
APPROXIMATED WINNER DETERMINATION FOR A SERIES OF
COMBINATORIAL AUCTIONS

Naoki Fukuta
Faculty of Informatics, Shizuoka University, 3 5 1, Johoku Hamamatsu Shizuoka, Japan

Takayuki Ito
Graduate School of Engineering, Nagoya Institute of Technology, Gokisocho, Showa-ku, Nagoya, Japan

Sloan School of Management, Massachusetts Institute of Technology, 5 Cambridge Center
Cambridge Massachusetts, MA, U.S.A.

Keywords: Combinatorial auctions, Winner determination, Approximation algorithm.

Abstract: In this paper, we propose approximated winner determination algorithms for iteratively conducted combina-
torial auctions. Our algorithms are designed to effectively reuse last-cycle solutions to speed up the initial
approximation performance on the next cycle. Experimental results show that our proposed algorithms out-
perform existing algorithms when a large number of similar bids are contained through iterations. Also, we
propose an enhanced algorithm that effectively avoids the undesirable reuse of the last solutions in the algo-
rithm without serious computational overheads.

1 INTRODUCTION

Combinatorial auctions(Cramton et al., 2006), one
of the most popular market mechanisms, have a
huge effect on electronic markets and political strate-
gies. For example, Sandholm et al. (Sandholm
et al., 2005)(Sandholm, 2007) proposed real mar-
kets using their innovative combinatorial auction al-
gorithms. The FCC tried to employ combinatorial
auction mechanisms to assign spectrums to compa-
nies (McMillan, 1994). Also (Cramton et al., 2006)
shows other realistic examples that utilize combinato-
rial auction mechanisms.

We argue that demand exists to utilize combina-
torial auction mechanisms that cannot be covered by
existing approaches due to hard time constraints and
the limitations of usable computational resources. Re-
source allocation for agents in ubiquitous computing
environments is a good example for understanding the
needs of the short-time approximation of combinato-
rial auctions. In such an environment, agents must
provide specific services to their users using various
available resources. However, in ubiquitous comput-
ing environments, since such resources as sensors and
devices are typically limited, they do not satisfy all
the needs of all agents. For various reasons including
physical limitations and privacy concerns, most of the
resources cannot be shared with other agents. Fur-

thermore, agents will simultaneously use two or more
resources to realize desirable services for users. Since
agents provide services to their own users, agents
might be self-interested. Therefore, a combinatorial
auction mechanism is a good option for such situa-
tions since it provides effective resource allocation to
self-interested agents.

In order to utilize combinatorial auctions on the
above situation, we need to complete winner deter-
mination within a very short time. Consider 256 re-
sources and 100 agents, where each agent places, for
example, from 200 to 1,000 of combinations for the
items as complex bids to an auction, they will be ex-
panded to, from 20,000 to 100,000 of atomicOR-bids.
Here, to avoid occupying a set of resources for a long
time by a certain agent, we consider a resource allo-
cation scenario based on fixed time slice assignment
model. In the scenario, those resources are auctioned
and allocated from a system to agents for a fixed time
period. After a certain time has passed, those are once
all returned to the system and then they are auctioned
again for the next period. When an agent prefers to
continue using the same resources at the next period,
the agent will place a higher price for the resources to
increase the possibility to win them.

In ubiquitous computing scenarios, since physi-
cal locations of users are always changing, resources
should be reallocated in a certain period to catch up

400
Fukuta N. and Ito T. (2009).
APPROXIMATED WINNER DETERMINATION FOR A SERIES OF COMBINATORIAL AUCTIONS.
In Proceedings of the International Conference on Agents and Artificial Intelligence, pages 400-407
DOI: 10.5220/0001659104000407
Copyright c© SciTePress

with those changes. For better usability, the resource
reallocation time period will be 0.1 to several seconds
depending on services provided. Furthermore, since
we should complete whole resource allocation proce-
dure that includes pricing and communication to de-
vices for actual resource assignment, we must deter-
mine auction winners within an extremely short time
period that is far less than the actual resource alloca-
tion period.

In general, the optimal winner determina-
tion problem of combinatorial auctions is NP-
hard(Cramton et al., 2006). Thus, much work fo-
cuses on tackling the computational costs for win-
ner determination (Fujishima et al., 1999)(Cramton
et al., 2006)(Sandholm et al., 2005). Some works
(Lehmann et al., 2002) (Zurel and Nisan, 2001) (Hoos
and Boutilier, 2000) try to achieveapproximatesolu-
tions in winner determination.

In this paper, we propose enhanced approxima-
tion algorithms of winner determination on combina-
torial auctions that are suitable for the purpose of iter-
ative reallocation of items mentioned above. Since the
above-mentioned existing algorithms areofflinealgo-
rithms, we need to re-calculate the winners when bids
are added to or deleted from the auction even when
the modification of bids is only slight. Intuitively, it
could be helpful to reuse results of past similar auc-
tions for faster approximation of the current auction.
However, those algorithms did not consider reusing
past approximated results for performance improve-
ment since such reuse may cause serious performance
down in certain cases. Our enhanced algorithms pre-
pared mechanisms to reuse past approximation results
but avoid such performance down with very small
overhead.

