
DYNAMIC SERVICE RECONFIGURATION AND ENACTMENT
USING AN OPEN MATCHING ARCHITECTURE

Sander van Splunter, Frances Brazier
Intelligent Interactive Distributed Systems, VU University Amsterdam, The Netherlands

Julian Padget
Department of Computer Science, University of Bath, U.K.

Omer Rana
School of Computer Science, Cardiff University, U.K.

Keywords: Automated adaptation, Matching, Enactment.

Abstract: An architecture for dynamic reconfiguration of complex services, in which the enactment is automated, and
the matching of services is not limited to a pre-determined set of matchers and repositories, is presented.
The proposed architecture consists of three, previously developed, components: the CoWS template-based
reconfiguration service, the Knoogle MatchMaker service, and the Triana workflow enactment engine. This
architecture has the following innovative aspects: 1) automated adaptation of complex services, which is more
flexible than existing approaches based on replacing failing instances of services within a workflow, 2) use of
heterogeneous components that may be both local and distributed, and 3) dynamic selection of matchers and
repositories.

1 INTRODUCTION

Web services provide uniform access to software ca-
pability with well-defined interface descriptions, and
provide some limited options for semantic annotation.
Many times, however, a single web service does not
provide the precise functionality required for a spe-
cific application, therefore web services often need
to be combined to form a complex service. If one
web service fails, the continuity of the complex ser-
vice is threatened. Instance-based replacement ap-
proaches offer one possible solution, but are limited to
the availability ofexact(function and interface equiv-
alent) replacement services.

Current research allows automated handling of
failing services, for example, based on late binding,
but is often limited to instance replacement. The
number of services available is large, but dispersed
over different repositories, as different communities
build and collect services. Even the design and de-
ployment approaches may vary, for example, between
Service Oriented Architecture/Grid and Peer-to-Peer
based deployments.

The approach presented in this paper focuses on au-
tomated template-based reconfiguration of annotated
web services, using (i) a discovery infrastructure with
dynamic matcher service selection, repository selec-
tion and service policy specification, and (ii) a work-
flow enactment engine capable of handling hetero-
geneous components. This combination provides a
fully automated reconfiguration service that can be
used without human intervention. The resulting archi-
tecture enables: (i) automated service reconfiguration
based on constraints that have been previously defined
by a user; (ii) anopenmatching architecture that al-
lows multiple matching mechanisms to be used, on
a set of user-defined repositories—this is particularly
useful to enable application-specific matchers to co-
exist alongside generic matchers based on term syn-
tax; (iii) generality through integration with a work-
flow enactment engine, so that the approach can be
combined as a component within an existing work-
flow. The remainder of this paper is organised as
follows: section 2 briefly describes relevant research
for the three areas addressed: web service reconfigu-
ration, matchmaking and workflow enactment. Sec-

533
van Splunter S., Brazier F., Padget J. and Rana O. (2009).
DYNAMIC SERVICE RECONFIGURATION AND ENACTMENT USING AN OPEN MATCHING ARCHITECTURE.
In Proceedings of the International Conference on Agents and Artificial Intelligence, pages 533-539
DOI: 10.5220/0001663605330539
Copyright c© SciTePress



tion 3 describes the proposed architecture. Finally,
section 4 discusses the potential of the architecture,
and future work.

2 RELATED WORK

Three main areas of research are related to this pa-
per: web service reconfiguration, matchmaking, and
workflow enactment. A brief description of the cur-
rent state of art is presented for each.

