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Abstract: Criminal behaviour exists in many variations, each with its own cause. A large group of offenders only 
shows criminal behaviour during adolescence. This kind of behaviour is largely influenced by the 
interaction with others, through social learning. This paper contributes a dynamical agent-based approach to 
simulate social learning of adolescence-limited criminal behaviour, illustrated for a small school class. The 
model is designed in such a way that it can be compared with data resulting from a large scale empirical 
study. 

1 INTRODUCTION 

Within Criminology, the analysis of the emergence 
of criminal behaviour is one of the main challenges 
(Gottfredson and Hirschi, 1990). An important 
mechanism behind the emergence of criminal 
behaviour is social learning (Burgess and Akers, 
1966). To analyse this mechanism, this paper 
presents an agent-based approach to simulate social 
learning, which specifically addresses the mutual 
influence of peers, parents and school, with respect 
to delinquent behaviour.  

To formalise and analyse the emergence of 
criminal behaviour through social learning, an 
artificial society has been modelled to represent a 
small school class. The models for the agents have 
been formally specified by executable 
temporal/causal logical relationships, using the 
modelling language TTL (Bosse et al., 2006) and its 
executable sublanguage LEADSTO (Bosse et al, 
2007). This language allows the modeller to 
integrate both qualitative, logical aspects as 
quantitative, numerical aspects. Moreover, since the 
language has a formal logical semantics, simulation 
models created in TTL and LEADSTO can be 
formally analysed by means of logical analysis 
techniques. 

In the field of Criminology, it is often quite 
difficult to perform experiments that involve 
changes in the real world. A model as the one 
presented in this paper can be used to study general 
patterns in the development of criminal behaviour. 

Simulation can help to answer what-if questions and 
to verify theories about the relation between 
different processes. Discussions with a team of 
criminologists taught us that the evidence provided 
by simulation models is already considered as useful 
knowledge about the relevance of criminological 
theories such as the differential association theory, 
which will be discussed below. 

In a next step of the research, we plan to validate 
the model using data of an existing empirical study 
e.g. (Weerman and Bijleveld, 2007). In that study, 
the social networks of 1730 non-delinquent, minor 
delinquent and serious delinquent pupils at lower-
level secondary schools in the Netherlands were 
analysed. This paper only reports about the first step, 
the model and simulations.  

In Section 2 a summary from the literature on 
social learning is presented. Section 3 discusses the 
chosen modelling approach. The simulation model is 
presented in Section 4, and Section 5 discusses 
simulation results. In Section 6, these results are 
analysed using formal techniques. Section 7 presents 
related work. Finally, Section 8 concludes the paper.  

2 SOCIAL LEARNING 

According to (Moffitt, 1993), two types of 
delinquents can be distinguished: life-course-
persistent offenders, who stay criminal throughout 
their entire life and adolescence-limited offenders, 
who only show antisocial behaviour during 
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adolescence. Life-course-persistent anti-social 
behaviour is caused by neuropsychological problems 
during childhood that interact cumulatively with 
their criminogenic environments across 
development, which leads to a pathological 
personality. Adolescence-limited antisocial 
behaviour is caused by the gap between biological 
maturity and social maturity. It is learned from 
antisocial models that are easily mimicked, and it is 
sustained according to the reinforcement principles 
of learning theory. They peak sharply at about age 
17 and drop fast in young adulthood. In the current 
paper, we explicitly focus on the adolescence-
limited offenders. 

An influential theory on the emergence of 
adolescence-limited criminal behaviour is the 
differential association theory, which was first 
proposed by Sutherland and Cressey (1966) and later 
expanded by Burgess and Akers (1966). In short, 
this (informal) theory states that behaviour is learned 
through interaction with others. We learn most from 
the people we are in close contact with, like parents 
and peers. There are two basic elements to 
understanding the differential association theory. 
First, the content of what is learned is important 
(e.g., motives, attitudes and evaluations by others of 
the meaningful significance of each of these 
elements). Second, the process by which learning 
takes place is important, including the intimate 
informal groups and the collective and situational 
context where it occurs. Criminal behaviour itself is 
learned through assigning meaning to behaviour, 
experiences, and events during interaction with 
others. 

According to Sutherland and Cressey (1966), the 
extent to which delinquent behaviour is imitated is 
influenced by the frequency, duration, and intensity 
of the contact. Frequent, long and important or 
prestigious contacts have a larger influence. In 
addition, the priority of learning influences the 
social learning process: the earlier behaviour is 
learned, the more influential it is.  