2 PRELIMINARIES

2.1 Winner Determination Problem

In this paper, to keep simplicity of discussion, we
only focus on utility-based resource allocation prob-
lems(Thomadakis and Liu, 1999), rather than generic
resource allocation problems with numerous complex
constraints. Utility-based resource allocation prob-
lem is a problem that aims to maximize the sum of
utilities of users for each allocation period, but does
not consider other factors and constraints (i.e., fair al-
location (Andrew et al., 2008) , security and privacy
concerns(Xie and Qin, 2008), uncertainty(Xiao et al.,
2004), etc). Also we only consider a scenario that is
based on fixed time slice assignment model.

Combinatorial auction is an auction mechanism
that allows bidders to locate bids for a bundle of
items rather than single item(Cramton et al., 2006).
When we apply combinatorial auction mechanism for
utility-based resource allocation problems, the prob-
lem can be transformed to solve a winner determina-
tion problem on combinatorial auctions.

The winner determination problem on combina-
torial auctions is defined as follows(Cramton et al.,
2006) : The set of bidders is denoted byN = 1, . . . ,n,
and the set of items byM = {1, . . . ,m}. |M| = m.
BundleSis a set of items :S⊆M. We denote byvi(S),
bidderi’s valuation of combinatorial bid for bundleS.
An allocation of the items is described by variables
xi(S) ∈ {0,1}, wherexi(S) = 1 if and only if bidderi
wins the bundleS. An allocation,xi(S), is feasible if
it allocates no item more than once, i.e.,for allj ∈ M,

∑
i∈N

∑
S∋ j

xi(S) ≤ 1

The winner determination problem is the problem to
maximize total revenue. For feasible allocationsX ∋
xi(S),

max
X

∑
i∈N,S⊆M

vi(S)xi(S)

Here, we used simpleOR-bids representation as
our bidding language. Substitutability can be rep-
resented by a set of atomicOR-bidswith dummy
items(Cramton et al., 2006).

Even when we only focus on utility-based re-
source allocation problems, they enforce us to solve
winner determination problem with really hard-time
constraint for realizing fine-grained resource alloca-
tion. Here, we have to consider that, in such resource
allocation procedures, we need to spend much time
for pricing and communications for actual resource
allocation protocols. Therefore, we need a fast win-
ner determination algorithm for auctions with a large
number of bids. In this paper, primarily we focus on
solving this problem.

2.2 Lehmann’s Greedy Winner
Determination

Lehmann’s greedy algorithm (Lehmann et al., 2002)
is a very simple but powerful linear algorithm for win-
ner determination on combinatorial auctions. Here, a
bidder declaring< s,a >, with s⊆ M and a ∈ R+

will be said to put out a bidb =< s,a >. Two bids
b =< s,a > andb′ =< s′,a′ > conflict iff s∩ s′ 6= /0.
The greedy algorithm can be described as follows:
(1) The list of bidsL is sorted by some criterion. In
(Lehmann et al., 2002), a method to sort the listL
by descending average amount per item is proposed.

APPROXIMATED WINNER DETERMINATION FOR A SERIES OF COMBINATORIAL AUCTIONS

401

More generally, they proposed sortingL by a crite-
rion of the forma/|s|c for some numberc≥ 0, which
possibly depends on the number of items,m. (2) A
greedy algorithm generates an allocation.L is the
sorted list in the first phase. The algorithm walk down
the list L, accepting bids if the items demanded are
still unallocated and unconflicted.

In (Lehmann et al., 2002), Lehmann et, al . ar-
gued thatc = 1/2 is the best parameter for approxi-
mation when the norm of the worst case performance
is considered1. Also they showed that the mechanism
is truthful when single-minded bidders are assumed
and their proposed pricing scheme is used.

2.3 Hill-climbing Search

In (Fukuta and Ito, 2006)we proposed a preliminary
idea of our hill-climbing approach, and in (Fukuta
and Ito, 2007a) we showed our hill-climbing approach
performs well when an auction has an enormous num-
ber of bids. In this section, we summarize our pro-
posed algorithms.

Lehmann’s greedy winner determination typically
performs well and the lower bound of the optimality
has been analyzed(Lehmann et al., 2002). A straight-
forward extension of the greedy algorithm is to con-
struct a local search algorithm that continuously up-
dates the allocation to increase optimality. Intuitively,
one allocation corresponds to one state of a local
search.
The inputs areAlloc and L. L is the bid list of an
auction.Alloc is the initial greedy allocation of items
for the bid list.

1: function LocalSearch(Alloc, L)

2: RemainBids:= L∩Alloc;

3: for each b∈ RemainBidsas sorted order

4: if b conflictsAlloc then

5: Con f licted:=Alloc∩consistentBids({b},Alloc);

6: NewAlloc:= (Alloc∩Con f licted)∪{b};

7: ConsBids:=

8: consistentBids(NewAlloc,RemainBids);

9: NewAlloc:=NewAlloc∪ConsBids;

10: if price(Alloc) < price(NewAlloc) then

11: return LocalSearch(NewAlloc,L);

12: end for each

13: return Alloc

FunctionconsistentBidsfinds consistent bids for the
setNewAllocby walking down the listRemainBids.

