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Abstract: This paper considers the problem of intelligent agent functioning in non-Markovian environments. We 
advice to divide the problem into two subproblems: just finding non-Markovian states in the environment 
and building an internal representation of original environment by the agent. The internal representation is 
free from non-Markovian states because insufficient number of additional dynamically created states and 
transitions are provided. Then, the obtained environment might be used in classical reinforcement learning 
algorithms (like SARSA(λ)) which guarantee the convergence by Bellman equation. A great difficulty is to 
recognize different “copies” of the same states. The paper contains a theoretical introduction, ideas and 
problem description, and, finally, an illustration of results and conclusions. 

1 INTRODUCTION 

One of the most topical tasks of artificial 
intelligence is searching for optimal policy of 
interaction with an environment by autonomous 
intelligence software agent. Classical methods of 
reinforcement learning are performing successfully 
in the so-called Markovian environments. In this 
work the idea and implementation approach are 
stated for non-Markovian environments. The 
approach offered represents a method of training 
based on reinforcement learning. Thus it is 
important to preserve the properties and advantages 
of the classical algorithm of reinforcement learning 
and its condition of convergence.  

2 AGENT TASK AND 
ENVIRONMENT 

Reinforcement Learning (RL) is defined as the 
problem of an agent that learns to perform a task 
through trial and error interaction with an unknown 
environment which provides feedback in terms of 
numerical reward (Butz). The agent and the 
environment interact continually (see Figure 1) 
within discrete time. The experiments are carried out 
in a well-known task - searching for a path in 
labyrinth (kind of agent control), in other words, 

building an optimal policy (strategy) of actions by 
exploration of the environment. The reason for our 
choice is obviousness and simple understanding of 
the received results. SARSA(λ) learning algorithm 
[Sutton] is preferred as a base learning algorithm, 
which will be combined with the investigated 
algorithms.  

 
Figure 1: Agent-Environment interaction. 

Let's consider the static cellular world - a 
labyrinth. Each cell of the labyrinth is either free for 
agent pacing, or occupied by some static obstacle. 
One of the cells contains food (sometimes called 
target cell or goal cell). In our case, the goal cell is 
labelled by letter G. An example of simple grid 
world is depicted in Figure 2. 

To make the grid world usable like the 
environment, we must define a set of data which 
represent the state of the agent. Usually the state is 
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all the information available to an agent that is 
provided by its sensors. The set of agent sensors 
(according to available information) depends on task 
conditions. In our case the agent possesses only four 
sensors: sS, sE, sW, and sN ; each of them returns 
value 1, if the obstacle is detected in a neighbor cell, 
in the corresponding direction, otherwise value 0. 
Thus, agent state might be expressed in binary form, 
where each bit corresponds to each sensor. For 
example, if the obstacle is North and East directions, 
then state in binary form will be equal to S = 01012. 
For further calculation convenience, it is better to 
convert the binary value to decimal form: 

S = 01012 = 0·23 + 1·22 + 0·21 + 1·20 = 510  
 
Thus, on each step by getting values of sensors the 
agent can compute the current state by formula 1:  

S =    8·sSouth  +  4·sEast  +  2·sWest  +  sNorth (1) 

The value obtained is the state of the agent. Only 
16 different states are available in our task 
(including zero state interpreted as the absence of 
obstacle around). Figure 2 depicts the grid world 
with calculated values for each cell (state). 

 
Figure 2: Grid world with evaluated states for each cell. 

The agent can choose from four actions: to step 
only one cell in each of four directions. It is 
important to point out that each action of the agent is 
surely executed. In other words, if in a previous state 
s action a was applied, the probability of obtaining 
next state s’ is equal to one: P(s, a, s’) = 1. If we 
wish to use a probabilistic model for defining 
probabilities of transitions, it requires including 
additional 3-dimensional table.  

Having a set of state, actions and probability of 
transition, the grid-world-like environment now 
might be represented in the transition graph form 
which is often used for representing the Markovian 
processes (Russell): 

 
Figure 3: Agent environment in the graph form (states and 
transitions form). 

