de-
scription of a theory i.e. a locality or ontology
(Luttich and Mossakowski, 2004), then we readily
have ontology operations at our finger tips. The oper-
ations that may be performed on CASL specifications
are defined bpecification expressiorns CASL lit-
erature.

Structured specificationare ways of combining
basic specifications. Fuller details of all our con-
structions may be found in the CASL Manual (CASL,
2001) or (Poernomo et al., 2005).

Translationis simply the renaming of constants,
predicates and functions in a specification. Formally
a translation is the inductive closure of a symbol map-
ping p, which maps the symbols ofPSto another
specification, preserving sorts, eté.This is written
in CASL as $ with p.

In CASL the union of two specifications (possibly
with some amalgamation) is achieved in such a way
that the union specification is a conservative exten-
sion of the two given specificatioffsand, moreover,
the models of the union are always such that they have
reducts that are models of the originally given specifi-
cations, see e.g. (Poernomo et al., 2005) or (Cengarle
1994). Formally we proceed as follows.

Formally, theamalgamated uniomf two spec-
ifications, written $_1and Sp_2 is defined as the
pushout in the following diagram.

i
sP—1 Lspa

i2 inl

inr
Sp.2 —— Sp_1and Sp.2

141f symbols are in ®but not in the domain gb we make
the convention that they are left unchanged. However, we
also insist that this is done in such a way that there is no
clash of names.

151.e. no new sentences in the language of either specifi-
cation are provable from the theory of the union specifica-
tion.

374

Extensionsare defined in a very similar way to
unions except that we can extend by a partial specifi-
cation. The extension of’iy SP_EXT is denoted as
Spthen SP_EXT For examples, see (Poernomo et al.,
2005).

Hiding may perhaps be regarded as an opposite
of taking extensions. Given apSand a symbol list
SLthe operation 8hide SL cuts down the signature
Sp hideSLto Sp/SL). The models of 8hide SLare
Mod(Sp hideSL) = {m|s: m € Mod(SP) } whereo is
the injection fron to sig (SP), see (Poernomo et al.,
2005).

4 THETIERED CASL SYSTEM

Syntax. We use architectural specifications as local-
ities and we recall that a specification has a language
inside it and this we designate as the “local language”.
We then follow the same model as before (see Sec-
tion 2). In Tiered CASL, thestrictly local formulae
are simply first order formulae in the syntax of the
locality Sp. Basic global formulaere strictly local
sentencesinnotated by superscripts that are specifi-
cation [names]. Thus a strictly local sentende|s
lifted to the global level as a basic global sentence
$SP. Local formulaein a specification (locality) 8
are the inductive closure of the strictly local formulae
and the global formulae.

Examples: We assume that the language of local-
ity SP_1 hasonlythe predicate lettdP, that the local-
ity SP_2 hasonly the predicate lette®, andP,, and
that locality $>_3 has only the predicate lett€x.

Strictly local formulae¥x : se P(x) in the locality
SP_1 andvx: se P(x) in the locality $>_1 and Sp_2;
VX : se (P1(x) — P2(x)) in the locality $>_2; and3y :
se Py(y) in the locality $_1.

Global formulae:(vx : se P(x))S"-1,

((VX: seP(x))SP-1andSP-2 _, (3¢ : se Py (x))SP-2),

(3y : sePy(y)) ™.

Local formulae for the locality & 2:
(VX : se P(x))SP1, ¥x : se (Py(X) — Pa(X)), Jy: se
((vx : se P(x))SP-1 — Py(y)), (Vx:seP(x))S-1 —
(Vx: seQ(x))SP-3 and[(Vx : se P(x))SP-1]5P-3,

The first formula Vvx : se P(x))S™! is local (even
in the locality $_2) because it is a global formula;
the second is local in’&s2 because it is a strictly lo-
cal formula of $_2; and the third is local in 82,
because it is a first order logic combination of a
strictly local (and therefore also local) formuRyy),
of Sp_2, and a global (therefore also local) formula,
(vx: se P(x))S*-1. The fourth is a mixture of global



[y A
o) Fypm> e "

provided sig {AU SP} does not contaiSL

If SLis any symbol list
[y ASP

r Fy ASP’ hide SL (hIdE)

[y ASP-L .
r Fy inl (A) SP.1&SP.2 (umonl)

[y ASP-2
r '_y inr (A)SP_l & Sp.2

(uniory)

[y ASP-
r "y inl (A) SP_1 then SP_EXT

(exty)

r '_y ASP_EXT

r Fy inr(A)SP-l then SP_EXT (eXtZ)

Figure 2: The structural rules involving specifications.

providedA is a local $ formula and

Iy A

S, A (Enter)

MSPHA

CrAS (Exit)
y

I" is a set of global formulae.

Figure 3:

The locality changing rules in Tiered CASL:

going from global to local andice versa

formulas from $_1 and $_3. The last one is a local
formula for it is derived from a global formula.

Bridge

rules: (vx : se P(x))5*1 — (Vx :

se Q(X)%3, (P(@)S™ — (Q(b)¥3, (3x: se
P(x))>! < (Ix: seQ(x))S-3

We define derivations as before using the same haye —(inl (A)(SP-1*&SP24+) c [ by maximality.
schemata, but add rules for structured specifications. Thereforen| (-A)(SP-1+ & SP-29+ ¢ [, since negation

l.e., the rules of the global system Tiered CASL are commutes with the locality (by rules (D), (T) and (K))

given by first order logic at the local level and propo-  anq withinl by the definition ofnl. But then by (hide)
sitional calculus at the global level with transfer rules (=AM (1) ¢ [ and (=A)S*1* I, by (trans)

as in Figure 1, and structural rules as in 2.
Consistency, strictly local, global and local is de- more—(AS1%) ¢ I, which is a contradiction. [J

fined exactly as above in Section 2, and as before we

assume

that all of the basic specifications, i our

system are consistetf.