1Note that, in (Sandholm et al., 2005), Sandholm et,al.
determined experimentally thatc ∈ [0.8,1] yields best per-
formance in their approach.

Here, since a new inserted bid will wipe out some bids
that are conflicting with the inserted bid, free items
will appear to be allocated to other bidders after the
insertion. FunctionconsistentBidstries to find out po-
tential winner bids that do not conflict to the specified
allocation.

2.4 Parallel Search for Multiple
Weighting

The optimality of allocations obtained by Lehmann’s
algorithm (and the subsequent hill-climbing) deeply
depends on which value was set toc in the bid weight-
ing function. Lehmann et al. reported thatc = 1/2
guarantees lower bound of approximation. However,
the optimal values for each auction are varied from 0
to 1 depending on the auction problem.

In (Fukuta and Ito, 2006), an enhancement has
been presented for local search algorithm to paral-
lel search for different bid weighting strategies (e.g.,
doing the same algorithm for bothc = 0 andc = 1)
In the algorithm, the value ofc for Lehmann’s al-
gorithm is selected from a pre-defined list. Select-
ing c from neighbors of 1/2 is reasonable, namely,
C = {0.0,0.1, . . . ,1.0}. The results are aggregated
and the best one (with the highest revenue) is selected
as the final result.

2.5 Other Approximation Approaches

Zurel and Nisan(Zurel and Nisan, 2001) proposed
a very high performance approximate winner deter-
mination algorithm for combinatorial auctions. The
main idea is a combination of approximated positive
linear program algorithm for determining initial allo-
cation and stepwise random updates of allocations.

Hoos(Hoos and Boutilier, 2000) proposed
Casanova algorithm, and showed that a generic
random walk SAT solver may perform well for ap-
proximation of combinatorial auctions. It is based on
scoring each search state using the revenue-per-item
of the corresponding allocation.

3 ENHANCED APPROXIMATION

3.1 Fast Partial Reallocation by Last
Result

In the setting of the periodical resource re-allocation
scenario, winner determination occurs when some
bids are revised. Theoretically, we need to recalcu-
late winners even if only one bid is changed in the

ICAART 2009 - International Conference on Agents and Artificial Intelligence

402

auction. However, in some cases, reusing the win-
ners of previous auctions is useful when the change is
small so that it has small effects to the next winner de-
termination process. The following simple algorithm
reuses the approximation result of the last cycle when
recalculation is needed due to changes of the

Here, we assume that the bids won at the last cy-
cle (LastWinners) and the all bids at the last cycle
(LastBids) are known.

1: Function PartialReallocationA(

2: LastBids,LastWinners,CurrentBids)

3: AddedBids:=

4: CurrentBids∩ (LastBids∩CurrentBids);

5: DeletedBids:=

6: LastBids∩ (LastBids∩CurrentBids);

7: Winners:= LastWinners;

8: foreach d ∈ DeletedBids

9: if d ∈Winners

10: then Winners:= Winners∩{d};

11: foreach a∈ AddedBids

12: foreach w∈Winners

13: if w anda are bids placed for the exactly same items

14: andprice({w}) < price({a})

15: then Winners:= (Winners∩{w})∪{a};

16: Winners:= LocalSearch(Winners,CurrentBids);

17: return Winners

First, the algorithm deletes winners that no longer
valid due to deletion of bids. Then, some winner bids
are replaced by newly added bids. Note that we only
replace a bid when the bids are placed for exactly the
same items, i.e., for two bidsbi(X) andb j(Y), X = Y,
to avoid the ordering problem of newly added bids.
Modification of a bid through cycles is treated as a
combined operation of the deletion of previous bid
and the addition of the renewed bid.

3.2 Eliminating Undesirable
Reallocations

Generally speaking, the performance of reusing the
partial results of similar problems depends on the
problem. Therefore, in some cases, reusing the last
result may cause performance decreases. To avoid
such a situation, we slightly modified our algorithm
to switch the initial allocation by evaluating its per-
formance.

Here, the modified algorithm simply compares the
reused result with greedy allocation. Then, the bet-
ter one is used as the seed of hill-climbing improve-
ment. Note that both our reallocation and greedy al-
location algorithms complete their executions in very

short time. Therefore, computational overhead for
them is expected to be negligible.

