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Abstract: This work focuses on fast approaches for image retrieval and classification by employing simple features to
build image signatures. For this purpose a neural model for soft classification and automatic image annotation
is proposed. The salient aspects of this solution are: a) the employment of a Radial Basis Function Network
built on top of an image retrieval distance metric b) a soft learning strategy for annotation handling. Experi-
ments have been conducted on a subset of the Corel image dataset for evaluation and comparative analysis.

1 INTRODUCTION

The growing demand for digital visual data in many
applications related to scientific, commercial and
cultural contexts has aroused a significant interest
in Content-Based Image Retrieval (CBIR) aimed
at defining methods to archive, query and retrieve
these data based on their content (Datta et al., 2007;
Smeulders et al., 2000).

The problem of filling the gap between visual,
low level similarity and abstract semantic similarity
is even more complicated when dealing with general-
purpose, broad content image databases, such as
Internet image archives, because of the large size of
the database, the heterogeneity of the recorded scenes
and the imaging techniques employed (Li and Wang,
2008). Usually these are databases where images
are annotated with semantic labels, enabling the
user to specify the query through a natural language
description of the visual concepts of interest. These
aspects combined with the cost of manual image
annotation, have generated significant interest in
the problem of automatically extracting high level
semantic descriptors from images.

The problem can be addressed by different
approaches (Datta et al., 2007; Smeulders et al.,
2000). Early methods followed the geometrical
approaches focusing directly on an explicit definition
of a similarity function, powerful enough to represent
high level meaning. In this direction strategies
aimed at updating the query or optimizing the
similarity function, thanks to the user annotations,
have been proposed. Recent studies confirm that a

single similarity measure can barely produce robust
semantically meaningful ranking of images (Datta
et al., 2007). An alternative approach which in some
sense circumvents the problem, is the use of auto-
mated machine learning techniques able to induce,
and then implicitly define from a set of already
classified/annotated images, semantically meaningful
similarity functions with which to categorize, ranking
and annotate images (Datta et al., 2007; Vailaya et al.,
2001).

Classification methods can be divided into two
major branches: generative modeling and discrim-
inative approaches (Bishop, 1996). In generative
modeling, the searched category is modeled as a
density probability function and the Bayes formula
is then used to compute the posterior (Li and Wang,
2008). Discriminative modeling approaches are more
direct in finding classification boundaries (Chen and
Wang, 2004; Shotton et al., 2008).

Early works in the image categorization
field make use of global color and texture his-
tograms (Swain and Ballard, 1990). Recent works
that try to exploit local features include the bag-
of-features (Chen and Wang, 2004) where learning
models are applied to collection of local features and
pyramidal approaches (Grauman and Darrell, 2005;
Lazebnik et al., 2006) where geometric description of
the scene is accomplished. New trends also include
approximated segmentation techniques are also
applied to obtain good results with stricter time con-
straints (Li and Wang, 2008). All recent works can be
roughly divided into approaches that prefer fast and
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simple techniques for general purpose images and
approaches with deeper and more costly techniques
for image segmentation and object recognition.

The present work focuses on discriminative
modeling for categorization and annotation tasks on
large, content varied image databases. The main
contribution of our study is to investigate whether
these tasks can be approached successfully using
the approximation capability of a novel supervised
neural learning technique based on Radial Basis
Function Network (RBFN). A salient aspect of the
proposed solution is the integration within the RBFN
of the Earth Movers Distance (EMD) which has
been recognized as a useful similarity metric in
information retrieval (Rubner et al., 2000).

In the context of automated image annotation the
neural model is considered a soft classifier to better
represent the inherent vagueness and imprecision
with which images are annotated by users. The output
of the neural classifier, for a given image signature
provided in input, usually interpreted as crisp class
assignment according to the winner-takes-all rule,
must be softened here, considering the values of the
output neurons directly as gradual relevance of the
corresponding class/annotation to the image.