3 MODELLING APPROACH 

To formalise and analyse the emergence of criminal 
behaviour through social learning from an agent 
perspective, an expressive modelling language is 
needed. On the one hand, qualitative aspects have to 
be addressed, such as certain characteristics about 
the agents (e.g., their age), their social relationships 
(e.g., who are their parents and friends). On the other 
hand, quantitative aspects have to be addressed. For 
example, an agent’s level of delinquency, which is 

the extent to which an agent exhibits delinquent 
behaviour, can best be described by a real number. 
The change of this delinquency can best be 
described by a mathematical formula. Another 
requirement of the chosen modelling language is its 
suitability to express on the one hand the basic 
mechanisms of social learning (for the purpose of 
simulation), and on the other hand more global 
properties of social learning (for the purpose of 
logical analysis and verification). For example, basic 
mechanisms of social learning involve decisions of 
individual agents to attach to their peers, whereas 
global properties are statements that consider the 
learning process over a longer period, like 
“eventually the delinquent pupils become less 
delinquent”. 

The predicate-logical Temporal Trace Language 
(TTL) (Bosse et al., 2006) fulfils all of these 
desiderata. It integrates qualitative, logical aspects 
and quantitative, numerical aspects. This integration 
allows the modeller to exploit both logical and 
numerical methods for analysis and simulation. 
Moreover it can be used to express dynamic 
properties at different levels of aggregation, which 
makes it well suited both for simulation and logical 
analysis. 

TTL is based on the assumption that dynamics 
can be described as an evolution of states over time. 
The notion of state as used here is characterised on 
the basis of an ontology defining a set of physical 
and/or mental (state) properties that do or do not 
hold at a certain point in time. These properties are 
often called state properties to distinguish them 
from dynamic properties that relate different states 
over time. A specific state is characterised by 
dividing the set of state properties into those that 
hold, and those that do not hold in the state. 
Examples of state properties are ‘agent 1 has a 
delinquency level of 0.35’, or ‘agent 2 has an 
attachment to agent 3 of 0.5’.  

To formalise state properties, ontologies are 
specified in a (many-sorted) first order logical 
format: an ontology is specified as a finite set of 
sorts, constants within these sorts, and relations and 
functions over these sorts (sometimes also called 
signatures). The examples mentioned above then can 
be formalised by n-ary predicates (or proposition 
symbols), such as, for example, has_delinquen-
cy(agent1,0.35) or has_attachment_to(agent2, agent3, 
0.5). Such predicates are called state ground atoms 
(or atomic state properties). For a given ontology 
Ont, the propositional language signature consisting 
of all ground atoms based on Ont is denoted by 
APROP(Ont). One step further, the state properties 
based on a certain ontology Ont are formalised by the 
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propositions that can be made (using conjunction, 
negation, disjunction, implication) from the ground 
atoms. Thus, an example of a formalised state 
property is has_delinquency(agent1,0.35) & has_delin-
quency(agent2,0.45). Moreover, a state S is an 
indication of which atomic state properties are true 
and which are false, i.e., a mapping S: APROP(Ont) → 
{true, false}. The set of all possible states for ontology 
Ont is denoted by STATES(Ont). 

To describe dynamic properties of complex 
processes such as the development of criminal 
behavior, explicit reference is made to time and to 
traces. A fixed time frame T is assumed which is 
linearly ordered. Depending on the application, it 
may be dense (e.g., the real numbers) or discrete 
(e.g., the set of integers or natural numbers or a 
finite initial segment of the natural numbers). 
Dynamic properties can be formulated that relate a 
state at one point in time to a state at another point in 
time. A simple example is the following (informally 
stated) dynamic property about the delinquency of 
agents:  

For all traces γ, 
there is a time point t such that 
all agents have a delinquency that is lower than d.  