1: Function PartialReallocationX(

2: LastBids,LastWinners,CurrentBids)

3: AddedBids:=

4: CurrentBids∩ (LastBids∩CurrentBids);

5: DeletedBids:=

6: LastBids∩ (LastBids∩CurrentBids);

7: Winners:= LastWinners;

8: foreach d ∈ DeletedBids

9: if d ∈Winners

10: then Winners:= Winners∩{d};

11: foreach a∈ AddedBids

12: foreach w∈Winners

13: if w anda are bids placed for the exactly same items

14: andprice({w}) < price({a})

15: then Winners:= (Winners∩{w})∪{a};

16: GreedyWinners:= GreedySearch(CurrentBids);

17: if price(Winners) ≤ price(GreedyWinners)

18: then Winners:= GreedyWinners;

19: Winners:= LocalSearch(Winners,CurrentBids);

20: return Winners

4 EVALUATION

4.1 Experiment Settings

We implemented our algorithms in a C program for
the following experiments. We also implemented the
Casanova algorithm in a C program. For Zurel’s al-
gorithm, we used Zurel’s C++ based implementation
that is shown in (Zurel and Nisan, 2001). Also we
used CPLEX Interactive Optimizer 11.0.0 (32bit) in
our experiments2. The experiments were done with
above implementations to examine the performance
differences among algorithms. The programs were
employed on a Mac with Mac OS X 10.4, a CoreDuo
2.0GHz CPU, and 2GBytes of memory.

We conducted several experiments. In each ex-
periment, we compared the following search algo-
rithms: greedy(C=0.5) uses Lehmann’s greedy allo-
cation algorithm with parameter (c = 0.5). greedy-3
uses the best results of Lehmann’s greedy allocation
algorithm with parameter (0≤ c ≤ 1 in 0.5 steps).
HC(c=0.5) uses a local search in which the initial allo-
cation is Lehmann’s allocation withc = 0.5 and con-
ducts the hill-climbing search shown in section 2.3.

2Although CPLEX is an optimizer that can obtain opti-
mal results, it is reported in (Sandholm et al., 2005) that its
anytime approximation performance is also good.

APPROXIMATED WINNER DETERMINATION FOR A SERIES OF COMBINATORIAL AUCTIONS

403

HC-3 uses the best results of the hill-climbing search
with parameter (0≤ c ≤ 1 in 0.5 steps). We denote
the Casanova algorithm ascasanova and Zurel’s al-
gorithm asZurel Also we denote results of 1st stage
of Zurel’s algorithm asZurel-1st. Note that Zurel’s
algorithm does not produce any approximation result
until completing its 1st stage.cplex is the result of
CPLEX with the specified time limit.

In the following experiments, we used 0.2 for the
epsilon value of Zurel’s algorithm. This value appears
in (Zurel and Nisan, 2001). Also we used 0.5 fornp
and 0.15 forwp on Casanova that appear in (Hoos
and Boutilier, 2000). Note that we setmaxTrial to 1
but maxStepsto ten times the number of bids in the
auction.

We conducted detailed comparisons among our
past presented algorithms and the other existing al-
gorithms mentioned above. The details of the com-
parisons are shown in (Fukuta and Ito, 2007b) and
(Fukuta and Ito, 2007a). In (Fukuta and Ito, 2007b)
and (Fukuta and Ito, 2007a), we prepared datasets
with 20,000 bids in an auction. The datasets were
produced by CATS(Leyton-Brown et al., 2000) with
default parameters in 5 different distributions. They
contain 100 trials for each distribution. Each trial is
an auction problem with 256 items and 20,000 bids.3

However, since CATS common datasets only pro-
vide static bids for an auction, we prepared ex-
tended usage for those datasets to include the dynamic
changes of bids in an auction.

Procedure: In each auction, the bid set is di-
vided intok blocks by the order of bid generation (i.e.,
bid id). The bid set is modified totallyk times and the
modification is done in each second. In each 1-second
period, a block is marked as hidden so that bids within
these marked blocks are treated asdeleted bids. For
example, at the first period, the first block is marked
as hidden so the remaining bids (second tokth blocks)
are used for winner determination. After 1 second, the
mark is moved to the second block (i.e., the first, and
the third tokth blocks are used) and the winner deter-
mination process is restarted due to this change. Here,
we can see it as the bids in the first block are newly
added to the auction and the bids in the second block
are deleted from the auction. This process is repeated
until the mark has been moved to thekth block. Fi-
nally, all marks are cleared and the winner determina-
tion process is restarted with full bids in the auction.
Ordinary algorithms should be completely restarted in
each cycle. However, when we use our proposed real-
location algorithms, some intermediate results can be

3Due to difficulty of dataset preparation, we only pre-
pared five distributions. Producing a dataset with other dis-
tributions is difficult in feasible time.

reused in the next cycle in the same auction.
Since the bid set in thek+ 1th cycle completely

equals the bids of the auction, the results of thek+1th
cycle can be compared to our previous experimental
results.

4.2 Time Performance

Table 1 shows the experimental result on the datasets
with 20,000 bids in an auction focused on execution
time of approximation. Due to the difficulty of at-
taining optimal values, we normalized all values as
Zurel’s results equal 1 as follows.

Let A be a set of algorithms,z∈ A be the zurel’s
approximation algorithm,D be a dataset generated for
this experiment, andrevenuea(p) such thata ∈ A be
the revenue obtained by algorithma for a problemp
in a dataset, the average revenue ratiorationAa(D) for
algorithma∈ A for datasetD is defined as follows:

ratioAa(D) =
∑p∈D revenuea(p)

∑p∈D revenuez(p)

Here, we useratioAa(D) for our comparison of algo-
rithms.