The overall strategy was experimentally evaluated
using the Corel database subset used in (Chen
and Wang, 2004). Several experiments have been
conceived and conducted to quantify and compare
the contribution of the different solutions adopted.

2 RBFN-BASED LEARNING FOR
IMAGE CATEGORIZATION
AND ANNOTATION

The present work focuses on the learning task within
a CBIR strategy. However, to make the work self-
contained, the important pre-processing phase con-
cerning visual signature extraction is derived from
previous works.

Section 2.1 describes the strategy adopted for vi-
sual signature extraction, while sections 2.2 and 2.3
explain the learning model and the annotation strat-
egy.

2.1 Extraction of Visual Signature

This phase is crucial for the ability of the learning
model to understand and predict concepts and cat-
egories. Proceeding from solutions adopted by Li
and Wang (Li and Wang, 2008) a signature extrac-
tion technique for generic images is adopted, com-

putationally easy but powerful enough to solve real
world problems.

To build the signature a set of two featureF =
{ f1, f2} where f1 = color and f2 = texture is con-
sidered. Each signature featurefi is built on a set of
vectors extracted from the image, one for each pixel.
Vectors are then grouped together into a set of cen-
troidsv j ,k, k = 1, . . . ,K with theK-Means clustering
method (with fixedK), and for each centroidv j ,k a
weight wj ,k is computed to express the relevance of
related pixels.

For the color feature the LUV color space com-
ponents for each pixel are considered, while the
Daubechies 4 wavelet transform (Daubechies, 1992)
is employed as a texture descriptor. The texture de-
scriptor is computed on the L-plane of the image, con-
sidering the LH, HL and HH planes to form the set of
vectors that are in turn clustered.

Each image Ii is thus represented by its
signature γi ∈ Γ and is formed by features
βi, j , j = 1, . . . , |F | where each featureβi, j =
{(vi,1,wi,1), . . . ,(vi,K ,wi,K))} is a discrete distribu-
tion.

The clustering phase for the extraction of the dis-
crete distributions is a mean to summarize images by
dividing them into regions with similar feature vec-
tors. Several strategies can be adopted to exploit the
differences among different types of images in the
collection: in (Li and Wang, 2008) an adaptive meta-
clustering method based onK-Means is used. A com-
mon and simpler alternative is to use theK-Means al-
gorithm with fixed K. This strategy is adopted for the
proposed solution.

2.2 The Soft Classifier

The present work addresses the main problem of se-
mantic categorization and annotation of images with
a machine learning approach. In particular, we chose
adopted the RBFN model introduced by (Moody and
Darken, 1989) for its proven training speed and ro-
bustness on classification and regression tasks. These
capabilities are especially suitable for the inherent
vagueness related to categorization and annotation
within the CBIR context.

RBFNs have a single hidden layer of process-
ing units with local, restricted activation domains: a
Gaussian function is commonly used, but any other
locally-tunable functions can be used. They were
introduced as a neural network evolution of exact
interpolation (Moody and Darken, 1989), and have
been shown to have the universal approximation prop-
erty (Hartman et al., 1990). As outlined in (Jain et al.,
2000), the RBFN main advantages are that the classi-
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fication function is non-linear, the model may produce
confidence values and it may be robust to outliers; its
drawbacks are the potential sensitivity to input param-
eters, and potential overtraining sensitivity.

The need to learn and predict on signature objects
instead of regular vector patterns requires the stan-
dard Euclidean distance within the Gaussian activa-
tion units and the first-levelK-Means clustering to be
substituted with a distance tailored to discrete distri-
butions. Considering the previous works on appropri-
ate metrics for CBIR and CBIR systems making use
of such metrics (Lv et al., 2006; Almeida et al., 2008)
we selected the EMD - Earth Mover’s Distance as the
image distance metric within the RBFN model (Rub-
ner et al., 2000).

