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Abstract: 3-D morphing, in its simplest definition, is shape transformation between a pair of objects i.e. source and 
target, by gradual, continuous and simultaneous dissolvement of the shape of source object to its target and   
vice versa resulting in a number of intermediate shapes. Many algorithms have been developed for this 
purpose with each one having its own speciality. In this paper, a novel algorithm is presented which is based 
on slices. The technique originates from the concept of reducing a 3-D object to a number of slices in 2D 
plane. In the algorithm, all of the 2D slices may not be oriented in either x, y, z or in a particular direction. 
Orientation and rotation of the slices within a single body can be varied from one slice to another based on 
the alignment of the object. Oriented Bounding Box (OBB) is used to determine the orientation  of the 
object. The advantages of the proposed method i.e. minimal user input, flexibility, dynamism and ease of  
implementing over other 3D morphing algorithms are also discussed. 

1 INTRODUCTION 

Starting from the late eighties until the end of 
nineties numerous algorithms on 3D morphing have 
been developed. Now morphing has become an 
indispensable tool in 3D animation industry. Not just 
for the purpose of transforming from one shape to 
another, morphing is also useful in incorporating 
characteristics of different bodies in different 
proportions to the morphed output.  

In this paper a morphing algorithm which takes 
into account of orientation and distortion of the 
object is presented. Object is cut into slices along its 
alignment. Oriented Bounding Box (OBB) is used to 
determine the initial alignment of the object. The 
more dense the slices, the more accurate is the 
alignment (though there is an optimal limit on how 
dense the slices could be). For all kind of objects, 
this method works with minimal user input. The 
simplicity, accuracy, versatility, flexibility and 
extendibility of the algorithm meet all the criteria of 
a good and efficient morphing algorithm based on 
our survey on a number of morphing algorithms. 

2 BACKGROUND 

Depending on the various approaches, existing 
morphing algorithms can be classified into the 

following categories: a) Surface-based morphing: 
consists of continuous mapping of small pieces of 
polygonal surfaces of source object to those of target 
object; b) Volume-based morphing: modifies voxel 
values of a volume data set for smooth transition 
between source and target shapes. 

Surface-based approach uses user-defined 
control fields such as point fields, line fields etc. 
during morphing to map key features of source and 
target objects ((Hong, 1988), (Parent, 1992), 
(Lazarous, 1994), (Turk, 1999), (Lee, 1999)). 
Surface-based methods are important because of its 
ability to morph between objects of different types 
of genus, but these methods also require a significant 
amount of user input. Another troubling feature of 
surface-based method is the problem of self-
intersection. It cannot guarantee that polygonal 
surfaces will not pass through themselves, creating 
self-intersecting intermediate result as found in 
(Hong, 88). 

Volume-based approach alleviates some of the 
problems mentioned above. Among them, the 
simplest approach is the cross-dissolving method 
(Hughes, 1992) which at first transforms volume 
data from spatial domain to frequency domain by 
Fourier transform, then linearly interpolates volume 
in frequency domain and again transforms back to 
spatial domain. To enhance the smoothness of the 
in-between volumes, Fourier transform has been 
used by gradually removing high frequencies of 
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source model, interpolating over to the low 
frequencies of the second model and smoothly 
adding in the high frequencies of the second model. 
But Fourier transform does not localize in spatial 
domain. In order to have a smooth transition, voxel 
values of the entire volume are modified according 
to the distance of the nearest iso-surface. This 
problem can be solved by Wavelet transformation 
(He, 1994), which localizes both in frequency and 
spatial domain resulting in a multi-resolution fashion 
so that high frequency distortion can be adjusted at 
the desired level. 

Both of the above mentioned methods have  
difficulties in specifying slightly complex geometric 
transformations such as object rotation. By relying 
on the frequency information, the methods would 
also have difficulties while associating with some 
scalars such as colors, opacities and texture. This 
problem can be alleviated by applying warping 
before interpolation as found in (Lerois, 1995). Here 
user-defined warp is applied on source and target 
objects to resemble each other. Warped source 
object and target object are then interpolated. 

