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Abstract: Tracking multiple targets with similiar appearance is a common task in computer vision applications, espe-
cially in sports games. We propose a Rao-Blackwellized Resampling Particle Filter (RBRPF) as an imple-
mentable real-time continuation of a state-of-the-art multi-target tracking method. Target configurations are
tracked by sampling associations and solving single-target tracking problems by Kalman filters. As an ad-
vantage of the new method the independence assumption between data associations is relaxed to increase
the robustness in the sports domain. Smart resampling and memoization is introduced to equip the tracking
method with real-time capabilities in the first place. The probabilistic framework allows for consideration of
appearance models and the fusion of different sensors. We demonstrate its applicability to real world applica-
tions by tracking soccer players captured by multiple cameras through occlusions in real-time.

1 INTRODUCTION

Tracking multiple targets is needed in a lot of com-
puter vision applications like surveillance or sports
analysis. The sports domain provides a challeng-
ing testbed for concurrent tracking of multiple tar-
gets with similar appearance through frequent occlu-
sions measured from different views. In team sports
the complex coordination of movements of different
players are crucial to the success of a squad. For auto-
mated analysis thereof the correct association of play-
ers to movements is equally important as the recogni-
tion of the movement itself.

To achieve an automatic extraction of athlete posi-
tions during sports games from video streams, beside
camera estimation and player segmentation, a robust
and fast multi-target tracking method is needed. In
sports games the number of players is usually known
and constant. In contrast the number of observations
for each player obtained by measurements from sen-
sors or segmentation for videos varies; it ranges from
zero in case of occlusion and oversight to several mea-
surements in case of hallucination and inaccuracy of
the player extraction. Players usually differ by ap-
pearance from the field to help viewers and referees to
follow the game easily, so the association of players
of one team with their individual name is the bigger
problem.

In this paper we propose a Rao-Blackwellized Re-
sampling particle filter (RBRPF) for real-time track-
ing of multiple targets. Particles are represented as
configurations of all players to result in tracking a
mixture of Gaussians, where the multi-modality is
caused by possible mix-ups of associations and the
Gaussian refers to the uncertainty of dynamics. Sam-
pling of new target configurations is reduced to sam-
pling associations and Rao-Blackwellized by using
the Kalman filter. Taking advantage of the fact that the
number of probable associations for given player po-
sitions and measurements are usually low, the particle
filter focuses on the most likely associations and can
avoid unnecessary computations by smart resampling
and memoization. The Bayesian framework allows
the integration of kinematic and appearance models to
determine the most probable player locations through
occlusions.

Our contributions are the enhancements of a state-
of-the-art theoretical multi target tracking method to-
wards an implementable real-time algorithm that per-
forms well in the demanding sports domain. We relax
the independence assumption of single measurement
associations to suit the original method to the applica-
tion domain and achieve more robustness. Further we
invent a smart resampling procedure that allows real-
time in the first place and adapts to the complexity of
the tracking problem. The proposed memoization of
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repeatedly computed results additionally improves ef-
ficiency.

The method is developed as part of the ASPOGA-
MO system (Beetz et al., 2006; Beetz et al., 2007),
that aims to extract knowledge from broadcasted soc-
cer games, and is evaluated by applying it to real
soccer games, showing robust real-time performance
over challenging sequences.

The remainder of this paper is organized as fol-
lows. We briefly talk about related work in the next
section. In section 3 we derive the Rao-Blackwellized
Resampling particle filter. Section 4 describes the ex-
periments we conducted. We finish in section 5 with
our conclusions.

2 RELATED WORK

Multiple-target tracking algorithms can be differenti-
ated by their data association methods. Multiple hy-
pothesis tracking (MHT) (Bar-Shalom et al., 2001)
builds a pruned tree of all possible association se-
quences of each measurement with close targets by
the Hungarian algorithm. The assumption of sin-
gle associations and the use of Kalman filtering al-
low computation in polynomial time, but inhibit to
handle multiple or merged associations. Khan et al.,
2006 (Khan et al., 2006) propose a real-time Rao-
Blackwellized MCMC-based particle filter where as-
sociations are sampled by a Markov chain. The
Markov chain allows also sampling of merged mea-
surement assignments but demands computation time
that reduces the number of particles. In their exper-
iments real-time could only be provided for a small
number of particles (less than 6) i.e. the tracker can
cope with three parallel mix-ups of targets max. Inter-
action of targets are modeled as correlations between
target positions which does not hold for many appli-
cations.