The network is structured as a regular RBFN
and its non-linear functionf : Γ → R

C maps the
signature space to the categories space as a result
of the learning phase on the training setTrS =
{(γ1,y1), . . . ,(γN,yn)}, where γi is a signature and
yi ∈R

C is the vector whosej-th component is the soft
membership truth for the thej-th annotation.

The network is structured as follows:

1. a first level ofM Gaussian Processing unitsφi :
Γ → R

C.

φi(γ) = exp(−emd(γ,γi)/σi) (1)

where emd(γ,γi) is the mean EMD over all sig-
nature features between the signature given as ar-
gument inφi andγi is the centroid signature for
processing unitφi .

2. a second level ofC linear weights wi =
{wi,1, . . . ,wi,C} connect each first level unit with
each output unit.

3. the two levels are then linearly combined to build
the model functionf :

oc(γ) =
M

∑
i=1

φi(γ) ·wi,c (2)

f (γ) = {o1(γ), . . . ,oC(γ)} (3)

Following (Moody and Darken, 1989), the train-
ing scheme is two-phased: one is unsupervised and
decides values forγi , i = 1, . . . ,M while the other
solves a linear problem to find values forwi , i =
1, . . . ,M.

1. the first phase finds suitable centroid signatures
γi , i = 1, . . . ,M by running an EMD-based iter-
ative K-Means clustering algorithm withk = M.
Then thep-means heuristic (Moody and Darken,
1989) is applied to compute the processing unit
spreadsσi , i = 1, . . . ,M.

2. the second phase computeswi , i = 1, . . . ,M. This
phase is supervised and therefore the training set
is considered; the objective is to minimize the
difference between predicted output and truth by
Least Mean Squares, computed through the pseu-
doinverse.

(a) Φ is aN×M matrix whereΦi, j = φ j (γ̂i)

(b) W is aM×C matrix whereWi, j = wi, j

(c) T is aN×C matrix whereTi = ŷi

the minimization problem to solve isΦW = T and
thusW = Φ†T, whereΦ† is the pseudoinverse.

The model has therefore two user parameters:

1. the numberM of first level local processing units

2. the numberp of thep-means heuristic, used to de-
termine the spread of first level processing units.

2.3 Annotations and Categories

The visual content of an image can be described
with words that have an accepted meaning. BeA =
{a1, . . . ,a|A|} the global dictionary of known annota-
tions, the process of annotating each imageIi results
in a set of weightsAi = {α1, . . . ,α|A|} with α j ∈ [0;1]
and positive values ofα j are set for annotationsa j
that belong to the imageIi .

A soft classification framework can be set up
by teaching the model the annotation weights as
the expected output for a given image; the train-
ing and test sets elements(γi ,yi) are such thatyi =
{αi,1, . . . ,αi,|A|}.

The RBFN output̂y ∈ R
C for a given image sig-

natureγ describes the level of confidence for each an-
notation, and can be used to predict the set of anno-
tations. This can be addressed by considering only
elements whose output units are activated with values
higher than a threshold parameterε ∈ [0;1].

The elicitation strategy of annotation weightsα j
is manifold. Considering real-world scenarios where
users interact with the system by providing examples
of tagged images, it is easy to imagine a simple graph-
ical user interface where each annotation can be given
a weight by adjusting its “visual size” just like a ge-
ometrical shape can be within a painting program.
In simpler scenarios where only annotations can be
taught and learned, the expected outputyi can be such
that all components are equal to

1
|{ai, j |ai, j is an annotation ofIi}|

(4)

assuming that images with fewer annotations proba-
bly have stronger and clearer membership in respect
to the annotation set.
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Table 1: Error matrix of the hard classification analysis over the five runs, with User Accuracy (UA) and Producer Accuracy
(PA) for each category.

- ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 Tot U UA

ω1 193 7 18 9 0 7 0 0 7 12 253 76.28 %
ω2 4 157 17 2 0 2 3 0 46 0 231 67.97 %
ω3 10 23 151 10 0 12 2 0 13 3 224 67.41 %
ω4 0 11 13 210 0 0 0 0 5 4 243 86.42 %
ω5 0 0 0 0 250 6 0 0 0 3 259 96.53 %
ω6 18 14 15 3 0 204 0 1 8 6 269 75.84 %
ω7 1 1 21 0 0 0 231 1 4 8 267 86.52 %
ω8 4 4 0 1 0 13 10 247 5 3 287 86.06 %
ω9 6 31 10 10 0 4 0 0 162 6 229 70.74 %
ω10 14 2 5 5 0 2 4 1 0 205 238 86.13 %

Tot P 250 250 250 250 250 250 250 250 250 250 - -
PA 77.20 % 62.80 % 60.40 % 84.00 % 100.00 % 81.60 % 92.40 % 98.80 %64.80 % 82.00 % - -

Total accuracy: 80.4000 % (2010 hit, 490 miss, 2500 total)

The global set of annotationsA can grow unex-
pectedly when users are allowed to add their own new
words. Its size can be kept under control by grouping
clusters of elements into a single high-level annota-
tion. In scenarios where automated tagging is used
as a basic suggestion for the user, we expect that the
most relevant elements are presented to the user, min-
imizing the presence of words with the same visual
semantic.

3 EXPERIMENTS

The experimental analysis aims at assessing the per-
formance of the proposed approach as an automated
image annotation method. As shown in section 2 the
overall process relies on the ability of the underlying
machine learning model to predict a soft membership
of a given set of conceptual classes. To better iso-
late the contribution of the learning model and of the
annotations management task, the experiments were
divided in two parts: first the proposed model is as-
sessed as a hard classifier of images, while the second
part considers the soft classification and automatic an-
notation capabilities.

For both the hard and soft experiments, theK-
Means clustering technique used for signature build-
ing is employed withK = 5 as a result of trial and
error phase, also taking into account reasonable com-
putational times.

3.1 Hard Classification Analysis

For the hard classification analysis the Corel database
subset used in (Chen and Wang, 2004) is considered.
This dataset1 is composed of 1000 small JPEG im-

1Dataset labels are now available athttp://john.
cs.olemiss.edu/ ˜ ychen/ddsvm.html . Images can

ages divided into 10 categories: African people and
villages (ω1), Beach (ω2), Historical buildings (ω3),
Buses (ω4), Dinosaurs (ω5), Elephants (ω6), Flowers
(ω7), Horses (ω8), Mountains and glaciers (ω9) and
Food (ω10).

The set of images within each category is ran-
domly split into two subsets of 50 elements to form
the training and test set. Each experiment is repeated
five times and the average overall accuracy (OA) is
then reported as the main evaluation metric. When
available, the number of processing units (NPU) of
the learning model is reported. A complete error ma-
trix (Congalton, 1991) over the five random runs is
presented in table 1.

Two image categorization models proposed
in (Chen and Wang, 2004) and (Andrews et al., 2003)
respectively are considered to compare our method:
MI-SVM, an extension of the standard Support Vec-
tor Machines model to the multiple-instance learning
paradigm and DD-SVM, which aims at improving the
MI-SVM by going beyond the single-prototype bag
model.

We also compare the performance of a RBFN us-
ing a 125 bins LUV histogram (R-Hist) with that ob-
tained by SVM employing the same image represen-
tation technique (HistSVM). Results are from (Chen
and Wang, 2004). Experimental results of the overall
accuracy are reported in table 2.

The HistSVM and R-Hist figures confirm that Ra-
dial Basis Function Networks can be employed in
image catgorization tasks with similar performance
to SVM models. The performance of the proposed
R-EMD proves that a standard RFBN training tech-
nique combined with EMD-based radial basis func-
tions and K-means can compete with more complex
models based on the multiple instance framework.

be downloaded fromhttp://wang.ist.psu.edu/docs/
related.shtml
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building, monument, sky animal, elephant, tree, vegetation, grass, sky mountain, building, vegetation, grass, tree

Figure 1: Sample images from the dataset used for soft classification and annotation analysis.