The arrows denote possible transitions through 
implementing corresponding actions (moving north, 
east, south and west). It is important to point out that 
the grid world form is the form which is closer to the 
real world form and keeps more properties than the 
graph form. The graph form is a model which only 
keeps information sufficient enough to the agent. 
For example, looking at the grid world we can see 
why a transition from one cell to another is 
available. In graph mode we have only the fact of 
available transitions. The reason might be 
interpreted as additional information available for 
operation. In our case the essential difference 
between two forms is the properties that belong to 
the nature of cell. Additional existence and the 
number of non-Markovian states depend on the 
precision of external world reproduction. Moreover, 
the number of non-Markovian states might be 
reduced by involving eight sensors instead of the 
existing four. So, the graph representation is less 
attractive than other forms; nevertheless it is worth 
detailed consideration because of its representation 
of state-action model, which is used in 
reinforcement learning algorithms. In Table 1 the 
main difference between grid-world form and graph 
form is shown.  

Two last distinctions cause the greatest interest. 
These distinctions raise three fundamental problems 
in the task of agent control in non-Markovian 
environments: 
 
1) detection of non-Markovian states; 
2) detection of states with inconstant transition; 
3) agent learning and its ability to distinct different 

copies of the same states. 
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Table 1: Difference between two forms of environment 
representation. 

Grid world form Graph form 

• The coordinate 
system in the  
labyrinth is caused by 
the conception of cell 
• Transitions move 
the agent through 
cells  
• The obstacles and 
cells arrangement 
describes the actions 
execution ability  
• equally valued  
state cells are 
different copies of the 
same state 

• there is no conception 
of a cell, thus absence 
coordinates 
  
• transitions move the 
agent from one state to 
another  
• there are no reasons 
that could describe the 
ability of executing 
actions  
• there is no conception 
of the same state copies 
,instead of that the 
non-Markovian 
conception or 
inconstancy of transition  
takes  place. 

3 THE SENSOR SIGNALS 
INTERPRETING PROBLEM 

As was mentioned above, in task of building optimal 
policy through exploring non-Markovian 
environment three problem cases might be revealed.  

Case 1. The case supposes that from some state 
at different moments of time it is necessary to 
execute different actions. In other words, the current 
state does not fully define the next action (Russell) 
(Lin). This case is called non-Markovian state. The 
Woods101 environment is a classical example of 
such case (see Figure 4) (Kwee). 

 

 
Figure 4: Left: Non-Markovian environment Woods101, 
Right: an example of ambiguous state. 

The cells denoted a and b, correspond to the 
same state because of their equal values evaluated 
upon agent sensors signals. Having appeared in that 
state the agent sometimes is compelled to move east, 

but sometimes west. Thus, having only current 
state’s information, the agent is not capable of 
making a decision and defining the optimal action.  
Case 2 is the evolution of the previous and consists 
of taking the same action from the same state at 
different times, and the different reaction of 
environment is observed. Let’s call this case the 
transition inconstancy. Let’s see cells c and d, for 
example. Again, each of them represents the same 
state. An attempt to move north will lead to different 
future states (see Figure 5).  
 

 
Figure 5: Example of inconstant transition from state 6. 

Case 3 relates to the problem of interpreting the 
return of the same state (equal to source state). Let’s 
consider state «9» depicted in Figure 6 (left). While 
the agent is trying to move north, it meets the 
obstacle, so, the environment returns agent to  the 
source (previous) state, which equals «9». Thus, two 
ways of interpreting the situation are appropriate: 
1) the agent was returned to the source state (see 
Figure 6, right), or 2) the agent was moved to 
another copy of the same state (like moving west or 
east, see Figure 6, left). Different interpretations of 
states are possible: either we do not take sensors 
nature in account or instead of sensors methodology 
the special channel for already evaluated state 
transmitting is used. If the agent “understands” the 
sensors meaning, it might be used as additional 
signs. These signs might be sufficient to distinguish 
different copies of the state. The model and agent-
environment conditions interaction are defined by 
the task.  
 

 
Figure 6: Left: fragment of an environment; Right: two 
ways of interpretation. 
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moving NORTH from state 6
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The problem of distinguishing two equal states 
is connected to that of representing same states in a 
graph form or Markov chains. Should we duplicate 
state «9» or leave it unique but having multiple 
connections to neighbours? In its turn, there should 
be «return links» which are responsible for agent 
returning in source state in case of bumping to 
obstacle.  