The Rao-Blackwellized particle filter approach by
Särkkä et al., 2004 (Särkkä et al., 2004; Särkkä et al.,
2007) samples the associations directly and handles
dependencies between them by data associations pri-
ors. The performance of the method was demon-
strated only on synthetic simulations without state-
ments about computation time. Our approach is an
extension of this method to real world applications
introducing smart resampling and memoization that
leads to real-time tracking in the first place and relax-
ation of the association independence assumption.

Tracking of soccer players is classified by Li et al.,
2005 (Li et al., 2005) in category and identity track-
ing. Category tracking extracts trajectories with team
affiliation where in the other case each single player

is traced with its identity. Barceló et al., 2005 (Bar-
celó et al., 2005) and Figueroa et al., 2006 (Figueroa
et al., 2006) label the measurements by nearest neigh-
bor assignment. In Gedikli et al., 2007 (Gedikli et al.,
2007) MHT was applied, but Particle filters constitute
the mostly used method in the literature for category
tracking (i.e. (Yang et al., 2005; A.Dearden and Grau,
2006)). Du et al., 2006 (Du et al., 2006; Du and Pi-
ater, 2007) aim on combining local particle filters to
fuse measurements captured from different views. A
MCMC method for team labelling is proposed by Liu
et al., 2007 (Liu et al., 2007) to link observations of
soccer players over time.

Identity tracking is often performed in a second
stage by consistent labelling of the trajectory graph
generated by category tracking. Huang and Hilton,
2006 (Huang and Hilton, 2006) propose an assign-
ment in batch mode by shortest path algorithm, Nil-
lius et al., 2006 (Nillius et al., 2006) solve the asso-
ciation of the trajectory graph by Bayesian network
inference, and Sullivan and Carlsson, 2006 (Sulli-
van and Carlsson, 2006) combine trajectories of un-
occluded players in a graph structure by clustering.
Barceló et al., 2005 (Barceló et al., 2005) resolve col-
lisions of nearest neighbor Kalman tracking by con-
straints in the trajectory graph. To the best of our
knowledge no real-time identity tracking method for
soccer player that allows multiple measurements and
fuses different camera views was proposed in the lit-
erature yet.

3 RAO-BLACKWELLIZED
RESAMPLING PARTICLE
FILTER

A particle filter for complete player configurations
constitutes the base of our algorithm. New particles
are predicted by sampling associations of players with
current measurements considering dependencies be-
tween them. Computation time is spend mostly on
the highly probable configurations and on ambiguous
associations by memoization of precomputed samples
and probabilities. Sampling and weighting is done by
using the Kalman filter for Rao-Blackwellization of
the particle filter.

3.1 Bayesian View of Tracking

The problem of tracking is to recursively estimate a
state xk knowing the evolution of the state sequence

xk = fk (xk−1,vk−1) (1)
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from measurements

zk = hk (xk,nk) (2)

where fk is called system or motion model and hk is
called measurement model, vk−1 and nk denote the
process and measurement noise, respectively. The
tracked state xk is represented as the configuration of
all player states

xk =

x j,k = N


 x

y
ẋ
ẏ

 ;mi
j,k,Vj,k


 j = 1, . . . ,T

(3)
where x j,k contains the position and velocity of player
j at time k. An individual target sample xi

j,k is as-
sumed to be Gaussian with mean mi

j,k and correspond-
ing covariance matrix V i

j,k.
In a Bayesian framework, the problem of tracking

can be formulated as one of estimating the posterior
probability density function p(xk|z1:k) for the state xk
given a sequence of measurements z1:k up to time k.

3.2 Particle Filtering

In Sampling Importance Sampling (SIS) particle fil-
tering, the posterior probability density function is ap-
proximated by a weighted sum of random samples xi

k
also called particles (Arulampalam et al., 2002). The
weights are normalized such that ∑i wi

k = 1:

p(xk|z1:k)≈∑
i

wi
kδ
(
xk− xi

k
)
. (4)

We draw samples xi
k by importance sampling from

a proposal q(.) called an importance density. Doucet,
1998 (Doucet, 1998) showed that the optimal impor-
tance density function that minimizes the variance of
the true weights conditioned on xi

k−1 and zk is

qopt
(
xk|xi

k−1,zk
)

=
p
(
zk|xk,xi

k−1

)
p
(
xk|xi

k−1

)
p
(
zk|xi

k−1

) . (5)

In our case the importance density is the probabil-
ity distribution of data associations, while the actual
sample is deduced from an association by the use of
Kalman filtering.