A trace γ over an ontology Ont and time frame T 
is a mapping γ : T → STATES(Ont), i.e., a sequence of 
states γt (t ∈ T) in STATES(Ont). The temporal trace 
language TTL is built on atoms referring to, e.g., 
traces, time and state properties. For example, ‘in 
trace γ at time t property p holds’ is formalised by 
state(γ, t) |= p. Here |= is a predicate symbol in the 
language, usually used in infix notation, which is 
comparable to the Holds-predicate in situation 
calculus. Dynamic properties are expressed by 
temporal statements built using the usual first-order 
logical connectives (such as ¬, ∧, ∨, ⇒) and 
quantification (∀ and ∃; for example, over traces, 
time and state properties). For example, the 
informally stated dynamic property introduced 
above is formally expressed as follows: 

∀γ:TRACE ∃t:TIME ∀a:AGENT ∃x:REAL 
state(γ, t) |= has_delinquency(a, x) & x≤d 

In addition, language abstractions by introducing 
new predicates as abbreviations for complex 
expressions are supported.  

To be able to perform (pseudo-)experiments, only 
part of the expressivity of TTL is needed. To this 
end, the executable LEADSTO language (Bosse et 
al., 2007) has been defined as a sublanguage of TTL, 
with the specific purpose to develop simulation 
models in a declarative manner. In LEADSTO, 
direct temporal dependencies between two state 
properties in successive states are modelled by 

executable dynamic properties. The LEADSTO 
format is defined as follows. Let α and β be state 
properties as defined above. Then, the notation α →→
e, f, g, h β means: 

If state property α holds for an interval with duration g, 
then after some delay between e and f 
state property β will hold for an interval with duration h. 

As an example, the following executable dynamic 
property states that “if during 1 time unit the 
attachment between agent a1 and a2 is x1, and the 
difference in delinquency between both agents is x2, 
then for the next 5 time units (after a delay between 
0 and 0.5 time units) the attachment between both 
agents will be β*x1+(1-β)*|x2|”: 

∀a1,a2:AGENT ∀x1,x2:REAL 
has_attachment_to(a1,a2,x1) ∧  
delinquency_difference(a1,a2,x2)  →→0, 0.5, 1, 5  
has_attachment_to(a1,a2,β*x1+(1-β)*|x2|) 

Based on TTL and LEADSTO, two dedicated 
pieces of software have recently been developed. 
First, the LEADSTO Simulation Environment 
(Bosse et al., 2007) takes a specification of 
executable dynamic properties as input, and uses this 
to generate simulation traces. Second, to 
automatically analyse the resulting simulation traces, 
the TTL Checker tool (Bosse et al., 2006) has been 
developed. This tool takes as input a formula 
expressed in TTL and a set of traces, and verifies 
automatically whether the formula holds for the 
traces. In case the formula does not hold, the 
Checker provides a counter example, i.e., a 
combination of variable instances for which the 
check fails.  

4 SIMULATION MODEL 

To study the influence of social learning on 
delinquent behaviour, we modelled a school class 
with 10 pupils. There are three groups that influence 
the process of social learning, namely parents, 
school and peers. Therefore, each pupil is 
represented as an agent; the parents of the pupils and 
the school are modelled as groups. Each pupil is 
related to one parent group. The agents have a 
number of characteristics in our model (determined 
based on discussions with experts). We restricted 
our study to the characteristics that are collected in 
the empirical study (Weerman and Bijleveld, 2007). 
The first property of an agent is its age. In our model 
the age is restricted to values between 12 and 17. 
The age is relevant for influence of peers on each 
other. The older an adolescent is (up to 17) the more 
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his behaviour is influenced by peers. In addition, the 
age difference between peers is relevant, since older 
people are often more dominant in the relationship. 
The influence of school and parents tends to 
decrease as the adolescent gets older. 

In addition, agents have a basic level of 
influenceability: this represents how easily they can 
be influenced. Oppositely, agents and groups have a 
level of dominance: this represents how easily they 
can influence others. For persons this is a character 
trait. Schools can also have a level of dominance. A 
dominant school can be seen as a strict school, while 
a school that is less strict could be considered to be 
less dominant.  

The social relations between pupils in a school 
class are modelled via attachment relations. All 
agents are attached to each other with a specific level 
of attachment, representing the intensity of the 
contact as defined by Sutherland and Cressey 
(1966). The attachment relation is also used to 
model the attachment of pupils to their parents and 
to their school. We assume that a high attachment 
results in a higher influence of the attached agent or 
group on the behaviour of the pupil. 

Finally, we model a level of delinquency for all 
agents and groups, also for parents and schools. The 
initial value for the delinquency of an agent could be 
based on a measurement of the number of delinquent 
acts of a pupil in the past. The interpretation of the 
delinquency of a school is indirect: the school has a 
low level of delinquency if it is a good school, i.e. 
teachers and other staff members have a low level of 
delinquency. When the atmosphere in the school is 
less positive, then it has a higher level of 
delinquency.  