Web Service Reconfiguration. The Web Service
Reusable Flexible Flows (ReFFlow) project (Karas-
toyanova and Buchmann, 2004b) focuses on extend-
ing the meta-model of web service compositions
to enable adaptability at run-time. A secondary
goal for ReFFlow is automated creation of complex
workflows using templates (Karastoyanova and Buch-
mann, 2004a). Supported adaptations are instance
replacement, parameterised adaptation, or structural
re-design. Adaptation in ReFFlow is limited in
scope, because of the reasoning required to under-
stand the effect of a service replacement with refer-
ence to the overall workflow. The ASTRO framework
(Pistore et al., 2005) supports a planning approach
to automated service composition based on abstract
BPEL4WS processes, and composition requirements.
The framework supports initial configuration, recon-
figuration, monitoring, and automated instrumenta-
tion of the services. Similar to ReFFlow, the reason-
ing on the effect of a replacement of a service in rela-
tion to the properties of the complex workflow is lim-
ited. Cardoso and Sheth (Cardoso and Sheth, 2002)
address the integration of new web services into ex-
isting workflows. Web services in this project are
blackbox components with associated Quality of Ser-
vice (QoS) parameters specified in DAML-S (the pre-
cursor to OWL-S). Component composition is based
on workflow integration, and supported by abstract
Service Templates, a self-defined local repository and
discovery service. This approach requires human in-
tervention for adaptation for the refinement of abstract
Service Templates. Neither the matching architec-
ture or the enactment is open. The MoSCoE frame-
work (Pathak et al., 2006) is a goal-based, design time
approach to composition, supporting both sequential
and parallel composition. Services are modelled as
Symbolic Transition Systems. MoSCoE starts with an
abstract description of the desired service, provided
by a human user, and supports the user in refining the
description to a realisable BPEL workflow. The semi-
automated nature limits its use for dynamic reconfig-
uration.

Matchmaking. Matchmaking is used to discover dy-
namically suitable web services given service prop-
erties (which may also include QoS properties). In
the literature generic brokerage mechanisms are de-
scribed that use syntactic or semantic techniques for
this purpose, or a combination of both. Some of
the earliest systems, enabled by the development of
KIF (Knowledge Interchange Format) (Genesereth
and Fikes, 1992) and KQML (Knowledge Query
and Manipulation Language) (Finin et al., 1994), are
SHADE (Kuokka and Harada, 1996) operating over
logic-based and structured-text languages and the
complementary COINS (Kuokka and Harada, 1996)
that operates over free-text using well-known term-
first index-first information retrieval techniques. Sub-
sequent developments such as InfoSleuth (Nodine
et al., 1999) apply reasoning technology to the adver-
tised syntax and semantics of a service description,
while the RETSINA system (Sycara et al., 2003) has
its own specialised language influenced by DAML-S
and uses a belief-weighted associative network rep-
resentation of the relationships between ontological
concepts as a central element of the matching process.
While technically sophisticated, a particular problem
with the latter is how to make the initial assignment
of weights without biasing the system inappropri-
ately. A distinguishing feature of all of these sys-
tems is their monolithic architecture, in sharp contrast
to GRAPPA (Veit, 2003) (Generic Request Architec-
ture for Passive Provider Agents) which allows for the
use of multiple matchmaking mechanisms. GRAPPA
utilises a conventional multi-attribute clustering tech-
nology to reduce attribute vectors to a single value.

Workflow Enactment. Workflow enactment in-
volves managing the coordinated execution of web
services. A variety of representation schemes en-
code the connectivity between services ranging from
web service standard specifications such as WS-
BPEL (Jordan and Evdemon, 2007) to specialist lan-
guages that are application specific, such as Condor
DAGMan (Tannenbaum et al., 2002). Once such a
connectivity graph has been described (often referred
to as an “abstract” workflow), it is now necessary to
manage its execution – either on a single machine or
on distributed set of machines – often undertaken ei-
ther by a single scheduler (often managing assign-
ment of services to time slices on a single resource)
or via some distributed group of schedulers. Hence,
workflow scheduling is a kind of global task schedul-
ing as it focuses on mapping and managing the ex-
ecution of interdependent tasks on shared resources
that are not directly under its control. The workflow
scheduler/enactor needs to coordinate with diverse lo-
cal management systems taking account of their local

ICAART 2009 - International Conference on Agents and Artificial Intelligence

534



Figure 1: Architecture for dynamic service composition andenactment.

configuration and policies (Yu and Buyya, 2005).
Our approach uses an open matchmaking architec-
ture, enabling application specific matching to be
used alongside general purpose matching. Integration
of this with the templates and workflow, render the
approach more generalisable and adaptive.

