
 

SOFTWARE ARCHITECTURE EVALUATION APPROACH  

Olfa Lamouchi1, Amar Ramdane-Cherif1,2 and Nicole Lévy1 
1PRISM, 2LISV, UVSQ, 45, Avenue des Etats-Unis, 78035 Versailles Cedex, France 

 

Keywords: Quality evaluation, Fuzzy systems, Quality measurement, Quality model, Evaluation methods. 

Abstract: This paper describes our approach for software architecture quality evaluation. The mechanics of this 
evaluation is based on quality model, metric model and a set of evaluation methods. These models are 
considered as a hierarchy properties structured set. The final properties need to be measured using metrics. 
For this purpose a metric measurement-based framework is linked to the defined quality model. In this 
evaluation approach an indication of overall quality can be determined using a Fuzzy engine.  

1 INTRODUCTION 

Several researchers and practitioners are interested 
in quality emerging issues in the context of software 
system. Several workshops are intended to provide 
forums for discussions related to software quality. 
Quality models have long been introduced in 
literature (Deutsch and al, 1988), mostly as 
structured sets of properties (such as reliability, 
maintainability, and so on etc (Kitchenham et al., 
1996). These properties are usually presented as a 
hierarchy of statements. At various levels, properties 
are denoted as goals or attributes or characteristics, 
down to sub-characteristics or factors, to criteria and 
indicators and attributes again; but the point is not 
yet set, even in standardization activities which are 
now covering the field (ISO/IEC, 1988-1991). More 
action oriented quality ideals and principles for 
evaluation can be found in Cronholm & Goldkuhl 
(Goldkuhl, 2002). 

Some approaches are focused on a direct 
evaluation of the quality of a software product, and 
can be implemented using GQM method (Goal-
Question-Metric), described for the first time in 
(Basili, 1984) and developed since that time by 
NASA. The set of goals or quality characteristics 
can be the same or similar to the one defined in 
ISO/IEC 9126 (ISO/IEC, 2001).  

The aim of this study is to present a new approach 
for direct evaluation of the quality of software 
architectures. In this evaluation approach criteria 
interdependences can be managed and an indication 
of overall quality can be determined using a Fuzzy 
engine. This paper is organized as follow; the 
following section addresses the evaluation model 
which is composed of three parts: the quality model, 
the metric model and criteria interdependences. 

Following this, we present our evaluation method 
which composed of two parts: basic evaluation 
scenario and optional evaluation scenario. In each 
part, a set of scenarios is developed. The paper ends 
with a conclusion and some perspectives. 

2 THE EVALUATION MODELS 

Quality Model. The quality model can be defined 
by a set of views concerning the product. Each view 
is decomposed into several factors. A factor is 
decomposed into several criteria. The factors are in 
general external attributes (but also internal 
attributes: testability, effectiveness, etc). Each 
criterion is defined by a set of metric. In our 
approach, the quality model is presented in form of 
tree structure in which each factor can have one or 
more criteria. Each criterion can have one or more 
sub-criteria. The different feature properties that link 
factors, criteria and sub-criteria are represented 
using the following symbols: (1) ‘;’ alternative, (2) 
‘∧’ mandatory, (3) ‘∨’ or, (4) ‘?’ optional, (5) ‘∅’ 
empty mode. By considering the example of the Fig. 
2 we can give the following expressions: 
Quality goal=(FactorA;FactorB)  
FactorA=(Criterion4;Criterion6) , FactorB=(Criterion5∧ 
Criterion8), Criterion4=(Criterion11∨Criterion12), 
Criterion6=(Criterion9∧Criterion10), 
Criterion9=(Criterion14;Criterion13?), Criterion8=(Ø), 
Criterion10=(Ø), Criterion11=(Ø),Criterion12=(Ø), 
Criterion13=(Ø),Criterion14=(Ø), Criterion5 =(Ø). 