3.3 Sampling New Configurations

For known associations between measurements zk and
players of the sample xi

k−1 the new sampled con-
figuration is Gaussian and can be evaluated analyti-
cally as an optimal fusion between measurements and
predicted player positions. The Kalman filter pro-
vides the method to find the Gaussian that equals both

probabilities in the numerator of equation 5 and thus
maximizes their product. The sampling problem re-
duces therefor to sample associations between mea-
surements and the predicted player configuration and
solving multiple single target tracking problems by
Kalman filtering. The analytical sampling part forms
the Rao-Blackwellization of the particle filter. To
supply an optimal solution the Kalman filter assumes
state and measurement noise to be zero-mean, white
Gaussian and the measurement as well as the motion
model to be linear. If the last assumption does not
hold an extended or unscented Kalman filter could be
applied for a suboptimal solution. Following this ap-
proach the posterior probability density function of
configurations form a mixture of Gaussians, where
the multi-modality originates from ambiguities in the
associations.

3.3.1 Predicting by System Model

We can sample from p
(
x′k|xi

k−1

)
analytically by the

Kalman prediction step according to the system dy-
namics of eq. 1. Each player state is predicted in-
dependently using the discretized Wiener velocity
model A∆t (Bar-Shalom et al., 2001) for time differ-
ence ∆t between k−1 and k as a linear motion model:

m′j,k =


x′j,k
y′j,k
ẋ′j,k
ẏ′j,k

=

 1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1




xi
j,k−1

yi
j,k−1

ẋi
j,k−1

ẏi
j,k−1


(6)

The covariance matrix evolves to

V ′k = A∆tVk−1AT
∆t +


∆t3

3 0 ∆t2

2 0
0 ∆t3

3 0 ∆t2

2
∆t2

2 0 ∆t 0
0 ∆t2

2 0 ∆t

 q̃ (7)

with power spectral density q̃ as a constant factor.

3.3.2 Sampling Associations

We introduce associations

Jk : {1, . . . , |zk|} →℘({1, . . . ,T}) (8)

as mappings from all measurements at time k to a
(possibly empty) subset of all targets. We denote
Ĵk as the inverse mapping from targets to their as-
signed observations for convenience. The space of
data associations equals the finite and discrete set of
all possible associations of measurements to targets
containing 2|zk|×T elements. If we restrict the data
associations Jk to assign a measurement to one tar-
get max, the number of possible associations reduce
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to (T +1)|zk|. We can further reduce this number to
min(T,|zk|)

∑
i=0

(
min(T, |zk|)

i

)
max(T, |zk|)min(T,|zk|)−i if we

prohibit multiple measurements per target, also called
exclusion principle (MacCormick and Blake, 1999).
Enumerating this set and solving each single target
tracking problem is still intractable even for a small
number of targets and measurements. Fortunately
only a few associations have high probability, but to
sample them efficiently, we have to assume the associ-
ations for single measurements to be independently or
the dependency between them to be determined fast.

Individual Independent Associations. If we look
at sampling an individual association for measure-
ment z ∈ zk, we can enumerate all possible assign-
ments easily as z can be clutter viz. a false alarm or
assigned to one of the players. Thus the importance
distribution π(z) for an association of a specific mea-
surement z can be evaluated by normalizing the prob-
abilities π̂(z) for each possible association.

Clutter measurements are assumed to be indepen-
dent from player positions and uniformly distributed
in the measurement space with volume M

π̂∅(z) = p(Jk(z) = ∅|zk)∼
1
M

. (9)

The probability for a data association between target
t and an observation z is up to a constant factor:

π̂t(z) = p
(
t ∈ Jk(z)|zk,x′k

)
∼ papp (t ∈ Jk(z))N

(
z;Hzm′t,k,H

T
z V ′t,kHz +Rz

)
(10)

with measurement model Hz =
(

1 0 0 0
0 1 0 0

)
and Rz as measurement noise covariance.
papp (t ∈ Jk(z)) denotes the propability of an as-
sociation based on the appearance model only, which
is independent from player and measurement posi-
tions. The Gaussian in the second part refers to the
probability of the association by the kinematic model.
We included the appearance model in difference to
(Särkkä et al., 2007) to allow a realistic influence
of additional information from segmentation beside
spatial data only.