4 SOLUTION 

The idea of the solution in short is to build internal 
Markovian representation of external non-
Markovian environment in parallel with learning 
process. The solution includes the following tasks: 
1) the problem of detecting non-Markovian states 

and inconstant transitions; 
2) the problem of conversion of ambiguous states 

to Markovian states, more specifically: 
a. problem of distinguishing exemplars of 

same states; 
b. problem of building internal representation 

of the environment. 
3) problem of agent learning and functioning in 

external non-Markovian environment through 
internal Markovian representation. 

 
Hence, the implementation supposes the 

following steps: 
1) Develop an algorithm for detecting ambiguous 

states. 
2) Develop an algorithm for converting external 

states to internal.  
3) Slightly modify the existing Q-learning 

algorithm for learning and controlling the agent 
in internal environment.  

4) Execute a number of experiments in most 
famous non-Markovian environments, like 
Woods101, Woods102, Maze5, Maze6, Maze7, 
Maze10 etc. 

 
The general interaction architecture is depicted 

in Figure 7. The architecture is based on the agent-
environment interaction model described in (Russel) 
and (Padgham). It is important to point out that the 
involved Sarsa(λ) algorithm (mentioned in (Sutton) 
remains the same. It is necessary to guarantee the 
convergence of algorithm. Only inessential 
modifications are applied.  

 
 
 
 

 
Figure 7: The general process. 

4.1 The Indication of Ambiguous State 
and Algorithm for its Detection 

Non-Markovian states and states with inconstant 
transition due to their common nature have common 
simple indication: if transitions are observed when 
the agent is moved from state s to different target 
states by action a, then source state s is ambiguous. 
A simple example is shown in Figure 8. 

 
Figure 8: A simple example with ambiguous state «9». 

During environment exploration, the agent finds 
out that applying of action «step east» being in state 
«11» always moves him to state «9». In its turn, 
application of action «step east» being in state «9» 
sometimes moves it to state «9» and sometimes to 
state «13». Such an uncertainty makes the building 
of the Q-table more difficult. The formal indication 
of ambiguous state might be expressed as follows: 

 
1''1 :),(:),( ++ ≠ tt

ji
tt

ji sassas , (2) 

where t
ji as ),(  and '),( t

ji as  are same corteges 
observed at different moment of time, 

1+tS  and 1'+tS  - states returned by the environment 
(through sensors) at next time tick.  
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Ambiguous state detection is executed within the 
framework of Q-learning cycles and requires only 
additional table size SxA for keeping observable 
transitions. Each cell [s,a] keeps target state s’. As 
soon next observation brings different target state, 
the source state s is marked as ambiguous.  

It is important to point out that the indication 
does not require knowing of the goal state. 
Ambiguous states detection occurs while Q-learning 
builds its policy; it does not require special 
exploration steps of the agent. For experiments the 
algorithm was executed on a set of MacCallum’s 
mazes and other environments. A short analyzing 
log for each environment is presented in Table 2. 

Table 2: Founded ambiguous states. 

Maze Founded ambiguous 
states (state:action) 

Woods101: 

 
 
Maze5: 

 
 
 
Maze7: 

 
 
MazeT: 

 

(6 :↑ )  
(9: →) 
(9: ←) 
 
 
 
(1:→); (1:↓);
 (1:←); 
(2:→); (2:↓);
 (2:↑); 
(3:→); (3:↓);  
(4:←); (4:↓); (4: 
↑);  
(5:←); (5:↓); 
(6: ↑); (6:↓);  
(8:→); (8:↑);
 (8:←); 
(9:→); (9:←);  
(10:→); (10:↑);  
(12:↑); 
 
 
(6:↑); 
(6:↓); 
 
 
(9:→);        
(9:←); 

For the environment depicted in Figure 2 no 
ambiguous states were detected. This result is true. 

4.2 Making Internal Representation of 
the Environment 

Having a method for detecting ambiguous states, it 
is time to build the internal representation. The L-
table (log) is used for storing the internal 
representation of the environment. At the same time, 
L-table is used for detecting ambiguous states. Each 
row corresponds to a state. The columns represent 
actions. For each action two columns are reserved. 
The first column keeps the previous state. The 
second one keeps next state. In the table below an 
example of L-table is given. 

Table 3: Example of L-table. 