During the simulation, the levels of delinquency 
of the pupils change because of the influence of 
others. This process is depicted in Figure 1, where 
the circles denote state properties and the arrows 
denote dynamic properties (relationships) between 
them. The age of each agent increases every year. 
Every agent starts with a basic influenceability; 
together with the age of the agent and the attachment 
to a specific group or agent, the effective 
influenceability of the agent by that agent or group is 
determined (denoted by has_influenceability in Figure 
1). 

This effective influenceability is combined with 
the level of dominance of the other party, the 
difference in delinquency between the agent and the 
other party, and - in case the other party is an agent - 
the age difference between two agents. This leads to 
the so-called delta delinquency. The delta 
delinquency represents all factors that influence the 
level of delinquency of an agent. In order to 

calculate the new delinquency of an agent, the delta 
delinquencies of all agents and groups in its 
environment are combined with the old delinquency 
(the delinquency the agent started out with). 

In addition, the model is able to adapt the 
attachment between the agents. The idea behind this 
is that the strength of a relation is influenced by the 
overlap in values. If the difference in the level of 
delinquency is very high, then the attachment will 
decrease. However, because there are many other 
factors that influence the attachment as well, the 
difference in delinquency only causes a minor 
change in attachment. 

In the model, the concepts of influenceability, 
dominance, attachment, and delinquency are 
modelled as a real number between 0 and 1. 
Furthermore, the age is modelled as an integer 
between 12 and 17, and the delta delinquency as a 
real number between -1 and 1. The relationships 
between the concepts have been modelled in 
LEADSTO. Two example relationships (to 
determine the delta delinquency of groups, and the 
new delinquency, respectively) are stated below. 
Here, the β’s are decay factors, and the w’s are 
weight factors. Note that these relationships 
correspond to (conjunctions of) arrows in Figure 1. 
The complete set of LEADSTO relationships is 
shown in the online appendix1. 

Delta Delinquency Determination (for Groups) 
∀a:AGENT ∀g:GROUP ∀x1,x2,x3:REAL 
delinquency_difference(a,g,x1) ∧ has_influencability(a,g,x2) ∧  
has_dominance(g,x3) →→ 
has_delta_delinquency(a,g,β2*(β1*x1+(1-β1)*x1* 
(w4*x2+w5*x3))) 

New Delinquency Determination 
∀a1:AGENT ∀g:GROUP ∀d,s,p,x1,...,x10:REAL 
has_old_delinquency(a1,d) ∧ 
has_delta_delinquency(a1,school,s) ∧  
has_delta_delinquency(a1,g,p) ∧ are_parents_of(g,a1) ∧ 
has_delta_delinquency(a1,agent1,x1) ∧ ... 
has_delta_delinquency(a1,agent10,x10) →→  
has_delinquency(a, d+ (s+p+x1+...+x10)/12)) 

5 SIMULATION RESULTS 

A number of simulation experiments have been 
performed to see whether the behaviour of the model 
was as expected for some common scenarios. A 
thorough evaluation will be performed later when 
the results will be compared with data of an 
empirical study. A longer description with more 
scenarios and details can be found in the appendix.  

 
                                                           

1 http://human-ambience.few.vu.nl/docs/ICAART09.pdf 
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      has_basic_ 
influenceability(a,x) 

has_influenceability 
           (a,gr,x) 

has_dominance
         (gr,x) 

has_attachment_to 
         (a,gr,x) 

has_delinquency 
         (gr,x) 

has_delinquency 
          (a,x) 

has_delta_ 
delinquency 

(a,gr,x) 
has_age(a,x) 

delinquency_ 
difference(a,gr,x) 

age_difference     
(a,a2,x) 

has_age(a2,x) 

 
Figure 1: Concepts and relations in the simulation model. 

In the first scenario there is one bad guy with 
criminal parents in an otherwise reasonable school 
class. We are interested in the question whether the 
criminal boy makes the other boys bad or whether 
the group is able to straighten out the delinquent. In 
this scenario agent 1 has a delinquency of 0.8 while 
the other agents have a delinquency of 0.3. All 
agents are male2 and are 12 years old at the start of 
the simulation. They have a basic influenceability 
with a value of 0.4, a level of dominance of 0.6 and 
a mutual attachment of 0.3. The attachments are 
stable in this simulation. Every agent has parents 
with a dominance of 0.7 and a delinquency of 0.2, 
except for agent 1, whose parents have a 
delinquency of 0.8.  