Importance Density. Utilizing the independence of
single associations the importance density for a sam-
pled state x j

k can be computed as a product over prob-
abilities of assignments for each single measurement
that are given by the normalized importance distribu-
tion π of equations 9 and 10.

q
(
xk|xi

k−1,zk
)

= ∏
zk

π (11)

Figure 1: Association of a and m1 increases the probability
of b and m2 being associated.

Relaxation of Independence. In the underlying
method by Särkkä et al., 2004, the measurements are
processed one at a time in sequential fashion based on
the independence assumption of associations of indi-
vidual measurements. This assumption does not al-
ways hold, the order of associations often do matter.
This can be best exemplified by figure 1 assuming that
measurements can be assigned to one target at max: If
target a is assigned to measurement m1, the probabil-
ity of the association of m2 and target b increases.

Särkkä et al., 2007 did not consider this problem
at all but proposed the use of an data association prior.
We follow this solution instead of establishing an ad-
ditional Markov Chain as proposed by Khan et al.,
2006 (Khan et al., 2006) in favor of computational ef-
ficiency but change the procedure slightly to improve
robustness against violation of the mentioned assump-
tion. To generate new particles x j

k including the whole
player configuration, we repeatedly sample an order-
ing on the measurements of one sweep uniformly at
random, reducing the relevance of the ordering and
the induced dependencies on the tracking result. With
the randomly sampled ordering we draw an associa-
tion for each measurement with the normalized im-
portance distribution π(z) one at a time. If a target
was associated, it is excluded from further associa-
tions with the single detection probability psd and the
importance distribution is renormalized. If the men-
tioned exclusion principle holds i.e. targets can be as-
signed to one measurement at max, psd should be set
to one.

Determination of State from Associations. For
sampled associations Jk the predicted player positions
x′k can be updated individually by Kalman update with
their observations

xi
j,k = x′j,k +V ′j,kHT (HV ′kHT +R

)−1 (
Ĵk( j)−Hx′j,k

)
,

(12)
with H denoting the linear measurement model (2) as
Hz stacked |Ĵk ( j) | times and R as diagonal matrix of
measurement covariances of observations Ĵk ( j).

RAO-BLACKWELLIZED RESAMPLING PARTICLE FILTER FOR REAL-TIME PLAYER TRACKING IN SPORTS

467



3.4 Weighting

For a good performance of the particle filter the com-
putation of the weights of each sampled state is cru-
cial. To approximate p(xk|z1:k) correctly the weights
wi

k have to be defined recursively as

wi
k ∝ wi

k−1
p
(
zk|xi

k

)
p
(
xi

k|xi
k−1

)
q
(
xi

k|xi
k−1,zk

) . (13)

The denominator was already computed in the sam-
pling phase and was depicted in equation 11. The
likelihood of the measurements given the sampled
state xi

k with known associations and the likelihood of
xi

k given the former state xi
k−1 and the dynamics can

be computed for each player and measurement sepa-
rately. The measurement likelihood can be computed
analogously to eq. 10 but substituting x′k by xi

k and V ′k
by V i

k , respectively:

p
(
zk|xi

k
)

= ∏
z/∈Ĵi

k

π̂∅(z)∏
j

p
(

Ĵi
k(x

i
j,k)|xi

j,k

)
. (14)

The likelihood of the new sample according to the
motion model can be computed by reusing the already
predicted state x′k of eq. 6

p
(
xi

k|xi
k−1
)

= ∏
j

N
(

mi
j,k;m′j,k,V

i
j,k +V ′j,k

)
. (15)

3.5 Resampling

SIS particle filters suffer from the so called degener-
acy phenomenon, where only a small amount of all
particles have not negligible weights. This implies
that most of the computation time will be spent on
particles that contribute only marginally to the ap-
proximation of the posterior probability density func-
tion of equation 4. To reduce the degeneracy problem
resampling has been proposed to eliminate particles
with small weights and clone the others according to
their weights. We include the resampling step by sam-
pling wi

k−1×Nmax associations for particle xi
k−1. Par-

ticles with larger weights will therefor allocate more
particles in the next time step, while particles with
small weights are dropped.

