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Abstract: A new optimized algorithm for the learning process suitable for hardware implemented Winner Takes Most 
Kohonen Neural Network (KNN) has been proposed in the paper. In networks of this type a neighborhood 
mechanism is used to improve the convergence properties of the network by decreasing the quantization 
error. The proposed technique bases on the observation that the quantization error does not decrease 
monotonically during the learning process but there are some ‘activity’ phases, in which this error decreases 
very fast and then the ‘stagnation’ phases, in which the error does not decrease. The stagnation phases 
usually are much longer than the activity phases, which in practice means that the network makes a progress 
in training only in short periods of the learning process. The proposed technique using a set of linear and 
nonlinear filters detects the activity phases and controls the neighborhood R in such a way to shorten the 
stagnation phases. As a result, the learning process may be 16 times faster than in the classic approach, in 
which the radius R decreases linearly. The intended application of the proposed solution will be in Wireless 
Body Sensor Networks (WBSN) in classification and analysis of the EMG and the ECG biomedical signals.   

1 INTRODUCTION 

Application of Artificial Neural Networks (ANNs) 
in medical diagnostic tools may be observed for 
many years, e.g. in classification of biomedical 
ECG, EMG signals (Osowski, 2001), (Ghongade, 
Ghatolfor, 2007), segmentation and analysis of brain 
or mammography images (Wismüller et al., 2002) 
and many others.  

In most cases ANNs are realized using software 
platforms that is very convenient, but such networks 
cannot be used in low power diagnostic devices. 

Authors recently designed an experimental 
Kohonen network in CMOS technology that enables 
parallel data processing (Długosz et al. 2008), 
(Długosz and Kolasa 2008). Networks of this type 
may be hundreds times faster than networks realized 
in software, consuming much less energy.  

Various optimization techniques of the learning 
algorithm for KNN have been proposed (Zeb Shah, 
Salim, 2006), (McInerney, Dhawan 1994) but these 
techniques are not suitable for hardware networks 
due to large computational complexity. In this paper 
a new optimized learning algorithm is proposed that 
bases on simple filters, which makes this technique 
much easier to implement in hardware. This 
technique will be used in a next prototype of the 
KNN in analysis of biomedical ECG and EMG 
signals in Wireless Body Sensor Networks (WBSN).  

Extracting the useful features of the ECG and the 
EMG signals for use with ANNs is the problem 
itself, which has been addressed by many papers e.g. 
(Ghongade, Ghatolfor, 2007). In this paper example 
simulation results are presented for selected training 
data that are representative for different applications, 
but can easily be adopted to biomedical data.   
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2 KOHONEN NEURAL 
NETWORK 

Kohonen neural networks typically consist of a 
single layer of neurons arranged as a map, with the 
number of outputs equal to the number of neurons, 
and the number of inputs equal to the number of 
weights in neurons. In practical applications 2-D 
maps are the most commonly used, since they allow 
for good data visualization (Kohonen 2001).  

Training data files in such networks consist of m 
n-elements patterns X, where n is the number of the 
network inputs. The competitive learning in KNN is 
an iterative process. During each iteration, called an 
epoch, all m vectors are presented to the network in 
a random order. The full learning process requires 
even hundreds epochs, which means even several 
hundreds thousands presentations of a single pattern.  

Once a single pattern is presented to the network, 
several calculation steps may be performed by the 
network. In the first step a distance between a given 
pattern X and the weights vector W in every neuron 
in the map is calculated using, for example, the 
Euclidean or the Manhattan metric. In the next step 
the winning neuron is identified, and this neuron in 
the following step is allowed to adapt its weights.  

In the Winner Takes All (WTA) learning method 
only the winning neuron, whose vector W is the 
closest to the pattern X, is allowed to adapt the 
weights, while in the Winner Takes Most (WTM) 
approach also neurons that belong to the winner’s 
neighborhood change the weights. 

The WTA algorithm offers poor convergence 
properties, especially in case of large number of 
neurons. In this approach some neurons remain dead 
i.e. they absorb the computational resources, but 
never win and never become representatives of any 
data class. The WTM algorithm, on the other hand, 
is more complex, since it additionally involves the 
neighborhood mechanism, which increases the 
computational complexity, but this mechanism 
usually activates all neurons in the network (Mokriš 
2004), thus minimizing the quantization error. This 
error is defined as follows (ww are weights of the 
winning neuron): 
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The main problem in the WTM algorithm is very 
large number of operations, especially in case of 
large number of patterns and epochs. In hardware 
implementations effective methods to minimize the 
number of operations are therefore required.  

3 THE PROPOSED TECHNIQUE   

In a typical WTM learning algorithm the neighbor-
hood radius R at the beginning of the training 
process is set up to the maximum possible value so it 
covers an entire map. After each epoch the radius R 
decreases linearly by a small value to zero. In 
practice, as number of epochs usually is much larger 
than the maximum value (Rmax) of the neighborhood 
radius R, therefore the radius decreases always by 
‘1’ after the number of epochs equals to: 

( )MAXMAXround Rll=  (2) 

In equation (2) lmax is the total number of epochs in 
the learning phase. Value of the l parameter usually 
is in the range between 20 and 200, depending on the 
network’s dimensions. In case of an example map 
with 10x10 neurons and the rectangular neighbor-
hood Rmax equals to 19 (Długosz and Kolasa, 2008). 