The resulting trace is shown in Figure 2 (this and 
the following figures can be found at the last page of 
the paper). Here, time is on the horizontal axis and 
the level of delinquency is on the vertical axis. The 
three graphs show the combined delinquencies of all 
pupils, the delinquency of agent 1 and the 
delinquency of the other agents (that all show the 
same behaviour; agent 10 is just taken as an 
example), respectively. The two lines in the first 
graph correspond to the lines in the second and third 
graph, respectively, where a more detailed scale is 

                                                           
2 Note that the model does not incorporate a direct influence of 

gender. Difference between male and female pupils can be 
modeled indirectly by giving the males higher initial 
delinquencies. 

used. The results show that the interaction between 
the agents leads to a decreased delinquency of agent 
1. The delinquency of the other agents increases 
slightly to 0.31 and from this point on it decreases to 
0.255 at time point 100. From time point 70 on, 
there is a more or less stable difference in 
delinquency between the agent with criminal parents 
and the others.  

In a second scenario (Figure 3), the influence of 
the school is examined by increasing its delinquency 
to 0.8. The level of delinquency of the agents and 
their parents were identical to the settings in the 
previous scenario. The results show that the 
increased delinquency of the school causes an 
increased level of delinquency of all the agents. This 
influence appeared to be larger than the influence of 
individual agents, because it propagates through to 
pupils, who again influence each other. 

In the third scenario, half of the pupils (and 
their parents) have a high delinquency. The other 
pupils (and their parents) have the same level of 
delinquency as in scenario 1. In this case all agents 
influence each other and their delinquencies grow 
towards each other, while a difference remains 
because of the influence of the parents (see Fig. 4).  

Finally, the fourth scenario represents a school 
class with two groups (3 delinquent pupils with a 
high mutual attachment, 3 extremely non-delinquent 
pupils with a high mutual attachment) and 4 
individuals with a high basic influenceability. One 
of these ‘group-less pupils’ has a high attachment to 
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a person in the criminal group, one to a person in the 
non-criminal group, and the others had no specific 
relations. The attachments can change over time. 
The goal of this scenario is to see whether a pupil 
will be incorporated in a group if he has a strong 
relationship with one of them. Figure 5 shows the 
resulting delinquencies.  

Interestingly, we see that all group-less pupils 
reach a level of delinquencies that is close to that of 
the pupils in the ‘good group’, even for the pupils 
that have a strong relation to a pupil in one of the 
groups. This observation can be explained by the 
fact that the delinquency of the parents of the group-
less pupils is close to the delinquency of the parents 
in the good group. However, if we look closely at 
the delinquencies of the group-less people (lower 
graph in Figure 5), we see that they develop slightly 
differently (notice the different scale). Apparently, 
the delinquency of the pupil with a friend in the bad 
(good) group initially grows faster (slower), but 
eventually it reaches the same level as the other 
group-less pupils. 

6 FORMAL ANALYSIS 

The detailed settings and results of ten simulation 
experiments (including the ones described in Section 
5) are shown in the appendix. Among the different 
experiments, various parameter settings were varied, 
in particular the initial delinquencies of agents, 
parents, and school, the initial attachment between 
agents, and several weight factors. 

To analyse the resulting simulation traces in 
more detail, the TTL Checker tool (Bosse et al., 
2006) has been used. As mentioned earlier, this tool 
takes as input a TTL formula and a set of traces, and 
verifies automatically whether the formula holds for 
the traces. For the current domain, a number of 
hypotheses have been expressed as dynamic 
properties in TTL, which were inspired by relevant 
questions in Criminology (see Sections 1 and 2). To 
give a simple example, consider the following 
dynamic property (P1), which expresses that the 
delinquency of an agent keeps on decreasing over 
time: 

P1  Strict Monotonic Decrease of Delinquency 
For all time points t1 and t2, if t2 is later than t1, then the 
agent’s delinquency at t2 is lower than at t1.  
P1(γ:TRACE, a:AGENT) ≡ 
∀t1,t2:TIME ∀d1,d2:REAL 
[ state(γ, t1) |= has_delinquency(a, d1) & 
  state(γ, t2) |= has_delinquency(a, d2) & t1<t2 ] ⇒ d1>d2 

Note that this formula comprises two free 
variables (the trace γ and the agent a), for which 
different values can be instantiated. For example, in 
order to check whether agent 1 satisfies the criterion 
of strict monotonic decrease of delinquency in 
simulation trace 5, the formula P1(trace1, agent1) 
should be checked. Similarly, it is possible to check 
whether the property holds for all agents and all 
traces, or for a certain percentage of them. 