The name of each distribution is taken from
(Leyton-Brown et al., 2000). We prepared the cut-off
results ofCasanova andHC. For example,casanova-
10ms denotes the results ofCasanova within 10 mil-
liseconds. Also we prepared a variant of our algo-
rithm that has a suffix of-seq or -para. The suffix-seq
denotes that the algorithm is completely executed se-
quentially that is equal to be executed on a single CPU
computer. For example,greedy-3-seq denotes that the
execution time is the sum of execution times spent by
three threads. The suffix-para denotes that the algo-
rithm is completely executed in a parallel manner, the
three independent threads are completely executed in
parallel. Here, we used ideal value for-para since
our computer has only two cores in the CPU. The ac-
tual execution performance will be between-seq and
-para.

Additionally, we added results with namesAHC or
XHC in the same table. They are the average approxi-
mated results of thek+1th cycle of auctions with our
proposed algorithmsPartialReallocationA and
PartialReallocationX, respectively.

In most distributions,Zurel-1st takes more than
one second but the obtained optimality is lower than
greedy-3-seq. However, our proposedHC-3 performs
better or slightly lower although their computation
times are shorter thanZurel-1st andZurel, excluding
L3. Surprisingly, in most cases, the results ofXHC-
3-seq-100ms are better thanHC-3-seq-1000ms while
their spent computation time is only 1/10. This fact

ICAART 2009 - International Conference on Agents and Artificial Intelligence

404

Table 1: Time Performance of (k+1)th cycle on 20,000bids-256items (k=10).

L2 L3 L4 L6 L7 average

greedy(c=0.5) 1.0002 (23.0) 0.9639 (19.0) 0.9417 (23.0) 0.9389 (23.4) 0.7403 (22.1) 0.9170 (22.1)

greedy-3-seq 1.0003 (69.1) 0.9639 (59.2) 0.9999 (72.9) 0.9965 (67.8) 0.7541 (66.8) 0.9429 (67.2)

greedy-3-para 1.0003 (26.4) 0.9639 (20.9) 0.9999 (28.4) 0.9965 (26.0) 0.7541 (25.5) 0.9429 (25.4)

HC(c=0.5)-100ms 1.0004 (100) 0.9741 (100) 0.9576 (100) 0.9533 (100) 0.8260 (100) 0.9423 (100)

HC-3-seq-100ms 1.0004 (100) 0.9692 (100) 1.0000 (100) 0.9966 (100) 0.8287 (100) 0.9590 (100)

AHC-3-seq-100ms 1.0004 (100) 0.9690 (100) 1.0006 (100) 0.9974 (100) 1.0225 (100) 0.9980 (100)

XHC-3-seq-100ms 1.0004 (100) 0.9813 (100) 1.0005 (100) 0.9987 (100) 1.0217 (100) 1.0005 (100)

HC-3-para-100ms 1.0004 (100) 0.9743 (100) 1.0001 (100) 0.9969 (100) 0.9423 (100) 0.9828 (100)

AHC-3-para-100ms 1.0004 (100) 0.9741 (100) 1.0006 (100) 0.9977 (100) 1.0249 (100) 0.9995 (100)

XHC-3-para-100ms 1.0004 (100) 0.9820 (100) 1.0006 (100) 0.9988 (100) 1.0249 (100) 1.0013 (100)

HC(c=0.5)-1000ms 1.0004 (1000) 0.9856 (1000) 0.9771 (1000) 0.9646 (1000) 1.0157 (1000) 0.9887 (1000)

HC-3-seq-1000ms 1.0004 (1000) 0.9804 (1000) 1.0003 (1000) 0.9976 (1000) 1.0086 (1000) 0.9975 (1000)

AHC-3-seq-1000ms 1.0004 (1000) 0.9795 (1000) 1.0007 (1000) 0.9982 (1000) 1.0266 (1000) 1.0011 (1000)

XHC-3-seq-1000ms 1.0004 (1000) 0.9830 (1000) 1.0006 (1000) 0.9991 (1000) 1.0266 (1000) 1.0019 (1000)

HC-3-para-1000ms 1.0004 (1000) 0.9856 (1000) 1.0006 (1000) 0.9987 (1000) 1.0240 (1000) 1.0019 (1000)

AHC-3-para-1000ms 1.0004 (1000) 0.9847 (1000) 1.0008 (1000) 0.9990 (1000) 1.0272 (1000) 1.0024 (1000)

XHC-3-para-1000ms 1.0004 (1000) 0.9853 (1000) 1.0008 (1000) 0.9996 (1000) 1.0272 (1000) 1.0027 (1000)

Zurel-1st 0.5710 (11040) 0.9690 (537) 0.9983 (2075) 0.9928 (1715) 0.6015 (1796) 0.8265 (3433)