Instead of using point and line control fields in 
3-D volume morphing, user-specified disk field  
(Chen, 1996) can be used. Equal number of disks are 
applied on both source and target to establish 
correspondence between them. Each disk has its 
own normal direction which helps in considering 
distortion of the body. 

Payne et al. introduces ‘Distance Volume’ mea -
sured  by computing the shortest distance of each 
voxel within the volume to the surface of the object. 
Distance field is transformed to a function to meet 
greater, equal or lesser “blobbiness” between the 
source and target objects. Once the distance field for 
the input surfaces are computed, interpolation is 
performed in between the surfaces. 

In (Breen, 2001), the way in which points on the 
surface moves is used to establish connection 
between source and target. Every point on the source 
surface moves in the direction of the normal at that 
point with a velocity proportional to the signed 
distance at that point in 3-D space from target 
surface and vice-versa. Those parts of source which 
are outside the target contract whereas inside parts 
move in the direction of surface normals and 
expand. 

Shape transformation using implicit function 
(Turk, 1999) is constructed by reducing a 3-D 
volume to a stack of 2-D slices along any of the 
major axes. Implicit functions of each pair of 2-D 
slices are determined using a set of constraints i.e. 
location, weight, scalar values etc. The resultant 2-D 

contour is established by interpolating each pair of 
implicit functions and this is repeated for each pair 
of slices between source and target objects along the 
third axis. 

From the above discussion, it is obvious that 
volume-based approach has got some advantages 
over surface-based approach though each approach 
has its own advantages. It is imperative that we 
strive to develop a new volume-based morphing 
algorithm which optimizes user input, considers 
rotation/orientation of rigid body during morphing 
and preserves smooth transition between source and 
target. 

3 ALGORITHM OVERVIEW 

The algorithm mainly consists of the following 
major steps : 

 Data Traversal and Slicing of Data; 
 Boundary Extraction; 
 Boundary Projection  and Boundary Interpo-

lation; 
 Orientation and Translation of Boundaries; 
 Surface Reconstruction. 

3.1 Data Traversal and Slicing of Data 

Source and target data are collected. The initial 
orientation along which the data are subdivided in 
the first step of the binary subdivision is defined 
along any of the directions of the Oriented Bounding 
Box (OBB) (Gottschalk, 1996). An Oriented 
Bounding Box (OBB) is a bounding box that does 
not necessarily align itself along the coordinate axes. 
OBB is constructed from the mean and covariance 
matrix of the cells and their vertices that define the 
dataset. The eigen vectors of the covariance matrix 
are extracted, giving a set of three orthogonal 
vectors that define the alignment of the dataset. 
Figure 1 shows the difference between a normal 
bounding box and an oriented bounding box. No 
doubt, an oriented bounding box more closely fits 
the data than a normal bounding box. The purpose of 
choosing the oriented bounding box is to allow 
checking of the longitudinal direction of dataset 
from its oriented bounding box rather than from 
normal bounding box. The OBB only bounds the 
“geometry” attached to the cells if the convex hull of 
the cells bounds the geometry. This is done in order 
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to negate the effects of the extreme distribution of 
the points. 
 

 
Figure 1: (a) Normal Bounding Box and (b) Oriented 
Bounding Box. 

Eigen vectors describe the maximum, medium 
and minimum variance of concentration of point 
clouds. Usually either maximum or medium direc -
tion of the eigen vectors are used as the direction of 
the initial alignment. The ‘maximum’ direction 
shows the maximum amount of concentration of the 
cells of the data along that direction, whereas the 
‘medium’ direction exhibits less amount of concen -
tration than maximum direction and the ‘minimum’ 
direction shows the least amount of concentration or 
the least alignment of the cells along that direction. 
The first subdivision takes place along a plane 
centered at the center of the Oriented Bounding Box 
(OBB) of the object with normal along the initial 
alignment. This step, called ‘step 0’, divides the data 
into two end parts. In each of the subsequent steps, 
the number of slices is doubled. 