State Departure state Arrival state 
n e s w n e s w 

1 
9 
11 
13 
14 

 
 

9 
11 
 
16 
 

 
 
 
 
1 

16 
1 
9 
 
 

 16 
1 
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14 9 
11 
 
16 
 

16 |9 1 13  13  1

The L-table was built by the agent and contains 
the internal representation of the environment 
depicted in Figure 9.  

 
Figure 9: Environmet with internal state «16». 

The visible symmetry of L-table is only possible 
in the task having contrary action like stepping left 
and right or up and down, etc. To describe the 
process of the table formation, let us consider state 1 
in detail. Each “Departure state” means the state 
where appropriate action was applied by the agent 
with the following move to the current state 1 (row 
1) Each “Arrival state” means the state, in which 
agent will be moved after applying the appropriate 
action from the current state 1. Actually, the L-table 
is a form of memory (of depth one) storing the 
applied action. The L table is filled by the agent 
through the exploring of the environment. The 
algorithm requires preliminary examination of the 
problem of distinguishing exemplars of same states. 
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4.3 Distinguishing of Exemplars of 
Same States 

The main purpose of the internal representation is to 
obtain dynamically created states. These states 
represent each exemplar of the same original state as 
a new state. In the L-table a new state is generated if 
in filling the L-table a collision of states storing 
occurs. For example, for the action east of state «9» 
two destination states are possible:  «1» and «13». 
As soon as the collision appears, the new state will 
be prepared and included in the table. In our case the 
state «16» is descendant of state «9». Moreover, the 
new state «16» inherits all appropriate transitions.  

At the same time there arises a problem of 
recognizing internal state having original external 
state. The problem is solved by comparing the 
transition history for one last step with the L-table. If 
the L-table is not filled or filled partially, then 
methods of random or directed selection are applied. 
The algorithm under consideration is described 
below. It is based on the original algorithm Sarsa(λ) 
[Sutton]. The presentation is kept original. Only the 
bold style is used to highlight the modifications 
made and new elements introduced. 

Initialize Q(s,a) arbitrarily and  
        e(s,a) = 0, for all s,a 

Repeat (for each  episode): 
Initialize s, a, si 
Repeat (for each step of episode): 
   Take action a, observe r, s΄ 
   s΄i  = GetInternal(si, a, s΄) 
   IF  isTransitionFickle then 
      Expand tables L, Q, e 
      s΄i  is new one  
   Choose a΄ from s΄i using e-greedy  
   δ ← r + γQ(s΄i,a΄) – Q(si,a) 
   e(si,a) ← e(si,a) + 1 
   for all si,a : 
      Q(si,a) ← Q(si,a) + α δ e(si,a) 
      e(si,a) ← γ λ e(si,a) 
      si ← s΄i; a ← a΄ 
   Update table L 

until si is terminal 

The denotation of variables is also kept original, 
only si and s’i are internal mappings of appropriate 
states. As can be seen, the changes are related to 
involving the mechanism of internal representation 
and Q-table adaptation. The key procedure 
GetInternal() returns internal state according to 
table L: 
 
 
 

Input parameters: si, a, s΄ 
Creating of list of descendant states 
of s’ 
Searching of equal transition entries 
Possible cases: 
  No entries: return external state 
  One entry: return it 
  Several entries: 
 applying methods of random or 
directed search. 

In case of several entries the incorrect internal 
state might be returned. This situation is similar to 
action testing in reinforcement learning: incorrect 
returns will disappear. Application of an algorithm 
like bucket brigade might be helpful in this case. 

5 CONCLUSIONS 

The proposed modified Sarsa(λ) algorithm 
implements the idea of environment internal 
representation. The modified algorithm is able to 
recognize ambiguous states. Nevertheless, it suffers 
from the lack of recurrent mechanisms to cope with 
difficult mazes like Maze5 due to similar sequences 
of transitions. The success of applying it on simple 
mazes like Woods101, Maze7, MazeT demonstrates 
the ability of the agent to build the internal 
representation of the environment and use it in 
reinforcement learning instead of original algorithm. 
An interesting direction for further research is to 
upgrade the algorithm to enable it to cope with 
complicated environments. Future research will also 
address the formalisation and generalisation of the 
algorithm discussed 
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