Zurel 1.0000 (13837) 1.0000 (890) 1.0000 (4581) 1.0000 (4324) 1.0000 (3720) 1.0000 (5470)

casanova-10ms 0.2583 (10) 0.0069 (10) 0.0105 (10) 0.0202 (10) 0.2577 (10) 0.0632 (10)

casanova-100ms 0.2583 (100) 0.0069 (100) 0.0105 (100) 0.0202 (100) 0.2577 (100) 0.1107 (100)

casanova-1000ms 0.5357 (1000) 0.1208 (1000) 0.0861 (1000) 0.1486 (1000) 0.7614 (1000) 0.3305 (1000)

cplex-100ms 0.0000 (288) 0.0000 (121) 0.0299 (111) 0.0000 (150) 0.0000 (119) 0.0060 (158)

cplex-333ms 0.0000 (489) 0.0000 (393) 0.9960 (497) 0.9716 (354) 0.0000 (487) 0.3935 (444)

cplex-1000ms 0.0000 (1052) 0.0000 (1039) 0.9960 (1143) 0.9716 (1140) 0.0000 (2887) 0.3935 (1452)

cplex-3000ms 0.0000 (9171) 0.9338 (3563) 0.9964 (3030) 0.9716 (3077) 0.0000 (3090) 0.5804 (4386)

(each value in () is time in milliseconds)

shows that ourXHC-3 could effectively reuse the ap-
proximated results of previous cycles.

In many settings of CPLEX, the values are 0. This
is because CPLEX could not generate initial approxi-
mation result within the provided time limit. Only L4
and L6 have results for CPLEX. For them, CPLEX
spends around 400 msec for the computation but the
results are still lower thangreedy-3. For L3, CPLEX
could prepare results in 3.8 sec of computation, how-
ever, the result is still lower thangreedy-3. This is
because the condition we set up gave extremely short
time limit so therefore CPLEX could not generate suf-
ficient approximation results in such hard time con-
straint.

Table 2 shows the experimental result on the
datasets with 100,000 bids in an auction focused on
execution time of the approximation. The settings are
identical as Table 1 excluding the difference of num-
ber of bids in an auction. Due to hard time constraint,
results of -seq-100ms (sequential execution with a
cutoff time of 100ms) are excluded from the table
since they could not complete their execution within
the cutoff time. Here, our proposed methods (AHC-
3,XHC-3) clearly have a certain advantage of their
performance time ratio.HC-3,AHC-3,andXHC-3 pro-
duced acceptable approximated results within 100 to

1000 msec that are 2 to 443 times faster than Zurel’s
approximation. Especially, in most cases, ourAHC-3-
para-100ms outperformsHC-3-seq-1000ms andHC-
3-para-1000ms.

On above experiments, we usedk = 10. Table 3
shows average time performance of our algorithms on
k = 2,5,10,20,40, respectively. At same cutoff time,
XHC-3 obtains higher or at least same performance
compared toHC-3. Furthermore,XHC-3-para-100ms
outperformsHC-3-para-1000ms whenk ≥ 20, while
its computation time is 10 times shorter.

On above experiments, for direct comparison to
other existing algorithms, we have shown results on
final(e.g.,(k+ 1)th) cycle in our procedure. We also
confirmed performance improvement on intermediate
cycle in our procedure. Table 4 shows average re-
sults on intermediate cycles for three algorithms (HC-
3,AHC-3,andXHC-3). Here, since we do not have ap-
proximation results for those intermediate cycles on
Zurel’s algorithm, instead of usingratioA, we nor-
malized all values asHC-3-para-1000msec equals 1.
Since our algorithms improve results much more for
latter cycles by cumulative reuse of the last cycle, we
used first four cycles in this comparison. For results
onk = 5,10,20,40, we used an average value for first
four intermediate cycles (e.g., from 2nd to 5th). Note

APPROXIMATED WINNER DETERMINATION FOR A SERIES OF COMBINATORIAL AUCTIONS

405

Table 2: Time Performance of (k+1)th cycle on 100,000bids-256items (k=10).

L2 L3 L4 L6 L7 average

HC-3-para-100ms 1.1098 (100) 0.9836 (100) 1.0003 (100) 1.0009 (100) 0.8688 (100) 0.9927 (100)

AHC-3-para-100ms 1.1098 (100) 0.9836 (100) 1.0003 (100) 1.0009 (100) 0.9941 (100) 1.0177 (100)

XHC-3-para-100ms 1.1098 (100) 0.9880 (100) 1.0003 (100) 1.0010 (100) 0.9939 (100) 1.0186 (100)

HC-3-para-1000ms 1.1098 (1000) 0.9880 (1000) 1.0003 (1000) 1.0010 (1000) 0.9814 (1000) 1.0161 (1000)

AHC-3-para-1000ms 1.1098 (1000) 0.9880 (1000) 1.0003 (1000) 1.0010 (1000) 0.9991 (1000) 1.0197 (1000)

XHC-3-para-1000ms 1.1098 (1000) 0.9889 (1000) 1.0003 (1000) 1.0011 (1000) 0.9990 (1000) 1.0198 (1000)

zurel-1st 0.8971 (74943) 0.9827 (2257) 0.9998 (5345) 0.9987 (4707) 0.7086 (8688) 0.9174 (19188)