In the next step i.e. ‘step 1’, each of the two end 
pieces found from ‘step 0’ is wrapped with OBB and 
tested whether the longitudinal direction of the 
alignment of the sliced end is still within the 
maximum or medium direction of the OBB. If the 
alignment is still within maximum/ medium 
direction, a line joining the center of the previous cut 
plane and the center of the OBB is used as the 
direction of the cut plane normal for the ends in that 
step (Figure 2). Otherwise ends are sliced along the 
cut plane normal found in the previous step which is 
used for any further subdivision of the ends and in 
the subsequent steps no further checking on the 
alignment is done. At the end of ‘step 1’, the data is 
divided into four parts i.e. two end parts and two 
middle parts. 

Before further subdivision of the ends, if 
necessary, checking is done for the alignment of the 
two sliced ends. The procedure described in ‘step 1’ 
is followed for further subdivision of the two ends. 
For the middle parts, data is sliced along the plane 
with center as the center of the OBB and normal 
directed along the resultant normals of the two ends 
of the middle data (Figure 2(a)). Slicing is continued 
along the longitudinal direction until the desired 
number of steps is reached. In each subsequent step, 

the number of slices is doubled at each step.  The 
default longitudinal direction is the ‘maximum’ 
direction of the eigen vectors and the default number 
of steps for binary  subdivision of the data is ‘four’. 
To provide more flexibility, the initial longitudinal 
direction as well as the number of steps can be 
defined by the user. We indicate the maximum 
alignment as ‘0’, the medium alignment as ‘1’ and 
the minimum as ‘2’. Therefore, the users are allowed 
to vary the morphed output based on the initial 
alignment. Subdivision can also be forced to happen 
along any particular direction or along any of the 
axes i.e. x, y or z to generate parallel slices.  

 (a)  (b) 

 

 

C2 = N1= Line joining C1 and O1 
Center 

of  
OBB 

Figure 2: Division of (a) the End Data and (b) the Middle 
Data. 

The steps involved in slicing a given data with 
default initial settings are depicted in Figure 3. After 
reaching the desired number of steps, cut edges of 
the ends are usually still a bit far from the tip. In 
order to extract a proper outline of  the object,  ends 
near the tip need to be extracted. For this purpose, 
two ends are traversed along the tip. Usually no fur -
ther checking for the alignments of the two ends are 
needed now as the current alignments of the sliced 
ends are usually not along the maximum or the 
medium direction of the OBB of the two sliced  
ends. So for any further subdivision, the normal is 
usually along the direction which was found at the 
step before the last checking step and traversing 
towards the tip is continued along that direction until 
it is close enough to the tip. Now the ends are again 
divided into two parts. At this stage, each of the two 
end slices which were found at the end of the last  
step consists of two end parts with very thin top ends 
near the tips as shown at the bottom of Figure 3. 

 

 N =N2 + N3’ 

    N2 

 N3’ 
O1 = Center of
Previous Cut Plane

Next cut plane is along normal
N  with  Center  C2. 

(b) 

C1= 
Center

of 
OBB

Next cut plane is
along Normal N1
with Center  C1.
(Alignment  is  with
-in maximum/ medi-
um) 

(a)

GRAPP 2009 - International Conference on Computer Graphics Theory and Applications

294



 

 

 
Figure 3: Traversal and Slicing of a Given Data. 

3.2 Boundary Extraction 

Only boundaries of the slices are extracted (Figure 
4). As discussed above, in ‘step  0’, data is divided 
into two parts. In each of the subsequent steps, the 
number of slices are doubled. Hence in ‘step 4’, 
there are 2(4+1) i.e. 32 slices. From 32 slices 31 
boundaries can be extracted. Then boundaries at the 
ends which are determined after the specified 
number of steps is reached are also added. Two such 
boundaries at the two ends result in a total of 33 
boundaries each. Hence in ‘step 4’, the number of  
extracted boundaries (for each source and target) is 
computed as follows: 

2(step+1)  + 1 = 2(4+1) + 1= 25 + 1 = 33 

 

 

 

 

 

 

Figure 4: Extraction of Source and Target Boundaries. 