Besides checking whether the delinquency of 
agents keeps on decreasing, also other properties can 
be verified. A relevant question in Criminology is 
what the relative influences of (respectively) parents, 
peers, and school on the development of a person’s 
delinquency are. For example, might it be the case 
that the biggest contribution is provided by parents 
and school only, and that the influence of classmates 
can almost be neglected? To analyse these kinds of 
hypotheses, properties like the following have been 
established: 

P2  Agent Converges to Parents and School 
At the end of the trace, the delinquency of agent a lies within 
a margin δ of the average of the delinquencies of its parents 
and the school at the start of the trace.  
P2(γ:TRACE, a:AGENT) ≡ 
∀d1,d2,d3:REAL ∀p:AGENT 
[ state(γ, start_time) |= has_delinquency(p, d1) & 
  state(γ, start_time) |= has_delinquency(school, d2) & 
  state(γ, end_time) |= has_delinquency(a, d3) & 
  are_parents_of(p,a) & ] 
  ⇒ d3-δ < (d1+d2)/2 < d3+δ 

If this property were true (for a small δ), this 
would indicate that the development of a pupil could 
be predicted by taking into account the delinquency 
of the parents and the school only. Some initial 
checks have pointed out that the lowest δ for which 
the property satisfies all generated traces is 0.22. In 
other words, for all of the traces the influence of 
parents and school was relatively high. In addition to 
P2, a property was created to compare the change in 
delinquency between two agents a1 and a2. 

P3  Bigger Change in Delinquency 
During the whole trace, agent a1 made a bigger change in 
delinquency than agent a2.  
P3(γ:TRACE, a1,a2:AGENT) ≡ 
∀d1,d2,d3,d4:REAL 
[ state(γ, start_time) |= has_delinquency(a1, d1) & 
  state(γ, start_time) |= has_delinquency(a2, d2) & 
  state(γ, end_time) |= has_delinquency(a1, d3) & 
  state(γ, end_time) |= has_delinquency(a2, d4) ] 
  ⇒ |d1-d3| > |d2-d4| 

This property can be used, for example, to find 
out whether in a school class with many “good” 
pupils and one “bad” guy (see scenario 1), the bad 
pupil tends to move towards the good ones, or vice 
versa. In our simulation traces, such a bad pupil 
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indeed turned out to converge towards his 
classmates. 

To summarise, a number of TTL properties have 
been checked against the generated simulation 
traces, as a first pilot study of the applicability of the 
approach. Although no real conclusions can be 
drawn as yet, these checks pointed out that the traces 
satisfy basic properties that were inspired by 
criminological theories, such as property P2 and P3. 

Finally, it is important to note that, in addition to 
simulated traces, the TTL Checker can also take 
empirical traces as input. In future work, several 
properties as those introduced here will be verified 
against empirical traces that are constructed on the 
basis of experiments in real classrooms 

7 RELATED WORK 

With respect to related work, the research presented 
in this paper on the one hand has commonalities 
with literature from the social and behavioural 
sciences (in particular, the area of Criminology), and 
on the other hand with literature in AI and Computer 
Science (among others, agent-based simulation).  

Concerning the criminological and psychological 
area, first of all the current paper is related to early 
articles from the 60’s and 70’s such as Bandura 
(1977), Burgess and Akers (1966) and Sutherland 
and Cressey (1966), which were the first to 
formulate (different variants of) the social learning 
theory. Here, the theory put forward by Bandura 
(1977) is more generic, whereas the other two focus 
specifically on social learning in Criminology. For 
an overview of these theories, see Lanier and Henry 
(1998), Chapter 7. In fact, these theories formed the 
basis of the research questions addressed in this 
paper. Based on these theories, Opp (1989) 
identified a number of (informal) properties that are 
expected to hold for social learning in Criminology, 
such as “the more frequently persons show deviant 
behaviour, the more frequently they will have 
contact with patterns of deviant behaviour”. 
Although a detailed verification (using larger-scale 
experiments and statistical techniques) is left for 
future work, an initial analysis provides evidence 
that our model indeed satisfies these properties. 
Next, a number of papers in Criminology propose 
more refined models for social learning, often 
focusing on specific aspects of the learning. For 
example, Thornberry et al. (1994) compared three 
theoretical models of the interrelations among 
associations between delinquent peers, delinquent 
beliefs, and delinquent behaviour. A main difference 
with our work is that these models are not 