Zurel 1.0000 (91100) 1.0000 (6036) 1.0000 (30568) 1.0000 (44255) 1.0000 (17691) 1.0000 (37930)

cplex-100ms 0.0000 (2022) 0.0000 (232) 0.0000 (143) 0.0000 (133) 0.0000 (852) 0.0000 (676)

cplex-333ms 0.0000 (2021) 0.0000 (559) 0.9998 (1084) 0.0000 (412) 0.0000 (852) 0.2000 (986)

cplex-1000ms 0.0000 (2021) 0.0000 (1045) 0.9998 (1085) 0.0000 (1328) 0.0000 (1285) 0.2000 (1353)

cplex-3000ms 0.0000 (3496) 0.0000 (3286) 0.9998 (5207) 0.9965 (3092) 0.0000 (15667) 0.3993 (6149)

(each value in () is time in milliseconds)

Table 3: Time Performance of (k+1)th cycle on 20,000bids-256items (k=2,5,10,20,40).

k=2 k=5 k=10 k=20 k=40

HC-3-para-100ms 0.9828 (100) 0.9828 (100) 0.9828 (100) 0.9828 (100) 0.9828 (100)

AHC-3-para-100ms 0.9952 (100) 0.9979 (100) 0.9995 (100) 1.0003 (100) 1.0009 (100)

XHC-3-para-100ms 0.9952 (100) 0.9998 (100) 1.0013 (100) 1.0021 (100) 1.0028 (100)

HC-3-para-1000ms 1.0019 (1000) 1.0019 (1000) 1.0019 (1000) 1.0019 (1000) 1.0019 (1000)

AHC-3-para-1000ms 1.0019 (1000) 1.0021 (1000) 1.0024 (1000) 1.0026 (1000) 1.0027 (1000)

XHC-3-para-1000ms 1.0019 (1000) 1.0025 (1000) 1.0027 (1000) 1.0031 (1000) 1.0035 (1000)

(each value in () is time in milliseconds)

that, only for results onk = 2, we used the results on
2nd cycle since we do not have other intermediate cy-
cles whenk = 2. Here, results ofXHC-3 constantly
better thanAHC-3 andHC-3 and the differences are
bigger whenk is increased.

5 RELATED WORK

There have been a lot of works on the optimal algo-
rithms for winner determination in combinatorial auc-
tions(de Vries and Vohra, 2003). Recently, Dobzinski
et, al. proposed improved approximation algorithms
for auctions with submodular bidders(Dobzinski and
Schapira, 2006). Lavi et, al, reported an LP based
algorithm that can be extended to support the clas-
sic VCG(Lavi and Swamy, 2005). Those researches
are mainly focused on theoretical aspects. In con-
trast to those papers, we rather focus on experimen-
tal and implementation aspects. Those papers did not
present experimental analysis about the settings with
large number of bids we presented in this paper. Also,
Guo(Guo et al., 2005) proposed local-search based al-
gorithms for large number of bids in combinatorial
auction problems. However, they did not present ex-
periments with such a huge number of bids we used
in our experiments.

CPLEX is a well-known, very fast linear program-

ming solver system. In (Zurel and Nisan, 2001), Zurel
et al. evaluated the performance of their presented al-
gorithm with many data sets, compared with CPLEX
and other existing implementations. While the ver-
sion of CPLEX used in (Zurel and Nisan, 2001) is
not up-to-date, the shown performance of Zurel’s al-
gorithm is approximately 10 to 100 times faster than
CPLEX. In this paper, we showed direct compar-
isons to the latest version of CPLEX we could pre-
pare. Our approach is far better than latest version
of CPLEX for large-scale winner determination prob-
lems. Therefore, the performance of our approach is
better than CPLEX in our settings. This is natural
since Zurel’s and our approaches are specialized for
combinatorial auctions, and also focus only on faster
approximation but do not seek optimal solutions. In
case we need optimal solutions, it is good choice to
solve the same problem by both our approach and
CPLEX in parallel.

The above approaches are based on offline algo-
rithms and therefore there are no considerations about
addition and deletion of bids in their approximation
processes. Although our algorithms are not strict on-
line algorithms, it is possible to reuse the last results
when bids are modified and recalculation is necessary.

ICAART 2009 - International Conference on Agents and Artificial Intelligence

406

Table 4: Time Performance of intermediate cycles on 20,000bids-256items (k=2,5,10,20,40).

k=2 k=5 k=10 K=20 K=40

HC-3-para-100ms 0.9889 0.9847 0.9829 0.9826 0.9818

AHC-3-para-100ms 0.9889 0.9805 0.9838 0.9874 0.9897

XHC-3-para-100ms 0.9892 0.9917 0.9943 0.9951 0.9966

(values are normalized as HC-3-para-1000msec equals 1)

6 CONCLUSIONS

In this paper, we proposed enhanced approximation
algorithms for combinatorial auctions that are suitable
for the purpose of iterative reallocation of items. Our
proposed algorithms effectively reuse the last solu-
tions to speed up initial approximation performance.
The experimental results showed that our proposed al-
gorithms outperform existing algorithms in some as-
pects. However, we found that in some cases reusing
the last solutions may worsen performance compared
to ordinary approximation from scratch. We proposed
an enhanced algorithm that effectively avoids the un-
desirable reuse of the last solutions in the algorithm.
We showed this is especially effective when a non-
negligible number of existing bids are deleted from
the last cycle.