3.3 Boundary Projection and 
Boundary Interpolation  

Both source and target boundaries are projected onto 
the XZ plane and centered at the origin. Each of the 
source and target boundaries are traversed along the 
direction of their minimum X (Xmin) to maximum X 

Initial Conditions: 
1.No. of  Step =  4 (default);  
2. Alignment = 0 (default) 
 (maximum = 0, medium = 1,  
 minimum = 2) 
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Division of the Middle Parts 

Division of the Middle Parts 
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(Xmax) with a traversal plane defined as (1,0,0). For 
each source and target boundaries, traversal spacings 
are determined separately. Equal number of 
traversals is performed for both source and target 
data. Traversal spacing is determined as follows: 

 

Spacing =  (Xmax – Xmin)/ Number of Traversals  

Source and target boundary points are extracted 
from the traversals. If the number of extracted points 
in any cut plane happens to be odd, it is made to be 
even. Next interpolation is performed onto the XZ 
plane. For simplicity linear interpolation is used in 
our implementation. Here it should be noted that 
only one normal is extracted per boundary regardless 
of whether any particular boundary consists of 
multiple holes or empty spaces. Also each boundary 
has one center irrespective of the irregular geometric 
configuration of that particular boundary.  

Three special cases need to be considered during 
interpolation. They are as follows: 

Case 1: Both Source and Target Boundaries 
Contain no Empty Spaces. Source points are just 
interpolated with target points. Enhancement of the 
interpolation process can be carried out when both 
source and target have equal number of regions and 
there are more than one region in both. Region is an 
area where the number of points extracted by the cut 
plane is the same while traversing along the X axis. 
In Figure 5, both source and target boundaries 
consist of equal number of regions i.e. 3 (two 2-
point region and one 4-point region). Hence the 
interpolated point clouds also have three regions.  

Case 2: Only One of the Source and Target 
Boundaries Contains Empty Spaces. The number 
of empty spaces is calculated for the boundary 
which contains empty spaces. Then equal number of 
empty spaces are inserted into the other boundary so 
that empty space will appear in the interpolated 
point clouds. 

Case 3: Both Source and Target Boundaries 
Contain Empty Space. When there are equal 
number of empty spaces in both source and target 
boundaries, we have equal number of regions. Thus 
corresponding regions from both source and target 
can be interpolated. However when there are 
unequal number of empty spaces/ regions, rightward 
and leftward traversals are carried out until either 
one of source or target is exhausted (Figure 6). 
Corresponding regions during the traver -sal are just 
mapped and interpolated while the remaining 
regions can just be mapped if the exhausted side 

ends with an  empty space. Otherwise a process 
similar to Case 2 above is applied by inserting into 
the region of the exhausted side the same number of 
empty spaces left in the non-exhausted side.   
 

 
Figure 5: Interpolation of Points after Region Separation. 

3.4 Orientation and Translation of 
Interpolated Boundaries 

Each of the interpolated boundary already projected 
onto the XZ plane is oriented along the resultant 
normal of each of the source and target boundaries 
and translated to the average center of each of source 
and target boundaries (Figure 7). When all the 
interpolated boundaries are oriented as well as 
translated, we get the outline of the morphed output. 
Figure 8 describes this sequence. 

3.5 Surface Reconstruction 

From the stack of oriented and translated bounda -
ries, surface of the morphed object is constructed. 
Each of the boundaries merges with the next boun- 
dary by dividing the in-between space of the two 
consecutive boundaries into a number of cells and 
each cell is connected to its neighboring cells. Sur -
face construction is performed by only considering 
each of the two consecutive boundaries. 

2-pt Region (At any 
particular distance 
along X, number of
intersected points 
by a plane (1,0,0),  is 
2) 

x

Interpolated Point Clouds 

(0,0,0) (0,0,0)

4-point Region (At any particular distance along X,
number of intersected points by a plane (1,0,0), is 4). 

SOURCE TARGET

(0,0,0)
z

2-point 
Region

4-point 
Region 

2-point 
Region 
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Rightward Traversal Leftward Traversal 

Figure 6: Interpolation case when there are unequal number of empty spaces between source and target. 

 
Figure 7: Orientation and Translation of a Single 
Interpolated Boundary. 

 

Figure 8: Orientation and Translation of All Interpolated 
Boundaries. 