3 ARCHITECTURE

The architecture (Figure 1) combines (i) the CoWS
template-based web service reconfiguration, (ii) the
Knoogle matchmaker, and (iii) the Triana enactment
engine. These three components are linked together
through a description of services expressed in OWL-
S. The reconfiguration process is started after the de-
tection of service failure in the complex service. It
is activated with a description of the initial complex
service, and a pointer to the service that failed. Based
on the requirements posed to the failed service and to
the initial complex service, the CoWS reconfiguration
uses the Knoogle matchmaker to identify a replace-
ment service, which is subsequently enacted by the
Triana workflow engine. After a brief introduction of
OWL-S in section 3.1, each of the three components
in the architecture are described in sections 3.2, 3.3,
and 3.4.

3.1 OWL-S

OWL-S (Martin et al., 2004) is an ontology for anno-
tating web services, based on the Web mark-up lan-
guage OWL (McGuinness and Van Harmelen, 2004).
OWL-S describes a main service using three different
sub-ontologies: the Service Profile, Service Model,
and Service Grounding ontology. The Service Pro-
file defines what the service does, in terms of service
type, input, output, pre- and post-conditions. The Ser-
vice Model defines the internal workings of a service.
A Composite Process in a Service Model defines a

process composition of sub-processes to which refer-
ences are defined, together with the control flow spec-
ified with pre-defined control constructs. The Service
Grounding links the abstract description of the service
to actual implementation details, such as message ex-
change formats and network protocols so that auto-
matic invocation of the service is possible.

3.2 CoWS Web Service Reconfiguration

CoWS is an automated template-based approach to
reconfiguration of complex web services, in which
the scope of the adaptation is adjustable. In addition
CoWS enables reasoning on the effect of the replace-
ment of a service in relation to the properties of the
complex service (van Splunter et al., 2008).

A template describes a single-level composition of
web services. This is defined as one or more slots, a
control structure, and an associated template descrip-
tion. A slot is a placeholder for a web service or tem-
plate, and defines a set of requirements for that com-
ponent. The control structure defines the conditions
for activation of the slots. The template description
describes the functionality, behaviour and structure of
the template, and dependencies between the slots.

retrieve data

create display

slot

slot

store data

filter data

slot

slot

data

display

template

Interface in OWL-S Grounding

Description of Service in OWL-S Profile

Process dependencies using OWL-Process

Specification of Interface and relevant
properties of abstract web services

Figure 2: Template description in OWL-S.

DYNAMIC SERVICE RECONFIGURATION AND ENACTMENT USING AN OPEN MATCHING ARCHITECTURE

535



A simple extension (Richards et al., 2004; Sabou
et al., 2003) has been defined to specify templates in
OWL-S, as illustrated in Figure 2. Every template has
an OWL-S Profile, describing what this combination
of slots would do, if used and refined. The OWL-S
Service Model is defined as a CompositeProcess with
slots defining abstract sub-processes. Each slot is de-
fined as a subclass of Process, and requirements for
each slot are included in this specification. A tem-
plate description in itself has no Grounding Model.
The Grounding is added when a complete configura-
tion is created, based on the services and templates
inserted in the template.

In our architecture, the CoWS service is activated
given an initial complex service and an identifier of a
failed service. CoWS then determines which slot was
filled with this service. Based on the slot definition,
functional and non-functional requirements are deter-
mined for a replacement service that needs to be cre-
ated. A configuration process is started, which makes
use of Knoogle, whilst providing a selection policy,
the matcher and the repositories from which web ser-
vices are to be retrieved. The CoWS process ends
when an adapted template-based web service config-
uration is created which: (i) satisfies all requirements
in the slot of the failing service; (ii) has no open slot
in the resulting configuration, and (iii) violates none
of the slot requirements in the resulting configuration.
As shown in figure 1, CoWS supports policy determi-
nation, component selection and refinement, and web
service/template retrieval.

Thepolicy determination process chooses a pol-
icy specifying the strategy used for candidate selec-
tion. Examples of these policies are:

• Favour service above templates.If both services
and templates fulfil the requirements, choose a
service (the objective being to reduce the expected
complexity of the configuration);

• Fewest number of slots is preferred.If a choice
between templates is needed, choose the template
with the fewest number of slots (the objective be-
ing to reduce the complexity of the configuration);

• Most refinement candidates.If a choice between
templates is needed, choose the template with the
highest number of refinement candidates (the ob-
jective being to increase the likelihood of suc-
cess).