Metric Model. The metric model is a set of metric 
which is used to quantify an aspect of software 
architectures. The utility of these metrics is double: 

353
Lamouchi O., Ramdane-Cherif A. and Lévy N. (2009).
SOFTWARE ARCHITECTURE EVALUATION APPROACH .
In Proceedings of the International Conference on Agents and Artificial Intelligence, pages 353-356
DOI: 10.5220/0001665503530356
Copyright c© SciTePress



 

on the one hand, they make it possible to anticipate 
the needs and to envisage the consequence 
resources; in addition, they can help the designer or 
the developer to better understanding the 
architecture of his system. 
The calculation of metrics implies the notion of the 
metric-variable (Mv). The metric-variable is basic 
measurement function extracted from software 
architecture or data collected by designers. The 
metric-variable is used in the calculation of one or 
more metrics, and a metric can be used in the 
calculation of one or more other metrics.  
By considering the example (Fig. 2) we can give the 
following expressions: 

Ma={Mv1; Mv2}, Mb={ Mv4}, Mc={Ma; Mv4}, Md={Me; 
Mv2}, Me={Mv3; Mv5}, Mf={Me ;Mb}. 

Interdependence Model. As we already mentioned, 
factors and criteria are evaluated by metrics, and 
each metric is composed by one or more metric-
variables (Mv). In consequence, the level of quality 
depends on the variation of Mv. In our approach, we 
seek to present the variation of metric-variables that 
permits the satisfaction of all qualities presented in 
the quality model. The variation of metric-variables 
in each metric is represented by the variation-sign 
(Vs): (+), more the result of the Mv is high more the 
criterion is satisfied. (-), more the result of the Mv is 
low more the criterion is satisfied. (*), the result of 
the Mv is neutral; its variation does not impact the 
evaluation of the criterion.  
We can find certain couples (Criterion, Mv) which 
are interdependent, as in the case of (Criterion10, 
Mv2) and (Criterion11, Mv2) of the Table 1.  

3 THE EVALUATION METHODS 

For the basic evaluation scenario, we seek to 
evaluate the factor "Portability". The evaluation 
model is: 

Portability=(Availability;Co-existence) 
Availability 
=(Total_unavailability^Vital_availability^Full_availabilit
y); 
Co-existence =(Ø), Vital_availability=(Ø), 
Full_availability=(Ø).Total_unavailability=(Ø),  
VITA={NYSerH; NYVitFH}, FA ={NYSerH; NYFH}, 
TUA={NYTFH ; NYSerH}, COX={PM}, 
Full_availability ={FA,( NYFH ,-), (NYSerH,+)} ;  
Vital_availability ={ViTA, (NYSerH,+), (NyVitFH,-)};   
Total_unavailability ={ TUA, ( NYTFH ,-), (NYSerH,+) ; 
Co-existence ={ COX, (PM,+)}. 

Table 1: Variations of Mv/ criterion. 

  Mv1 Mv2 Mv3 Mv4 Mv5 
Criterion 5     -   * 
Criterion 8       +   
Criterion 10   - *   * 
Criterion 11 + +       
Criterion 12     + * - 
Criterion 13 + *   +   

 
Figure 1: Structure of the evaluation model. 

Table 2: Co-existence metric. 

Table 3: Availability metrics. 

NYSerH: a number of operating hours of the software per year; 
NYFH: a number of hours when at least a function is not 
available; NYVitFH: a number of hours when at least a vital 
function is not available, NYTFH: a number of hours of total stop 
due to a failure; PM: identify the presence of mechanism. 

The basic evaluation scenario is presented by the 
function EVALUATION_BASE (Algorithm 1). 
 