This simplifies the overall surface reconstruction 
process as where data is highly irregular, necessary 
modification among cell coordinates is limited to 
only two consecutive boundaries. Surface 
reconstruction in detail is discussed next.  

3.5.1 Separating Disconnected Region  

Each consecutive boundary may have regions which 
are disconnected from one another (Figure 9(a)). 
Nearest neighbor searching is carried out to find this 
kind of regions. The disconnected regions are 
horizontally mapped (for better effect) and the other 
regions are to be vertically mapped (Figure 9(b)).  

The details of the vertical mapping are discussed 
in  the next sub section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9: Separating Disconnecting Regions between Two 
Consecutive Boundaries. 

3.5.2 Basic Cell Construction 

After region separation, two consecutive point/ cell 
arrays (representing two consecutive slices) are 
obtained and vertically mapped. The two arrays 
which contain the number of interpolated points at 
each index need to be compressed so that the process 
of mapping can be carried out in an easier and 
straightforward manner. 

Point clouds in top slice 
with only one region 

Point clouds in bottom slice
with two separate regions

    Region 1

 Region 2 

After region separation point clouds in
top slice vertically mapped with region 1
of bottom slice 

Disconnected region 2 
in bottom slice is 
horizontally mapped 

(a)

(b)
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                                             Two Arrays Containing the Number of Interpolated Points  

  0         1          2         3         4         5      6         7        8        9          40      41      42      43     44        45      46     47       48       49 Index No: 

Figure 10: Basic Cell Construction between Two Consecutive Interpolated Boundaries.

Figure 10 shows the process of compressing two 
consecutive arrays. In the compression, the arrays 
are transformed into two new arrays each: region 
number array (where region numbers are stored) and 
number of occurrences array (where the number of 
occurrences of each region number are stored). 
Firstly, the size of both arrays should be made equal 
using a heuristic approach. Sometimes some index 
values are dissolved and some are omitted in order 
to make the size of both arrays equal. Corresponding 
values of the number of occurrences arrays should 
also be made equal so that they are ready to be 
vertically mapped. In the case of unequal values, the 
larger of the two values is made equal to the smaller 
number by removing excess number of that 
particular number of occurrences value. 
Corresponding numbers in the two region number 
arrays should also be equal for the purpose of 
vertical mapping. If they are not equal, a further 
processing needs to be done. The process starts with 
finding the nearest matched index values of the 
region number arrays by traversing to the left and 
the right. The nearest matched values will ensure 
better continuity between different-numbered 
regions. Next the corresponding region numbers are 
split into two portions where the values of the region 
number of the first portion is derived from the 

continuous mapping of the nearest matched index 
values to the corresponding region number values 
and the values of the region number of the second 
portion are the remaining region numbers resulting 
from the split. In the example (Figure 10), the first 
discrepancy occurs at index number ‘2’ and the 
nearest matched values are at index number ‘1’ with 
a value of ‘4’ and ‘4’. The current values (i.e. 8 and 
6) need to be split into two portions. The first 
portions are made equal to ‘4’ and the second 
portions are assigned the remaining values (8-4 = 4 
and 6-4 = 2). At the end of the entire processing, two 
sets of region number arrays are obtained. The top 
set (Figure 10(a)) now consists of equal region 
number and can therefore be vertically mapped 
whereas each of the bottom set (Figure 10(b)) is to 
be horizontally mapped separately. Enhancement is 
carried out in surface reconstruction when empty 
space is met or at the transition point between two 
different-numbered regions. 
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4 IMPLEMENTATION AND 
RESULTS 

The algorithm has been implemented using C++ 
with Visualization Tool Kit (VTK) as graphics plat -
form. In Figure 11(a), a sequence of three interme- 
diate stages is generated using ‘5’ as the number of 
steps with the initial direction of traversal for source 
as well as target along the maximum direction of the 
eigen vector i.e. ‘alignment = 0’. Using ‘4’ as the 
number of steps, the same sequence is generated 
without producing major distortion to the eye. As the 
number of step increases, the number of slices is 
doubled which also increases the overall run time. 