To verify this ‘linear’ approach authors designed 
a software model of the WTM KNN. Simulations 
have been performed for different network dimen-
sions and different training data files. Observation of 
the quantization error in the time domain shows that 
the ‘linear’ approach is not optimal. The example 
illustrative waveforms of the Q_error are in this case 
shown in Fig. 1 for an example training data file 
with 1000 patterns X, for selected network dimen-
sions 20x20, 10x10 and 4x4 neurons. The quantiza-
tion error is calculated after each epoch i.e. always 
after presentation of 1000 training patterns X. This 
does not increase significantly the computational 
complexity of an entire learning process. 

The first important observation is that when the 
neighborhood radius R is larger than some critical 
value, the quantization error does not decrease, 
which means that in this period the network does not 
make the progress in training. This critical value is 
usually small, between 4 and 7 for different network 
dimensions as illustrated in Fig. 1. The important 
conclusion at this point is that the learning process 
may start with the value of the radius R, which is 
much smaller than the maximal value Rmax. This 
significantly shorts the entire training process.  

The second important observation is that the 
error does not decrease monotonously with time, but 
there are some distinct activity phases, just after the 
radius R is switched to the smaller value, in which it 
decreases abruptly and then some stagnation phases, 
in which it does not decrease. The length of a single 
activity phase usually is between 2-4 epochs inde-
pendently on the network dimensions.  

The optimization technique proposed by authors 
eliminates these stagnation phases by incorporation 
of the multistage filtering of the quantization error in 
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time domain and a special decision mechanism that 
automatically switches over the radius R just after a 
given activity phase is finished. This starts a new 
activity phase, but for smaller value of the radius R. 
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Figure 1: Typical ‘linear’ training process: (top) an e.g. 
training data file with 1000 vectors X and final placement 
of neurons in the map (below) quantization error as a 
function of the Epoch No., for selected map’s dimensions. 

In our proposed method three filters have been 
applied. The entire cycle starts with a lowpass finite 
impulse response (FIR) filtering that smoothes out 
the initial error waveform. This process is illustrated 
in Fig. 2 (a). In this case a simple Butterworth flat 
filter has been used with the following coefficients: 
hLPi = {0.125, 0.375, 0.375, 0.125}. 
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MEDIAN NONLINEAR FILTERING
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Figure 2: Proposed 3-stage error filtering: (a) the original 
waveform and the lowpass, (b) the highpass, (c) the 
nonlinear median filtering. 

The next step is the highpass filtering operation 
that detects edges in the smoothed error waveform. 
This filter may be very simple, with the length not 
exceeding 4. In presented example a filter with the 
coefficients hHPi = {1, 1, -1, -1} has been employed. 
The resultant waveform is illustrated in Fig. 2 (b). 
The spikes in this waveform indicate the activity 
phases. The problem here is that the “noise” present 
in the initial error waveform is a source of additional 
undesired spikes, which often are as high as the 
‘activity’ spikes, although usually are narrower than 
the ‘activity’ spikes. To overcome this problem a 
nonlinear median filter has been additionally 
applied. The length of this filter has been selected in 
such a way to even the height of the ‘activity’ spikes 
and to eliminate the ‘noise’ spikes. For example, the 
length of 5 allows to eliminate the ‘noise’ spikes 
with the width equal to 2, as shown in Fig. 2 (c). 

Both the highpass and the median waveforms are 
then used by a decision mechanism that automati-
cally switches over the radius R to the smaller value.  
The decision procedure starts when the value of the 
‘median’ waveform becomes larger than some 
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threshold value, which is high enough to exclude the 
‘noise’ spikes. The decision about switching over is 
made when the signal in the ‘highpass’ waveform 
becomes falling, which means that the training 
process is just entering the stagnation phase.  

It is worth noticing that the proposed algorithm 
must cooperate with the classic ‘linear’ method. This 
is necessary in a situation, in which an activity spike 
in the median waveform would be to small to 
activate the decision procedure. In this case the 
‘linear’ method will switch over the radius R after l 
iterations that will stop a given stagnation phase.  

The illustrative simulation results in case of the 
optimized training process are shown in Fig. 3 for an 
example network with 10x10 neurons. In this case 
the entire training process has been shorten 16 times 
from initial 1000 epochs to 60 epochs. 
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Figure 3: Training process after optimization, for an e.g. 
map with 10x10 neurons: (a) original signal and after the 
lowpass, (b) the highpass and (c) the median filtering. 

4 CONCLUSIONS 

A new simple learning algorithm for WTM KNNs 
designed for low-power devices has been described 
in the paper. The proposed technique bases on the 
multistage filtering of the quantization error, which 
is calculated after each epoch of the training process. 

The proposed algorithm detects the periods in the 
training process, in which the error decreases i.e. in 
which the network makes a progress in training and 

then automatically switches over the neighborhood 
radius R just after the training process enters the 
stagnation phase, thus shortening this phase.  

The simulations show that this technique is able 
to shorten the training process by more than 90%. 
The proposed algorithm will be used in hardware 
KNNs, designed for analysis of biomedical the ECG 
and the EMG signals in Wireless Body Sensor 
Network (WBSN) applications.  
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