 
 

 

Measure of Availability 
Code Name Unit 
COX Co-existence 1-yes, 0-not 

Availability Metrics 
Code Name Computation formula 
FA Full availability FA=( NYSerH –NYFH)/ 

NYSerH 
ViTA Vital availability ViTA= ( NYSerH –

NyVitFH) /  NYSerH 
TUA Total unavailability TUA=NYTFH / NYSerH 

ICAART 2009 - International Conference on Agents and Artificial Intelligence

354



 

ALGORITHM  
EVALUATION_BASE  

First iteration Second iteration   Final iteration 

list_ct<-Extract_criterion_leaf 
(QM) 

list_ct=(full_availability, 
vital_availability, 
total_unavailability,Co-
existence ) 

  

WHILE NOT EMPTY (list_ct)  DO yes yes yes 

    ct <-Criterion_folow (liste_ct) ct = full_availability ct = co-existence ct=portability 

    father_ct<-Father (ct, MQ) father_ct=availability father_ct=portability father_ct=’ ‘ 

       IF NOT EMPTY (father_ct)  
THEN 

not not yes 

      under_ct<- Under_criterion 
(father_ct,MQ) 

under_ct = (full_availability, 
vital_availability, 
total_unavailability) 

under_ct=   
 (co-existence, availability) 

- 

      IF Belongs (under_ct,list_ct)  yes yes - 

     Execution_of_metrics(under_ct) full_availability =0.8, 
vital_availability= 0.9 
total_unavailability =0.1 

co-existence=1, 
availability=0.797 

- 

    Remove (under_ct,list_ct) list_ct=(co-existence) list_ct=() - 

   Fuzzy_execution (father_ct, 
under_ct) 

Availability=0.797 portability=0.86 - 

   Add (father_ct,list_ct)  list_ct= 
(co-existence, availability) 

list_ct=( portability) - 

   ELSE ELSE ELSE ELSE 

   Remove (ct, list_ct) - - - 

   Add (ct, list_ct)  - - - 

   ENDIF ENDIF ENDIF ENDIF 

   ENDIF ENDIF ENDIF ENDIF 

   ENDWHILE ENDWHILE ENDWHILE ENDWHILE 

     END END END END 

 
Figure 2: Example of basic evaluation scenario ct: criterion; list_ct: list of criteria (fifo); Under_ct: list of criteria; 
Extract_criterion_leaf(QM): seeks the whole of criteria-leafs of quality model (QM); Criterion_folow(liste_ct): recover a 
copy of the first criterion being in list_ct; Farther(ct,MQ): seeks the father of criterion ct; Remove(under_ct,list_ct): 
removes all criteria belonging to under_ct of list_ct; Under_criterion(father_ct,QM): returns the under criteria set of 
father_ct; Belongs(sous_ct,liste_ct): returns true if all criteria of list under_ct belong to liste_ct; 
Execution_of_metrics(under_ct): executes metrics of criteria-sheets belong to under_ct; Add(father_ct,list_ct): add 
father_ct  at the end of list_ct. Fuzzy_execution(father_ct,under_ct): launches the evaluation of father_ct using evaluation 
results of its under criteria. 

In many quality standard, the evaluation of their 
levels of validation by metrics, poses the problem of 
the definition of thresholds values. From which 
value, we can consider that criterion is very good, 
good, medium or weak? The difficulty is more as 
this value has an impact on the final evaluation of 
quality factors. In order to counter this difficulty, we 
propose the use of a fuzzy threshold. The objective 
associated with a criterion will be described like a 
fuzzy set. For example the criterion 
"Full_availability" has a very strong quality level if 
the result of its metric is equal or higher than 0.81, 
whereas having 0.80 tightened it. This fixed cut does 

not make it possible to consider a good evaluation. 
A more realistic approach consists in defining 
intervals. These intervals make it possible to 
introduce uncertainty on the thresholds. 

We will linguistically express the levels of quality 
factors, and project them on [0,1]. Thus, fuzzy logic 
controller makes it possible to express this concept 
by allotting a degree of truth ranging between 0 and 
1. Thus, the "Full_availability" criterion is very 
strong with a degree of truth of 0.20 and strong with 
degrees of truth of 0.80 (Figure 5). The rules of 
fuzzy inferences base, take the form IF [conditions] 
THEN [actions], where conditions and actions are 

SOFTWARE ARCHITECTURE EVALUATION APPROACH

355



 

linguistic labels applied to input and output variables 
respectively (e.g. IF "Total_unavailability" is Weak 
AND "Vital_availability" is VStrong AND 
"Full_availability" is VStrong THEN "Stability" is 
VStrong). A set of such fuzzy rules constitutes the 
fuzzy rule –base of the fuzzy logic. The system uses 
this rule-base to produce precise output values 
according to actual input values. This control 
process is divided into three steps:  
• Fuzzification: calculate fuzzy input, i.e. evaluate 

input variables with respect to the 
corresponding linguistic terms in the condition 
side (Fig. 3, Fig. 4 & Fig. 5). 