 

Figure 11(b) shows the  morphing  sequence 
between two tori each with different radius with the 
initial direction of traversal along the minimum 
direction of eigen vector i.e. ‘alignment = 2’ for both 
source and target. In Figure 11(c), a morphing 
sequence between a complex object and a bent pipe 
has been generated. Here the initial direction of  
traversal for the source is along the minimum direc- 
tion of eigen vector i.e. ‘alignment = 2’  whereas  the 
initial direction of traversal for the target is along the 
maximum direction of eigen vector i.e. ‘alignment = 
0’. Figure 11(d) shows the morphing sequence 
between a conic spiral and a torus with the initial 
directions of traversal for both source and target 
along the  maximum  direction of eigen vector i.e. 
‘alignment = 0’. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11: Morphing Sequence between Source (left most) 
and Target (right most) for Different Eigen Vectors as 
Initial Direction of Traversal. 

As highlighted in Section 3.1, the initial direction 
of traversal can also be forced to happen along the 
principal axis. In Figure 12(a), morphing sequence 
between a teapot and a parametric surface ‘dini’ has 
been generated. Here the initial directions of 
traversal for both source and target are along the Y-
axis. Figure 12(b) shows the morphing sequence 
between a cow and a cylindrical object. Here the 
initial direction of traversal for the source is along 
the X-axis and the initial direction of traversal for 
the target is along the Y-axis.  

 
 
 
 
 
 
 
 
 
 
 
 

 

 (a)

 
(b)

Figure 12: Morphing Sequence between Source (left most) 
and Target (right most) for Different Principal Axis as 
Initial Direction of Traversal. 

Figure 13 compares the gradual morphing 
sequence between the same source and target as 
used in Figure 11(a) when initial direction of tra -
versal for source/ target changes. Figure 13(a) shows 
the gradual transformation between source and 
target when the initial directions of traversal for 
source and target are along medium and maximum 
direction of the eigen vector i.e. ‘alignment = 1’ and 
‘alignment = 0’ respectively. Figure 13(b) shows the 
morphing sequence when the initial directions of 
traversal for both source and target are along the 
minimum direction of eigen vector i.e. ‘alignment = 
2’. 

 
 
 
 
 
 
 
 
 

 
Figure 13: Morphing Sequence between the Same Source 
(left most) and Target (right most) for Different Eigen 
Vectors as Initial Direction of Traversal.  

(a) 

 (b)

 (a) 

(b) 

(c) 

(d) 
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Instead of principal axis, if morphing sequence is 
generated along the longitudinal direc -tion, warping 
in rigid body is also considered when it is needed. 
Figure 14 compares this situation. In Figure 14(a), 
the morphing sequence is generated with initial 
direction of traversal along the principal axis X and 
Y for source and target respectively whereas in 
Figure 14(b), the morphing sequence is generated 
with the initial  direction of traversal for both source 
and target along the maximum direction of eigen 
vector i.e. ‘alignment = 0’. 

 
 
 
 
 
 

 

 
 
 
 
 
 

 
Figure 14: Morphing Sequence between the Same Source 
(leftmost) and Target (rightmost) with (a) Principal Axis 
and (b) Eigen Vector as Initial Direction of Traversal. 

5 DISCUSSION 

This section compares the proposed algorithm with 
some other existing morphing algorithms on the 
basis of a number of criteria for good morphing. 
Most surface-based methods consider the 
distortion/rotation of the rigid body, but division of 
both source/ target into a number of morphing 
patches or meshes is needed at the expense of a large 
number of user input and longer pre-processing 
stage ((Kent, -1992), (Lazarous, 1994), (Gregory, 
1998), (Breen, 2001)). The proposed algorithm 
works without any user input with default initial 
settings (‘number of steps = 4’ and ‘alignment = 
max’).  If variations in the number of steps and 
alignments are desired, the user just needs to specify 
these two variables. The number of slices can also 
be reduced by varying the number of steps. This 
automated method of reducing the number of slices 
as well as run time is absent in the most other 
algorithms. In most other existing algorithms, 
specific number of user-defined disk fields (Chen, 
1996) or point/line fields ((Kent, 1992), (Lazarous, 
1994), (Gregory, 1998), (Breen, 2001)) are used. 
Varying these fields involves a considerable amount 

of user intervention and longer pre-processing time: 
minor variation in these fields can generate a major 
variation in the output. The proposed algorithm 
automatically traverses the data along its alignment 
and is free from any inaccurate user intervention and 
at the same time if needed allows user to specify the 
initial direction of traversal. 