These selection policies are linked to the policies
given to Knoogle. Thecomponent selection and re-
finement processis responsible for the overall con-
figuration process, in which a replacement service is
created for the failing service. The replacement ser-
vice is either a single web service, or a complex ser-

vice composed using templates. Initially, a slot is fo-
cused on for refinement, and the requirements associ-
ated with the slot are retrieved. These requirements
and the selection policies are used to invoke web ser-
vice/template retrieval. If a match is found, then the
configuration process refocuses, until no open slots
are left. If no match is found, the process backtracks,
as a result of which it may mark a larger part of
the initial configuration as failing. If no alternative
services and/or templates are available at the high-
est node of the initial configuration, the configuration
process fails. Web service/template retrievalpre-
pares the requests to Knoogle to discover web service
and template descriptions that match OWL-S based
Profile descriptions of the services/templates that will
fulfil slot requirements. The request includes the se-
lected policy.

3.3 Knoogle Matchmaker

Knoogle offers a brokerage framework that can be
used to deploy partially or fully-configured brokers
that query multiple service repositories, employ mul-
tiple matching services and apply pre-defined or be-
spoke selection policies. The matchmaking and bro-
kerage process is characterised in terms of three es-
sential actions: 1. where to find descriptions of en-
tities to match against; 2. how to match the query
against a description; and 3. how to choose between
the matched descriptions. To achieve this, Knoogle
receives four parameters from the CoWS service (see
Figure 1):

1. A query specifying the requirement in XML (by
default). However, the actual structure will be
application-specific, since it must be compatible
with whatever the matching service(s) expect. In
this case it will be an OWL-S expression.

2. A list of URLs of UDDI-compliant repositories.
These are the repositories to search when process-
ing a query. This application currently works with
two instances of Grimoires (Moreau, 2008) repos-
itories, one containing semantic descriptions of
services and one containing templates.

3. A list of URLs of match services. These are the
services used to compare a query against a candi-
date service or template description from a repos-
itory. A match service must return a number in
the range [0,1] to indicate the degree of match.
This data is stored in the Knoogle broker as an
RDF triple relating the match service, the degree
of match and the candidate service. Currently, we
utilise one similarity service (matcher), namely
OWLSM (Jaeger et al., 2005).

ICAART 2009 - International Conference on Agents and Artificial Intelligence

536



Algorithm 1 : The core Knoogle algorithm.
input : a queryq
input : a set of repository URLsR = {r1 . . . r i}
input : a set of matcher URLsM = {m1 . . .mj}
input : a selection policysp
output: a service URL or set of service URLs
var : TS, a set of〈mk, [0,1],sl 〉 triples
foreach r in R do1

foreachs in r.services()do2

foreachm in M do3

TS = TS.insert(triple(m,m(q,s),s))4

end5

end6

end7

4. A selection policy, specified as a query over the
RDF triples generated by the match services. The
query language is triple-store dependent. The cur-
rent version of Knoogle uses the Sesame(Openrdf,
www) triple store and so queries may be speci-
fied in any of the three languages supported by
Sesame (RDQL, RQL and SeRQL). The poli-
cies used here determine either the most appropri-
ate service/template, or a ranked list of services
and/or templates, depending on the CoWS query.

The matching process of Knoogle is as follows: the
broker iterates over all the services/templates in all the
repositories, computing a match for each one against
the query using each one of the matchers, and then
applies the selection policy to determine the “best”
candidate(s). This process is formalised in Algo-
rithm 1. We emphasise that the algorithm captures
the requirementsfor the matching process, in that
it shows each matcher being invoked (serially) on
each query/service or query/template pairing. The
current proof-of-concept implementation does pre-
cisely this, but clearly for large numbers of heavily-
populated registries better technology, taking advan-
tage of caching and parallelism, is needed to enable
scalability.