• Fuzzy interference: calculate fuzzy output, i.e. 
evaluate activation strength of every rule and 
combine their action sides (Fig. 6: A&B). 

• Defuzzification: calculate actual output, i.e. 
convert fuzzy output into a precise numerical 
value. The result of the treatment is: the quality 
level of "Stability" is equal to 79,7% (Fig. 6: C). 

 
Figure 3: Fuzzification of "Total_unavailability": 
Total_unavailability =0,10;VWeak (  0,60 ); Weak (0,40). 

 
Figure 4: Fuzzification of "Vital _availability": 
Vital _availability =0,90;VStrongt (0,60);Strong ( 0,40). 

 
Figure 5: Fuzzification of "Full_availability": 
Full_availability =0,80; Strong (0,80); VStrong  (0,20). 

Figure 6: Fuzzy logic controller process. 

4 CONCLUSIONS 

In this study we have presented a framework for 
understanding architecture software evaluation. The 
mechanics of the evaluation is based on quality 
model. This quality model comes out as a collection 
of desired properties which can be divided into sub 
properties at various levels. The last level is linked 
to various software metrics and measurement 
techniques that an organisation uses. This 
hierarchical model appears in more deductive way 
than those presented in literature. In this evaluation 
approach interdependences can be managed and an 
indication of overall quality can be determined. In 
our work, the objective associated with a criterion 
will be described like a fuzzy set. The use of a fuzzy 
threshold permits a more realistic approach. A fuzzy 
interpreter is used in our basic evaluation scenario 
and optional evaluation scenario. 

REFERENCES 

Deutsch, M. S., Willis, R. R, 1988. Software Quality 
Engineering, Randall W. Jensen.  

Kitchenham, B. and. Plfleeger, S. L., 1996. Software 
Quality. The Elusive Target, IEEE Software, pp. 12-
21.  

ISO/IEC 9126: (IS), (1988, 1991). Information technology 
- Software product evaluation - Quality characteristics 
and guidelines for their use.  

ISO/IEC 9126-1,9001, 2001. Quality management 
systems–Requirements. ISO. Software engineering – 
Product quality. ISO/IEC. 

Basili, V. R., Weiss, D. M., 1984.A Methodology for 
Collecting Valid Software Engineering Data. IEEE 
Transactions on Software Engineering. 

Cronholm, S. & Goldkuhl, G., 2002. Actable Information 
Systems - Quality Ideals Put Into Practice. Presented 
at the Eleventh Conference On Information Systems 
(ISD 2002). 12-14. 

Cox, 1997. La logique floue pour les affaires et l'industrie. 
International Thomson Publishing France, Paris, 
France. 

Ramdane-cherif A., Lamouchi, O., Lévy, N., 2007. One 
quality software evaluation approach. CAINE 2007, 
ISCA 20th international Conference on Computer 
Application in Industry and Engineering. San 
Francisco, California USA. 

Akoka J. Wattiau I, 2002. La Qualité du logiciel. 
Losavio, F., Chirinos, L., Matteo, A., Lévy, N., Ramdane-

Cherif A , 2004. ISO quality standards for measuring 
architectures. The journal of Systems and Software 72, 
209-223. 

Mamdani, E., Assilian, S., 1975. An experiment in 
linguistic synthesis with a fuzzy logic controller. 
International Journal of Man-Machine Studies. vol. 7, 
pp. 1–13. 

ICAART 2009 - International Conference on Agents and Artificial Intelligence

356