Sampling several times from the same particle the
number of distinct sampled particles will approach the
number of ambiguities in the associations because a
specific assignment leads to the same sampled con-
figuration. Due to their discreteness there are usually
only a small number of distinct probable associations.
This allows a chance for noticeable improvement in
computation time by smart memoization. Caching
and testing sampled associations for equality can save
computation time considering not only the update to

generate a new state of equation 12 but also the pre-
diction in the next particle filtering step in equation
6.

After resampling the weights are usually reset to
wk = 1/Nmax to reflect the equal probability of all par-
ticles. In our case we count the times nJk the same
association Jk was sampled for a specific particle and
provide only one single particle for the next filtering
step having the weight set to wk = nJk/Nmax. Then the
weights are recursively updated as in equation 13 and
normalized at the end of the filtering step. The actual
number of particles can therefor vary between 1 and
Nmax using more particles in situations with high as-
sociation ambiguities. This smart resampling reduces
the computation time and allows real time in the first
place.

3.6 Estimate of the State

An estimate of the player positions at time k i.e. of the
state xk can be found by either selecting the particle
with maximum weight or by clustering the particles
and taking the weighted mean of the most probable
cluster. Calculating the weighted mean of all parti-
cles should not be considered here because it can lead
to the so called ghost phenomenon for multi-modal
distributions i.e. it leads to a state estimated as the
mean of two modes that is known to be wrong.

3.7 Implementation

The complete algorithm is depicted in figure 2 fol-
lowing the derivation of the former section. The indi-
vidual importance distributions π as well as π̂ and the
Kalman prediction and updates are cached for reuse in
the next sampling iteration to improve efficiency. The
importance distribution, all probabilities and weights
are calculated in log-space to avoid numerical prob-
lems.

4 EXPERIMENTAL RESULTS

The proposed tracking method is evaluated as part
of the ASPOGAMO system (Beetz et al., 2006; Beetz
et al., 2007), that aims to extract knowledge from
broadcasted soccer games. ASPOGAMO is able to track
multiple dynamic pan-tilt-zoom cameras and segment
the soccer players and referee by a combination of
variance filter and color templates. Segmentation in-
fluences the tracking process as the Kalman filters
smooth assigned measurements, quality evaluation of
the used method can be found in (Beetz et al., 2007).
However segmentation by background subtraction for
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[{
xi

k,w
i
k
}Nk

i=1

]
= RBRPF

[{
xi

k−1,w
i
k−1
}Nk−1

i=1 ,zk

]
Nk = 0
FOR i = 1 : Nk−1
Predict x′k as in 6
C = ∅
FOR j = 1 :

(
wi

k−1×Nmax
)

Sample an association Jk:
τ = {1, . . . ,T}
Init Jk : ∀p ∈ τ.Ĵk(p) = ∅
Reorder measurements zk randomly
FOR l = 1 : |zk|
Compute π̂() as in 9 and 10
π = normalized π̂

Draw association for lth measurement
with player p ∈ τ by π

Jk(p) = Jk(p)∪{l}
IF random(0,1) < psd: τ = τ \ p and
renormalize π

END FOR

IF Jk not in C
Nk = Nk +1
nJk = 1
Compute xNk

k by Kalman update if not done
previously as in 12
ŵNk

k = 1
Nmax

Update ŵNk
k as in 13

C = C∪{Jk}

ELSE
nJk = nJk +1
ŵk = ŵk

nJk
nJk−1

END IF

END FOR

END FOR
Calculate total weight: t = ∑

Nk
j=1 ŵ j

k
FOR j = 1 : Nk
Normalize: w j

k = t−1ŵ j
k

END FOR

Figure 2: Algorithm for one iteration of the proposed Rao-
Blackwellized Resampling particle filter.

static cameras is usually of higher quality. Digital
videos captured by two dynamic cameras with a frame
rate of 25Hz provide the basic raw material. Track-
ing results in both camera perspectives are depicted
in figures 3 and 4 and are presented quantitatively in
table 2. The extracted players spatial measurements
of each camera are fused by the proposed tracking al-
gorithm as different measurement sweeps with same
time stamps.

Player positions have been measured in meters
and were initialized manually in the image with co-
variance V0 = 2I4, initial velocity was set to zero. The
factor for the kinematic process noise q̃ = 0.0008 is

derived from maximal human speed. The probability
of multiple observations for the same target was ob-
tained experimentally to psd = 0.92. A confusion ma-
trix between different categories was used as a sim-
ple appearance model papp and is depicted in table
1. The measurement space is determined by the num-
ber of pixels in each camera frame and evaluates to
M = 720×576. We used Nmax = 50 particles to track
all of the 22 players and the referee.