computational. Nevertheless, their conclusions are in 
agreement with the initial results found in this paper. 
Finally, several authors have performed empirical 
studies on social learning of delinquent behaviour in 
schools (Bruinsma, 1984) and Weerman and 
Bijleveld, 2007). Our model was designed explicitly 
with the purpose of reproducing such data.  

Concerning the literature in AI and Computer 
Science, we are not aware of approaches using 
multi-agent technology to simulate delinquent 
behaviour of individuals in a group. However, 
various papers have similarities to the work 
proposed here. First, Van Dijkum and Landsheer 
(2000) present a model that is rather similar to ours, 
but which uses differential equations to describe the 
development of juvenile criminal behaviour. 
Another difference with our model is that they aim 
for an integration of multiple criminological theories 
(namely social learning theory, career theory, and 
rational choice theory), whereas we focus (in more 
detail) on the former only. Moreover, several authors 
have created models that address social learning and 
criminal behaviour at a more global level. For 
example, Chamley (2003) presents an economic 
model for social learning, although not explicitly 
focussed on learning of delinquent behaviour. 
Similarly, Winoto (2002) presents an agent-based 
economic model for the market for offenses. This 
model addresses the global development of 
delinquency in a population. These models differ 
from our model in the sense that they are situated at 
a macroscopic level, thereby abstracting from 
differences between individuals. An approach that 
does consider individual differences, but that 
addresses a different domain, is presented by 
Tsvetovat and Carley (2005). They present a 
simulation model of the dynamics of terrorist 
networks, based on networks of non-deterministic 
finite automata. Furthermore, a large number of 
approaches address simulation of the environmental 
aspects of criminal behaviour, such as the 
displacement of crime and the emergence of “hot 
spots”, e.g., Liu et al. (2005) and Bosse and 
Gerritsen (2008). Finally, relevant work is put 
forward by Conte and Paolucci (2001). They 
identify a number of (cognitive) factors that are 
relevant in social learning in general. However, in 
contrast to our work, they do not provide a 
computational model. 

8 CONCLUSIONS 

This paper presented an agent-based approach to 
simulate and formally analyse the process of social 
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learning of delinquency during adolescence. The 
general mechanism of change by influences of peers 
is possibly also useful in other domains in which 
social learning is relevant. In this paper, however, 
we focused on learning of delinquent behaviour. 
Inspired by criminological literature, the approach 
incorporates the influences of three types of groups, 
namely peers, parents, and school. Various relevant 
factors were identified, such as influenceability, 
dominance, and attachment, and their mutual 
relationships were formalised by means of the 
hybrid modelling language LEADSTO. Moreover, it 
was shown how the approach can be used to 
generate simulation traces, and how such traces can 
be automatically verified against relevant properties, 
expressed in the language TTL. Although 
preliminary, the first results are promising. Firstly, 
they provide evidence that the proposed model is a 
useful experimental tool to give insight in social 
learning processes as described in the criminological 
literature. Secondly, some interesting patterns have 
already been found. For example, the simulation 
results suggest that the influence of the school on 
delinquency is relatively high (scenario 3), that the 
impact of attachment is relatively low (scenario 4), 
and that every individual learning process 
approaches a final delinquency near the average of 
the delinquencies of parents, school, and peers. 

In the current paper, no detailed empirical 
validation of the model has been presented. 
However, as mentioned in the introduction, various 
empirical studies have been performed, of which 
large data sets are available (Bruinsma, 1985) and 
Weerman and Bijleveld, 2007). The model has been 
explicitly designed with the objective of using such 
data sets for validation in the future. Currently, some 
initial steps in this direction are taken. During such a 
validation, several questions are addressed, such as 
“is it realistic that the average delinquency almost 
always decreases?”, or “is it realistic to have a 
relatively stable delinquency for school and 
parents?”. When these questions are solved, the 
model can be further fine-tuned, in particular by 
choosing realistic values for all parameter settings 
and weight factors involved. 