Table 2: Hard classification results of the proposed ap-
proach (R-EMD). Overall Accuracy (OA) with 95% con-
fidence interval is reported; when available the number of
Processing Units is also presented.

Model OA% - [conf.int] NPU

R-EMD 80.40 - [77.80−82.60] 100
R-EMD 77.52 - [74.91−80.13] 50
R-Hist 71.16 - [68.32−73.99] 100
R-Hist 67.88 - [64.96−70.80] 50

DD-SVM 81.5 - [78.5−84.5] n.d.
MI-SVM 74.7 - [74.1−75.3] n.d.
HistSVM 66.7 - [64.5−68.9] n.d.

3.2 Soft Classification and Annotation
Analysis

To investigate the performance of the model for an-
notation purposes, an annotated image dataset was
needed. The absence of a widely accepted benchmark
dataset in the CBIR research area lead us to put to-
gether a subset of the Corel images found in (Chen
and Wang, 2004)2 and adding proper annotations.

A set of 29 annotationsA= {animal, beach, boat,
building, cloth, cloud, decoration, desert, elephant,
face, flower, forest, grass, horse, lake, monument,
mountain, palace, person, river, rock, sand, sea, sky,
snow, street, tree, vegetation, water} is used to anno-
tate 573 images, some examples are provided in fig-
ure 1. Annotations defined on images are converted to
soft memberships as explained in section 2.3 by con-
sidering uniform weights as suggested in (4).

The whole image dataset is randomly split into
two parts - for the training and test sets. The model is
then trained and the neural network’s output is evalu-
ated within the soft paradigm as suggested in (Binaghi
et al., 1999), considering the OA descriptive measure
of the fuzzy error matrix. This evaluation metric iso-

2The dataset is available athttp://www.dicom.
uninsubria.it/ ˜ moreno.carullo/cbir/datasets.
html

lates the behavior of the RBFN model without con-
sidering the threshold parameterε. The annotation
process is then evaluated considering the well-known
Information Retrieval metrics Precision (P), Recall
(R) and F-Measure (Frakes and Baeza-Yates, 1992)
(F1) with the micro-average approach. These metrics,
in particular F-Measure, describe the user-perceived
performance of the system. All experiments are re-
peated five times and the average OA, Precision, Re-
call and F-Measure are reported.

Table 3: Soft classification and automated annotation re-
sults.

Model F.OA% P% R% F1% NPU

R-EMD 48.44 64.43 55.95 57.23 20
R-EMD 53.59 66.56 63.99 62.49 50

Random n.a. 14.62 52.27 20.69 n.a.

The model is evaluated fixing the threshold pa-
rameterε = 0.1 and annotation performance is com-
pared to a random annotator that selects a random
number of tags from the available ones. This assesses
the overall utility of the method with a lower bound
method.

The Fuzzy OA (F.OA) shows that the model can
learn soft memberships reasonably. The model was
not supposed to behave perfectly with respect to this
metric, and in addition the vagueness of learned and
evaluated data makes Fuzzy OA behave differently
from conventional, crisp OA.

The F1 score obtained shows the utility of the
model over a completely random approach, by deliv-
ering an average 62.49% of correct annotations over
the expected ones. Looking into the the F1 in detail,
the Precision and Recall figures show that the major
impact provided by the model is found in making the
set of suggested tags more precise, or in other words
small enough to contain the set of expected annota-
tions.
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4 CONCLUSIONS

This work presented and evaluated a Radial Basis
Function Network based approach to image catego-
rization and annotation. Experimental analysis con-
firms that the proposed solution can be employed for
both categorization and annotation tasks with encour-
aging results. The proposed soft classification ap-
proach seems promising and adequate for the man-
agement of intrinsic uncertainty of user-provided an-
notations. Future works involve the investigation of
the performance on larger datasets with more images
and annotations to assess the impact on the model’s
behavior.
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