3.4 Triana Enactment

After the CoWS reconfiguration creates an adapted
complex service, the resulting service configuration
needs to be enacted, for example as implemented
by the combination of CoWS and the SMDS work-
flow manager in (van Veelen et al., 2008). However,
SMDS is limited to strictly controlled environments.
On the other hand, Triana1 (Majithia et al., 2004) is

1http://www.trianacode.org/

a problem-solving environment designed for both the
creation and execution of workflow graphs. Execu-
tion of these graphs can be done both locally and via a
distributed enactment process (using Triana servers).
Enabling enactment of reconfigured services in Tri-
ana allows integration of heterogeneous components
and both local and distributed management of the ex-
ecution of the services. To enable the execution of
complex template-based services in Triana, a wrapper
creates workflow graphs from the template-based web
service configurations submitted to Triana. The wrap-
per utilises the control structures of templates, which
are expressed in the ServiceModel of the OWL-S de-
scription of the templates. Currently a simple wrapper
is used, supporting sequential activation.

4 DISCUSSION

Combining a reconfiguration service with a discovery
system and a workflow enactment engine is described.
The architecture is designed to be flexible: supporting
workflow adaptation, extensible from a matcher per-
spective, and generalisable through its use in a work-
flow. One of the challenges for future research is to
increase robustness and scalability of the reconfigu-
ration and matching process (for instance, the ability
to pre-select repositories to search rather than search
all user defined repositories). One option is to ex-
tend the configuration and matching environment to
support parallel processing, another is to extend the
system to support a more extended set of policies in-
cluding heuristic-based policies. Interaction between
policies within the three different systems has also yet
to be explored.

Integrating three systems in the manner described
makes the approach more complex to use, as it is gen-
erally required for a user to specify: (i) service de-
scription; (ii) selection policy; (iii) choice of suitable
matchers; (iv) list of repositories to search. However,
some of these can be pre-configured—such as (ii),
(iii) and (iv). Currently, approaches to automated ser-
vice composition (as outlined in section 2) are limited,
either due to their lack of adaptability to specific ap-
plication domains, or their overall complexity of use.
By allowing different levels of system configuration,
and enabling some of these to be pre-specified (not by
an end user, but an application/system administrator),
we believe it is possible to balance complexity of use
with generality of the overall approach.

DYNAMIC SERVICE RECONFIGURATION AND ENACTMENT USING AN OPEN MATCHING ARCHITECTURE

537



ACKNOWLEDGEMENTS

The research reported here is part of the Interac-
tive Collaborative Information Systems (ICIS) project
(http://www.icis.decis.nl), supported by the Dutch
Ministry of Economic Affairs, grant nr: BSIK03024.
The authors are also grateful for the support offered
for this research by NLnet (http://www.nlnet.nl), and
through the Open Middleware Infrastructure Institute
(http://www.omii.ac.uk) managed program (project
Knoogle). The authors also wish to thank Pieter van
Langen of VU University Amsterdam for his exten-
sive input and Neil Chapman of Cardiff for his contri-
bution to implementation of workflow enactment sys-
tems.

REFERENCES

Cardoso, J. and Sheth, A. (2002). Semantic e-workflow
composition. Technical report, LSDIS Lab, Computer
Science Department, University of Georgia.

Finin, T., Fritzson, R., McKay, D., and McEntire, R. (1994).
Kqml as an agent communication language. InPro-
ceedings of 3rd International Conference on Informa-
tion and Knowledge Management, pp. 456-463.

Genesereth, M. and Fikes, R. (1992). Knowl-
edge interchange format, version 3.0 reference
manual. Technical report, Computer Sci-
ence Department, Stanford University. Avail-
able from http://www-ksl.stanford.edu/
knowledge-sharing/papers/kif.ps.

Jaeger, M. C., Rojec-Goldmann, G., Mühl, G., Liebetruth,
C., and Geihs, K. (2005). Ranked matching for ser-
vice descriptions using owl-s. InKommunikation in
verteilten Systemen (KiVS 2005), Informatik Aktuell,
Kaiserslautern, Germany. Springer.

Jordan, D. and Evdemon, J. (2007). Web services business
process execution web services business process ex-
ecution language version 2.0. WS-BPEL. Available
at http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-
v2.0-OS.html.

Karastoyanova, D. and Buchmann, A. (2004a). Au-
tomating the development of web service com-
positions using templates. InProceedings of
Geschäftsprozessorientierte Architekturen Workshop
at ’Informatik 2004’, Ulm, Germany.