Simplicity is one of the major characteristics of 
the proposed algorithm. Some early surface-based 
algorithm preserves this feature but at the same time 
fails when the object is a bit complex producing self-
intersecting intermediate objects (Hong, 1988). In 
the proposed algorithm, aligned slices are extracted 
from data traversal and before interpolation, slices of 
the corresponding source and target slices are 
projected onto the XZ plane. Hence chances of self-
intersection are very slim as that can happen when 
triangulated surfaces are interpolated or extracted 
slices are not properly aligned.  

 (a) 

Another important feature of a good morphing is 
that intermediate outputs should be confined to the 
geometric features of source and target only. 
However sometimes unnecessary fea -tures are also 
seen among the intermediate morphed objects 
((Gregory, 1998), (Kent, 1992)). In the pro -posed 
algorithm smooth transition takes place bet -ween 
source and target. Orientation as well as rota -tion of 
a rigid body are preserved while morphing . 

 (b) 

Some volume-based methods use discrete 
mathematical function in morphing between 
complex objects ((Hughes, 92), (He, 1994), (Turk, 
1999)) generating smooth output using sophisticated 
interpolation technique. But interpolation is only one 
facet of morphing. The major shortcoming of these 
methods is that they overlook the curvature of rigid 
body while morphing, which is one of the most 
important properties needed to be considered for 
morphing between curved objects. The proposed 
algorithm nicely fills in the gap. Some volume-based 
algorithms alleviate this problems ((Payne, 1992), 
(Breen, 2001)). However they are highly sensitive to 
the user-specified initial overlapping of source and 
target. These methods have weakness around the 
regions of high curvature: accuracy of intermediate 
objects also depends on the accuracy of user-defined 
overlapping of source and target. This sometimes 
results in incomplete morphed output in case of 
curved objects. The proposed algorithm shows more 
consistency than these methods. 

In the proposed algorithm, instead of traversing 
along the longitudinal direction of data, traversal can 
also take place along any particular direction 
producing different morphing sequences. This 
flexibility may be difficult to achieve in surface-
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based algorithms or in some volume-based 
algorithms which exhibit characteristics like surface-
based algorithms (Lerois, 1995). Some volume-
based algorithms can consider this but may involve 
considerable user intervention ((Payne, 1992), 
(Chen, 1996), (Breen, 2001)). Morphing involving 
discrete mathematical functions for interpolation 
((Hughes, 1992), (He, 1994), (Turk, 1999)) is 
capable of traversing along only a specified 
direction. 

Now let us analyze the algorithm in terms of 
efficiency. In field morphing, control data sets are 
used to specify coordinate mapping hence time 
complexity is usually Ө(nm) as all coordinates of a 
single dataset are more or less influenced by all 
control fields (Chen, 1995). Here ‘n’ is the size of 
volume and ‘m’ is the number of control fields.  In 
the proposed method, control fields i.e. slices are 
automatically determined during data traversal and 
these control fields have little influence or control in 
coordinate mapping: only coordinates of respective 
boundaries are influenced. Hence if the number of 
extracted coordinates from each boundary is ‘p’ and 
the number of automatically defined slices (‘m’) are 
considered as control fields, then time complexity is 
Ө(mp + m). Here ‘mp’ can be equated with the 
volume size ‘n’ hence time complexity for the 
proposed algorithm is Ө(n + m) which is much less 
than volume morphing using disk field Ө(nm) 
(Chen, 1996). 

6 CONCLUSIONS 

Simplicity and flexibility are two major characteris -
tics of the proposed algorithm which have made it 
more dynamic and extendible than other existing 
morphing algorithms. Future work includes exten -
ding the algorithm in order to show the extendibility 
of the method by incorporating influence shape 
while morphing including multiple influences and 
exploitation of the method in parallel/distributed 
computing environment as simple data structure of 
sliced body and binary subdivision is suitable for 
both data as well as functional partitioning. 
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