TIERED LOGIC FOR AGENTS

Semantics. Again we define the semantics of our sys-
tem, strictly local, global and local, exactly as in Sec-
tion 2, except that the models we are now considering
are many-sorted. Global modélB will now be sets

of modelsmgp such that 8 is a specification in our
system. However, because of the structural rules of
Figure 2, such a global mod&ht must also include
models for all the specifications constructed from the
basic specifications using translation, union, exten-
sions and hiding.

The soundness of Tiered CASL is proved as be-
fore except that we now have also to consider the
structural rules. Since the other rules are treated in
the usual way, we only need consider the structural
rules and we take (unighas an example.

AssumeNt =, AS*-L | then the local modetsp 1
in M is such thatmge 1 =) A. Letmsgp 2 be any model
of SP_2. Then the amalgamated unionwgs; and
msp_2 IS @ model ofinl (A). Since this is true for all
such pairs of models we haVel=, inl (A)SP-1&SP-2,

The other cases are similar.

The initial idea of the completeness proof was in-
spired by that in Section 2. However, because changes
in basic specifications cause changes in any structural
specification constructed from them, we have to mod-
ify our strategy.

First recall that localities (i.e. specifications) may
be built from other localities, so when we add wit-
nesses to each basic specificationt&get a new ba-
sic specification 8+, this expands the specification
at that locality in a trivial way, but it carrries over to
constructed specifications, so that far_$ and $_2
we now have 8.1+ and $_2+, to which we add new
constants to obtaiiSp_1+and Sp_2+)+. Similarly
for specifications using the other operations of Sec-
tion 3: extension, hiding and translation.

When we construct the model the cases for the ba-
sic sets of rules proceed as before. We give just one
example for the structural rules.

(uniory) Assume thatAS™-* € . We now test
if inl (A)(SP-1+&SP2H)+ c | Suppose not, then we

using the maginl) L. Finally using (D) and (T) once

Now, for each specification®3 we construct a lo-
cal modelmgp+ as in Section 2, and the global model
M = {mgp+ : SPis a specificatioh.

16The categorical nature of the construction of the non- 1heorem 5 (Completenessof Tiered CASL). The
basic specifications guarantees that all of the specificationsSystem of rules and axioms for Tiered CASL is

constructed are consistent (provided the basic ones are!).

complete (both locally and globally), i.e. if, for
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every global modeft and every global sentence
we havedlt =y @ «— +, @, and similarly for local
sentences for each specification.

5 FUTURE WORK

We have described a scheme that provides for globa
communication between agents in different localities,
possibly with different logics, but certainly with dif-

ferent languages. In doing so we have allowed one

locality to influence another Hyridge rules The new
range of rules is much more complex than those in
e.g. (Ghidini and Serafini, 1998) and (Borgida and
Serafini, 2003), since two (or more) localities may af-
fect what happens in another locality.

We have proved completeness and consistency re-
sults for a basic system and also for a system, Tiered

CASL, which allows the localities to be structured
specifications in CASL.

For a practical implementation of our scheme we
have built software where the local logic is PROLOG
and the global logic is propositional calculus.

Buvac, S., Buvac, V., and Mason, I. A. (1995). Meta-
mathematics of contextsFundamenta Informaticae
23(2/3/4):263-301.

CASL (2001). CASL, The Common Algebraic Spec-
ification Language, Summary, 25 March 2001
CoFl Language Design Task Group on Language
Design. http://ww. brics. dk/ Project s/ CoFl/
Document s/ CASL/ Summary/ .

|Cengarle, M. V. (1994). Formal Specifications with

Higher-Order Parametrization PhD thesis, Ludwig-
Maximilians-Universitat, Minchen.

Cruz, R. P. (2008)Tiered Logic with Applications to Con-
textualizing Logics PhD thesis, Monash University,
Melbourne, Australia. In preparation.

Cruz, R. P. and Crossley, J. N. (2008). Tiered logic
method for assisting agents. Technical Report Tech-
nical Report 2008/232, Monash University, Clayton
School of Information Technology, Clayton, Victo-
ria, Australia. http: // www. csse. nonash. edu. au/
publ i cations/ 2008/ tr-2008- 232- abs. htni .

Gabbay, D. and Nossum, R. T. (1997). Structured contexts
with fibred semantics. In Buvag, S. and lwanska, t..,
editors,Working Papers of the AAAI Fall Symposium
on Context in Knowledge Representation and Natu-
ral Language pages 48-57, Menlo Park, California.
American Association for Artificial Intelligence.

There remains one general area that particularly hidini, C. and Serafini, L. (1998). Distributed first order

requires further investigation. How do we do quantifi-
cation at the global level? (Buvac et al., 1995) devel-
oped quantification over localities and we see no dif-
ficulty in extending our work in that direction. How-
ever we would like to imitate Borgida8* C D' di-
rectly , but it does not seem to make sense to write
¥x(C(x)k — D(x)") since some elements in locality
may not be in locality. So we remain like the ancient
Chinese mathematician, Liu Hui, see p. 74 of (Li Yan
and Du Shiran, 1987), “...not daring to guess, [we]
wait for a capable person to solve it.”
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