Karastoyanova, D. and Buchmann, A. (2004b). ReF-
Flow: A model and generic approach to flexibility of
web service compositions. InProceedings of Inter-
national Conference on Information Integration and
Web-based Applications and Service, pages 27–29,
Jakarta, Indonesia.

Kuokka, D. and Harada, L. (1996). Matchmaking for infor-
mation integration.Journal of Intelligent Information
Systems, 6(2–3):261–279.

Majithia, S., Shields, M. S., Taylor, I. J., and Wang, I.
(2004). Triana: A graphical web service composition

and execution toolkit. InProceedings of the IEEE In-
ternational Conference on Web Services (ICWS’04),
pages 514–524. IEEE Computer Society.

Martin, D., Paolucci, M., McIlraith, S., Burstein, M., Mc-
Dermott, D., McGuinness, D., Parsia, B., Payne, T.,
Sabou, M., Solanki, M., Srinivasan, N., and Sycara,
K. (2004). Bringing semantics to web services: The
OWL-S approach. InProceedings of the First Interna-
tional Workshop on Semantic Web Services and Web
Process Composition (SWSWPC 2004), San Diego,
Califonia, USA.

McGuinness, D. and Van Harmelen, F. (2004). Owl web
ontology language overview, world wide web consor-
tium (w3c) candidate recommendation. february 10,
2004.

Moreau, L. (2008). Grid RegIstry with Metadata Oriented
Interface: Robustness, Efficiency, Security”. Avail-
able at http://twiki.grimoires.org/bin/view/Grimoires/.

Nodine, M., Bohrer, W., and Ngu, A. (1999). Semantic
brokering over dynamic heterogenous data sources in
infosleuth. InProceedings of the 15th International
Conference on Data Engineering, pp. 358-365.

Openrdf (www). Sesame: Rdf schema querying and stor-
age. Available viahttp://www.openrdf.org. Last
accessed: February 2007.

Pathak, J., Basu, S., Lutz, R., and Honavar, V. (2006). Par-
allel web service composition in : A choreography-
based approach parallel web service composition in
MoSCoE: A choreography-based approach. In4th
European Conference on Web Services (ECOWS ’06),
pages 3–12, Zurich, Switzerland.

Pistore, M., Marconi, A., Bertoli, P., and Traverso, P.
(2005). Automated composition of web services by
planning at the knowledge level. In Kaelbling, L. P.
and Saffiotti, A., editors,IJCAI, pages 1252–1259.
Professional Book Center.

Richards, D., van Splunter, S., Brazier, F., and Sabou, M.
(2004).Composing Web Services using an Agent Fac-
tory, volume 13 ofMultiagent Systems, Artificial So-
cieties, and Simulated Organizations, pages 229–252.
Springer Verlag.

Sabou, M., Richards, D., and Splunter, S. v. (2003). An
experience report on using daml-s. InProceedings of
WWW 2003 Workshop on E-Services and the Semantic
Web (ESSW’03), Budapest, Hungary.

Sycara, K., Paolucci, M., Van Velsen, M., and Giampapa.,
J. (2003). The retsina mas infrastructure.Autonomous
Agents and Multi-Agent Systems, 7(1–2):29–48.

Tannenbaum, T., Wright, D., Miller, K., and Livny, M.
(2002). Condor: a distributed job scheduler. pages
307–350.

van Splunter, S., van Langen, P., and Brazier, F. (2008).
Decentralized performance-aware reconfiguration of
complex service configurations. InProceedings of the
Performance for Peer-to-Peer Systems (P4P2P) work-
shop. University of Warwick.

van Veelen, J., van Splunter, S., Wijngaards, N., and Bra-
zier, F. (2008). Reconfiguration management of cri-
sis management services. InThe 15th conference
of the International Emergency Management Society
(TIEMS 2008).

ICAART 2009 - International Conference on Agents and Artificial Intelligence

538



Veit, D. (2003). Matchmaking in Electronic Markets, vol-
ume 2882 ofLNCS. Springer. Hot Topics.

Yu, J. and Buyya, R. (2005). A taxonomy of workflow man-
agement systems for grid computing.Journal of Grid
Computing, 3(3):171–200.

DYNAMIC SERVICE RECONFIGURATION AND ENACTMENT USING AN OPEN MATCHING ARCHITECTURE

539