There is no ground truth for broadcasted soccer
games because players can be tracked only visually
and camera parameters are unknown. We abandon to
present a spatial error as this is influenced mainly by
camera estimation and segmentation. Instead we tried
to find a error measure that is related with the number
of false associations. A failure was counted when the
projected player position differed from the real player
in the image by more than 10 pixels for longer than 3
frames. In this case the tracker was reset in the failed
player positions and run again on the rest of the se-
quence. We tracked both camera views separately and
also ran the same sequence fusing the measurements
of both perspectives. Because the broadcasted high-
angle camera shows only a part of the field and is pan-
ning and zooming fast, in average only 9.9 players are
visible (with standard deviation of 3.2). We splitted
the number of failures into association errors and as-
signing emerging players (second number) to be com-
parable with the other results. The second row of ta-
ble 2 shows the number of frames that were tracked
in the according experiment. The computation time
was taken for one update step, where all experiments
have been conducted on a 2.2 GHz Dual-core PC. We
think the actual needed time is more significant than
the theoretical complexity of the algorithm since the
input data do not scale but stay in fixed boundaries
(number of players is 22, number of measurements
usually lower than 200). The last row depicts the av-
erage number of particles and the corresponding stan-
dard deviation. Table 2 clearly evidences the real-time
tracking ability of the proposed method with low fail-
ure rate for single cameras. Fusion of different cam-
eras reduces the occurrence of occlusions and there-
with failure rate and number of particles even further.

The fourth experiment states a challenging se-
quence including several fouls and header duels
where kinematic and appearance model have often
been to weak to differentiate between players causing
a higher number of failures. The amount of measure-
ments (lower for the highangle view) correlates obvi-
ously with the number of particles and the computa-
tion time demonstrating the adaptiveness of the pro-
posed method to the complexity of the tracking prob-
lem. Also we observed assignment errors if segmen-
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Table 1: Confusion matrix between different categories.

Italy France Referee

Italy 0.6 0.1 0.3
France 0.1 0.8 0.1
Referee 0.3 0.1 0.6

Table 2: Tracking performance on the final of the world cup
2006.

Game Frames Fail Time(ms) Particles

Tactical 1262 13 23.3± 4 43.5±10
Highangle 1262 7+54 8.5± 5 12.1±12

Fused 1262 11 30.2±20 33.3±16
Fused II 3202 98 33.4±18 34.1±14

tation could not extract a specific player for longer
than 20 frames (e.g. fouled player on the ground).

We also implemented the method as proposed by
Khan et al., 2006 (Khan et al., 2006) and tested it on
the World Cup final. We encountered problems of two
kind: low variance in sparse particles and misleading
interaction handling. The real-time requirement al-
lowed only a small number of particles (6 in our case)
which had a low variance because the Markov chain
converged to very similar associations. This misled
the tracker to remember the most probable configu-
ration only which often did not equal the true posi-
tions. Interactions are handled by dependencies in the
positions via symmetric entries in the configuration
covariance matrix. This modeling is inappropriate for
interacting soccer players, where e.g. the player on the
ball shows contrary motion to his competitor. Both
drawbacks resulted in poor tracking performance for
the inspected soccer game sequences.

Figure 3: Tactical camera view of the World Cup final 2006.

Figure 4: Identity tracking of soccer players in the broad-
casted highangle camera view of the World Cup final 2006.

5 CONCLUSIONS

In this article we have proposed a real-time multiple
target tracking method based on Rao-Blackwellized
Resampling particle filtering for tracking soccer
player identities. We presented the necessary exten-
sions of an so far only theoretically evaluated state-
of-the-art multi-target tracking method to handle real
tracking problems being as challenging as in the
sports domain. The first extension comprises the pro-
cessing of measurements of one sweep instead of one
at a time to relax the independence assumption of as-
sociations. Secondly, smart resampling and memoiza-
tion was introduced to equip the tracking method with
real-time capabilities. Experimental results demon-
strate robustness and real-time performance of the
developed method in challenging soccer game se-
quences including increased achievements by fusion
of measurements from different cameras. A compari-
son with another recent multi-target tracking method
explains the supremacy of our approach for the soc-
cer domain. For future research we plan to examine
more complex appearance models for automatic reini-
tialization of the identities especially regarding broad-
casted single view sports videos.
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