REFERENCES

Andrew, L. L., Hanly, S. V., and Mukhtar, R. G. (2008).
Active queue management for fair resource allocation
in wireless networks.IEEE Transactions on Mobile
Computing, pages 231–246.

Cramton, P., Shoham, Y., and Steinberg, R. (2006).Combi-
natorial Auctions. The MIT Press.

de Vries, S. and Vohra, R. V. (2003). Combinatorial auc-
tions: A survey.International Transactions in Opera-
tional Research, 15(3):284–309.

Dobzinski, S. and Schapira, M. (2006). An improved
approximation algorithm for combinatorial auctions
with submodular bidders. InProc. of the seven-
teenth annual ACM-SIAM symposium on Discrete al-
gorithm(SODA2006), pages 1064–1073. ACM Press.

Fujishima, Y., Leyton-Brown, K., and Shoham, Y. (1999).
Taming the computational complexity of combinato-
rial auctions: Optimal and approximate approarches.
In Proc. of the 16th International Joint Conference on
Artificial Intelligence (IJCAI1999), pages 548–553.

Fukuta, N. and Ito, T. (2006). Towards better approxima-
tion of winner determination for combinatorial auc-
tions with large number of bids. InProc. of The 2006
WIC/IEEE/ACM International Conference on Intelli-
gent Agent Technology(IAT2006), pages 618–621.

Fukuta, N. and Ito, T. (2007a). Periodical resource allo-
cation using approximated combinatorial auctions. In
Proc. of The 2007 WIC/IEEE/ACM International Con-
ference on Intelligent Agent Technology(IAT2007),
pages 434–441.

Fukuta, N. and Ito, T. (2007b). Short-time approximation
on combinatorial auctions – a comparison on approx-
imated winner determination algorithms. InProc. of
The 3rd International Workshop on Data Engineering
Issues in E-Commerce and Services(DEECS2007),
pages 42–55.

Guo, Y., Lim, A., Rodrigues, B., and Zhu, Y. (2005).
A non-exact approach and experiment studies on
the combinatorial auction problem. InProc. of the
38th Hawaii International Conference on System Sci-
ences(HICSS2005), page 82.1.

Hoos, H. H. and Boutilier, C. (2000). Solving combinato-
rial auctions using stochastic local search. InProc.
of the Proc. of 17th National Conference on Artificial
Intelligence (AAAI2000), pages 22–29.

Lavi, R. and Swamy, C. (2005). Truthful and near-optimal
mechanism design via linear programming. In46th
Annual IEEE Symposium on Foundations of Computer
Science (FOCS2005), pages 595–604.

Lehmann, D., O’Callaghan, L. I., and Shoham, Y. (2002).
Truth revelation in rapid, approximately efficient com-
binatorial auctions.Journal of the ACM, 49:577–602.

Leyton-Brown, K., Pearson, M., and Shoham, Y. (2000).
Towards a universal test suite for combinatorial auc-
tion algorithms. InProc. of ACM Conference on Elec-
tronic Commerce (EC2000), pages 66–76.

McMillan, J. (1994). Selling spectrum rights.The Journal
of Economic Perspectives.

Sandholm, T. (2007). Expressive commerce and its ap-
plication to sourcing: How we conducted $35 billion
of generalized combinatorial auctions.AI Magazine,
28(3):45–58.

Sandholm, T., Suri, S., Gilpin, A., and Levine, D. (2005).
Cabob: A fast optimal algorithm for winner determi-
nation in combinatorial auctions.Management Sci-
ence, 51(3):374–390.

Thomadakis, M. E. and Liu, J.-C. (1999). On the efficient
scheduling of non-periodic tasks in hard real-time sys-
tems. InProc. of IEEE Real-Time Systems Symp.,
pages 148–151.

Xiao, L., Chen, S., and Zhang, X. (2004). Adaptive memory
allocations in clusters to handle unexpectedly large
data-intensive jobs.IEEE Transactions on Parallel
and Distributed Systems, 15(7):577–592.

Xie, T. and Qin, X. (2008). Security-aware resource allo-
cation for real-time parallel jobs on homogeneous and
heterogeneous clusters.IEEE Transactions on Paral-
lel and Distributed Systems, 19(5):682–697.

Zurel, E. and Nisan, N. (2001). An efficient approximate
allocation algorithm for combinatorial auctions. In
Proc. of the Third ACM Conference on Electronic
Commerce (EC2001), pages 125–136.

APPROXIMATED WINNER DETERMINATION FOR A SERIES OF COMBINATORIAL AUCTIONS

407