REFERENCES 

Bandura, A. (1977). Social Learning Theory. Englewood 
Cliffs, NJ, Prentice-Hall. 

Bosse, T., and Gerritsen, C., Agent-Based Simulation of 
the Spatial Dynamics of Crime: On the Interplay 
between Criminal Hot Spots and Reputation. In: 
Proceedings of the 7th International Joint Conference 

on Autonomous Agents and Multi-Agent Systems, 
AAMAS’08. ACM Press, 2008, pp. 1129-1136. 

Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J. 
(2007). A Language and Environment for Analysis of 
Dynamics by SimulaTiOn. International Journal of AI 
Tools, vol. 16, issue 3, pp. 435-464. 

Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, 
A., and Treur, J. (2006). Specification and Verification 
of Dynamics in Cognitive Agent Models. In: 
Proceedings of the 6th International Conference on 
Intelligent Agent Technology, IAT’06. IEEE Computer 
Society Press, 2006, pp. 247-254. 

Bruinsma, G.J.N. (1985). Crime as Social Learning 
Process. A Test of the Differential Association Theory 
in the version of K.-D. Opp (in Dutch). Gouda Quint, 
Arnhem. 

Burgess, R., and Akers, R.L. (1966). A Differential 
Association-Reinforcement Theory of Criminal 
Behavior. Social Problems, vol. 14, pp. 363-383. 

Chamley, C.P. (2003). Rational Herds: Economic Models 
of Social Learning. New York: Cambridge University 
Press. 

Conte, R., and Paolucci, M. (2001). Intelligent Social 
Learning. Journal of Artificial Societies and Social 
Simulation, vol. 4, issue 1. 

Dijkum, C. van, and Landsheer, H. (2000). Experimenting 
with a Nonlinear Dynamic Model of Juvenile Criminal 
Behavior. Simulation & Gaming, vol. 31, pp. 479-490. 

Gottfredson, M. and Hirschi, T. (1990). A General Theory 
of Crime. Stanford University Press. 

Lanier, M.M., and Henry, S. (1998). Essential 
Criminology. Boulder, CO: Westview Press. 

Liu, L., Wang, X., Eck, J., and Liang, J. (2005). 
Simulating Crime Events and Crime Patterns in 
RA/CA Model. In F. Wang (ed.), Geographic 
Information Systems and Crime Analysis. Singapore: 
Idea Group, pp. 197-213. 

Moffitt, T.E. (1993). Adolescence-Limited and Life-
Course-Persistent Antisocial Behavior: A 
Developmental Taxonomy. Psychological Review, vol. 
100, no. 4, pp. 674-701. 

Opp, K.D. (1989). The Economics of Crime and the 
Sociology of Deviant Behaviour - A Theoretic 
Confrontation of Basic Propositions. Kyklos, vol. 42, 
issue 3, pp. 405-430. 

Sutherland, E.H., and Cressey, D.R. (1966). Principles of 
Criminology, 7th edition. Philadelphia: J.B. Lippincott.  

Thornberry, T.P., Lizotte, A.J., Krohn, M.D., Farnworth, 
M., and Jang, S.J. (1994). Delinquent Peers, Beliefs, 
and Delinquent Behavior: A Longitudinal Test of 
Interactional Theory. Criminology, vol. 32, pp. 47-83. 

Tsvetovat, M., and Carley, K.M. (2005). Structural 
Knowledge and Success of Anti-Terrorist Activity: 
The Downside of Structural Equivalence. Journal of 
Social Structure, vol. 6. 

Weerman, F.M., and Bijleveld, C.C.J.H. (2007). Birds of 
Different Feathers. European Journal of Criminology, 
vol. 4, issue 4, pp. 357-383. 

Winoto, P. (2002). An Agent-Based Simulation of the 
Market for Offenses. In: AAAI Workshop on Multi-
Agent Modeling and Simulation of Economic Systems. 
Edmonton, Canada. 

ICAART 2009 - International Conference on Agents and Artificial Intelligence

12



 
Figure 2: Delinquency in a school class with one bad guy. 

 
Figure 3: Influence of a bad school. 

 
Figure 4: Delinquency in a school class with half of the pupils being criminal. 

 
Figure 5: Delinquencies in school class with two groups. 
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